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Background: Nearly 30% of patients who undergo venoarterial extracorporeal
membrane oxygenation (VA-ECMO) suffer pulmonary edema, which increases
mortality risk. Left heart decompression is widely considered an effective way
to counter left ventricular dilatation during VA-ECMO, but whether
decompression can protect the lung or improve prognosis is unclear. We
investigated this question using a canine model of acute left heart failure
being treated through VA-ECMO.

Methods: The left anterior descending artery was ligated in 12 beagles to
induce acute heart failure, and starting 1 h later, animals were treated using
femoral-femoral VA-ECMO for 3h. In half the animals, left heart
decompression was initiated concurrently with VA-ECMO. In the other half,
decompression was initiated 1h after VA-ECMO began. The ‘“early
decompression” and “late decompression” groups were compared in terms of
pulmonary function, cardiac function, hemodynamics, histopathology and
inflammatory responses.

Results: Early initiation of decompression led to significantly higher PaO,
(63.27 + 3.35 vs. 24.70 + 444 mmHg, P =0.030), lower PaCO, (31.65+ 2.87
vs. 41.02 + 4.88 mmHg, P =0.014), smaller alveolar-arterial oxygen pressure
difference, weaker transpulmonary pressure gradient (3.67+3.14 vs.
13.35 4+ 4.26 mmHg, P = 0.017), milder pulmonary edema, lower levels of pro-
inflammatory cytokines TNF-a and IL-6 in lungs, lower left atrial pressure,
lower left ventricular end diastolic pressure, lower mean pulmonary artery
pressure, and higher mean arterial pressure. Earlier decompression also led to
milder pulmonary blood congestion and pulmonary histopathology.
Conclusion: Left heart decompression, when initiated as soon as possible
during VA-ECMO, can protect pulmonary function by alleviating inflammatory
responses in the lung, improving hemodynamics and lowering ventricular
filling pressure.
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Introduction

Acute heart failure is a leading cause of hospitalization among
patients with cardiovascular disease and the most frequent reason
for unplanned hospital admissions in patients older than 65 years
(1, 2). Treatment outcomes for acute heart failure remain
unsatisfactory. Nearly one quarter of affected individuals are re-
admitted within 30 days (3), and up to one third of individuals
die within 1 year (1). Cardiogenic shock is a low-cardiac-output
state, which is the most serious manifestation of acute heart
failure (4-6).

While timely diagnosis and treatment of cardiogenic shock
can improve prognosis after acute heart failure (7), some
patients may require venoarterial extracorporeal membrane
oxygenation (VA-ECMO), considered a “last resort” treatment
(8-10). While such oxygenation can be effective, 40%-75% of
patients die soon after it (11, 12). This is partly because VA-
ECMO does not help the left ventricle recover function, it can
cause blood stasis within the left ventricle, and it can induce
pulmonary edema (13). In fact, at least 20%-30% of patients
suffer pulmonary edema after VA-ECMO (14), which increases
mortality risk (15). Up to 40% of patients experience pulmonary
hemorrhage, which also increases mortality risk (14). Therefore,
investigators need to find ways to improve cardiac and
pulmonary function under VA-ECMO while minimizing
pulmonary edema.

One approach may be left heart decompression, which is
currently used in many instances of VA-ECMO (16), yet

whose efficacy, indications and optimal timing during
VA-ECMO have yet to be established in randomized
controlled trials because of ethical concerns. Currently,

clinicians resort to left heart decompression as a “remedial”
measure only after patients manifest obvious hemodynamic
abnormalities. Could “preventive” decompression improve
prognosis even in the absence of such abnormalities? If so,
when  initiated
after it has

is  decompression effective
simultaneously with VA-ECMO or

proceeding for some time?

more
been

Studies suggest that the increase in left ventricular load during
VA-ECMO increases stress on the ventricular wall, activating
mechanical conduction in the heart and release of such pro-
inflammatory factors as tumor necrosis factor (TNF)-o and
interleukin (IL)-6 (17). The resulting inflammatory processes
may cause myocardial fibrosis, ventricular remodeling and
cardiomyopathy (17). Given this, could a “preventive” LHD
strategy achieve cardiopulmonary protection by mitigating
inflammatory responses?

We addressed these questions in a canine model of acute
heart failure treated by VA-ECMO. We examined whether
initiating left heart decompression at the same time as VA-
ECMO or well after onset of VA-ECMO improved cardiac and

pulmonary outcomes and inflammatory responses. We
hypothesized that left heart decompression improves
pulmonary and cardiac outcomes at least in part by

dampening inflammatory responses.
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Methods
Canine model of acute heart failure

Animal procedures were approved by the Animal Ethics
Committee of West China Hospital of Sichuan University
(approval 2019107A) and conducted with ARRIVE guidelines.
Adult male beagle dogs 1-2 years old and weighing 10-11 kg
were purchased from Chengdu Dassy Biological Technology
(Chengdu, China) and housed individually at 22°C-24°C and
relative humidity 45%-55%, with lights on from 7:00 to 19:00.
Animals had ad libitum access to chow and water.

After midnight on the night before surgery, dogs were not
provided solid food or water. Half an hour before surgery,
atropine (0.02 mg/kg) was injected intramuscularly to reduce
secretion in the mouth and trachea and to prevent airway
obstruction. A venous indwelling needle (20 G) was inserted into
the median elbow vein of the dog’s right upper limb, and
anesthesia was induced using 0.1 mg/kg midazolam, 0.3 pg/kg
sufentanil, 3-4 mg/kg propofol, and 0.1 mg/kg vecuronium
bromide. After laryngeal reflexes were confirmed to be adequately
suppressed, an endotracheal tube of inner diameter 7.0 mm with
cuff was inserted to a depth of 25-26 cm from the incisors.
Mechanical ventilation was initiated at a tidal volume of 10-
15ml/kg and a respiration rate of 20 beats/min in order to
maintain end tidal CO, partial pressure (PgrCO,) of 35-
45 mmHg. Anesthesia was maintained using propofol, midazolam,
sufentanil and vecuronium bromide. Body termperature was
maintained at 37.5°C-38.5°C using thermal blankets.

During surgery, dogs were monitored in terms of
electrocardiographic activity, blood oxygen saturation (pulse
oximetry), temperature, PgrCO, and airway pressure. The
middle and lower one-third of the left anterior descending
coronary artery was ligated as described (18) to induce left
cardiac dysfunction due to myocardial ischemia. Acute heart
failure was defined to be achieved if echocardiography showed
obviously abnormal segmental motion of the left ventricle and
ST-segment elevation, if the ejection fraction (EF) was less than
35% during sinus rhythm, and if left atrial pressure (LAP)

exceeded 15 mmHg (19).

Peripheral VA-ECMO

After 1 h of coronary occlusion, heparin was administered at
300 U/kg and the activated clotting time was monitored for
longer than 400s. A femoral venous catheter (14 Fr; Mindray,
Shenzhen, China) was inserted into the right femoral vein, and
a femoral artery catheter (8 Fr; Mindray) was inserted through
the right femoral artery. The two femoral catheters were
connected to a VA-ECMO circuit (Maquet Cardiopulmonary,
Rastatt, Germany) that had been filled with 150 ml Ringer’s
lactate solution, 200 ml 6% hydroxyethyl starch and 20 mg
heparin. The circuit was operated with the following parameters:
flow rate, 100 ml/kg/min; ratio of gas flow to blood flow, 1:1;

frontiersin.org



Chen et al.

and oxygen concentration, 40%. Ventilation was performed at the
following parameters: respiratory rate, 10 breaths/min; tidal
volume, 10-15 ml/kg; ratio of inspiration to expiration, 1:2; peak
inspiratory pressure, 10 cmH,0O; and oxygen concentration, 21%.
VA-ECMO was conducted for a total of 3 h.

VA-ECMO,
continuously at 1.5 mg/kg/h to prevent ventricular arrhythmia.

Throughout lidocaine was administered
If ventricular fibrillation occurred, animals were defibrillated
using the HEARTSTART XL system (Philips, Amsterdam,

Netherlands) and given 3 mg/kg amiodarone.

Left heart decompression

Animals were randomized to receive left heart decompression
for 3 h beginning in tandem with VA-ECMO (hereafter “early
decompression”) or for 2h beginning after 1h of VA-ECMO
(hereafter “late decompression”). For decompression, a DLP®
arterial catheter (6 Fr; Medtronic, Minneapolis, MN, USA) was
inserted under ultrasound guidance to a depth of 1.5cm
through the apex of the left ventricle. The catheter was
positioned to avoid obstructing the outflow tract of the left
ventricle or the mitral valve and to avoid coming too close to
the ventricular wall. The decompression tube was connected to
a centrifugal pump and to the venous end of the VA-ECMO
circuit, in which the flow rate was 40 ml/kg/min.

We did not include a control group of animals that did not
heart
experiments, few such animals survived until the end of surgery

receive left decompression because in preliminary

due to extremely high LAP (data not shown).

Evaluation of pulmonary function

Pulmonary function was assessed in terms of oxygen partial
pressure (Pa0O,), carbon dioxide partial pressure (PaCO,), the
alveolar-arterial oxygen pressure difference (A-aDO,), and
transpulmonary pressure gradient (TPG). These parameters were
measured at the following time points: baseline (T0), 1 h after
coronary artery ligation (T1), after 1h of VA-ECMO (T2) and
after 3h of VA-ECMO (T3). At each time point, blood (0.5 ml)
from the left ventricle was analyzed using an i-STAT blood gas
analyzer (Abbott Laboratories, Chicago, IL, USA).

A-aDO,  was using the formula A
—aD0, =PAO,—Pa0,, where PAO, = [FiO; X (Pym—PmH20)]
—(PaCO,/R). TPG was calculated using the formula TPG = PAP
—LAP, where PAP refers to pulmonary artery pressure and LAP

calculated

to left atrial pressure. These parameters were measured as
described below in “Evaluation of hemodynamics”.

Evaluation of cardiac function

Cardiac function was assessed using two-dimensional
epicardial echocardiography because the narrow, elongated

thorax of dogs leads to poor imaging quality with transthoracic

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1545903

ultrasonography. At a probe frequency of 10 MHz and image
depth of 6-10 cm, the following views were recorded during
three consecutive cardiac cycles: apical four-chamber, papillary
muscle short-axis, and left ventricular long-axis. The following
parameters were averaged over the three consecutive cardiac
cycles: left atrial (LA), left ventricular (LV), EF, CO, tricuspid
annular plane systolic excursion (TAPSE) and left ventricular
stroke work index (LVSWI).

Evaluation of hemodynamics

Animals were anesthetized, an area of skin on the anterior
median chest was disinfected, and an incision was made,
through which the chest and pericardium were opened. A Swan
Ganz Thermodilution catheter (5 Fr; Edwards Lifesciences,
Irvine, CA, USA) containing heparin solution was inserted into
the left atrium, aortic root, pulmonary artery and left ventricle.
This catheter was used to measure heart rate, systolic and
diastolic pressure at the aortic root, LAP, left ventricular end
diastolic pressure (LVEDP),
pressure. The signals were recorded using a BL-420S signal

and mean pulmonary artery

acquisition system (Taimeng, Chengdu, China). All pressure
transducers were zeroed to atmospheric pressure and leveled at
the dog’s manubrium. Coronary perfusion pressure (CPP) and
mean blood pressure (MBP) at the aortic root were calculated
according to the corresponding formulas.

At the same time points, blood from the LV and pulmonary
artery was sampled and assayed for lactic acid and pulmonary
arterial oxygen saturation (SmO,).

Evaluation of histopathology and pro-
inflammatory cytokines

At the end of the experiment, biopsies (0.5 cm®) were taken
from the inferior lobe of the left lung, apex of the left ventricle
and right ventricular outflow tract; the biopsies were sectioned,
stained with hematoxylin-eosin, and assessed for lung and
myocardial histopathology as described (20-22). In parallel, a
replicate set of biopsies from these tissues as well as plasma
from blood was assayed for IL-6 and TNF-o using commercial
kits (catalog nos. 11802 and 11943, Meimian, Yancheng, China).
Assay samples were analyzed in triplicate and the results
were averaged.

Immediately after VA-ECMO, the left lungs of dogs were
removed, weighed while wet, then dried in an oven at 60°C-70°
C until constant weight; the ratio of wet to dry weight served as
an indicator of pulmonary edema (23).

Statistical analysis
Data were analyzed statistically using SPSS 15 (IBM, Chicago,

IL, US). All data were confirmed to show normal distributions
based on the Kolmogorov Smirnov test as well as homogeneous
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variance based on the Brown Forsythe test. Differences between
the early and late decompression groups were assessed for
the t test,
intragroup differences between measurements at different time

significance using independent-samples while
points were assessed for significance using two-way analysis of
variance for repeated measures, followed by a Bonferroni post

hoc test.

Results

In preliminary experiments, six beagle dogs weighing
10.35+0.47 kg were subjected to ligation of the left anterior
descending coronary artery, which showed that acute heart

10.3389/fcvm.2025.1545903

failure occurred by 1h afterward (Figure 1A). Therefore VA-
ECMO in the main experiments was initiated at this time point.
In addition, we found that ventricular fibrillation was clinically
significant after 1 h of VA-ECMO, so that was the time point at
which we initiated left heart decompression in the “late
decompression” group (Figure 1B). Finally, the preliminary
studies showed that a decompression flow rate of 40 ml/kg/min
was superior to 20 or 60 ml/kg/min (Supplementary Figure SI),
so this rate was used in the main experiments.

The main experiments involved 12 beagle dogs randomized
1:1
10.50+0.77 kg) and late decompression group (body weight,
10.70 £ 1.06 kg) (Figure 1C). At the end of the experiment, early
decompression protected pulmonary function significantly better

into an early decompression group (body weight,

Normal

Left heart failure model

Cc

Coronary occlusion (3h)

Coronary

l occlusion I
(1h)

VA-ECMO + LHD (3h)

Coronary occlusion (3h)

Early LHD group

(1h)

T0 T1 T2

FIGURE 1

Establishment of the AHF model and peripheral VA-ECMO with LHD model in dogs. (A) Left: The heart of a normal dog. Right: The heart of a dog after
ligating the anterior descending branch of the coronary artery. (B) The schematic diagram of the VA-ECMO with LHD model. (C) The experimental
timeline. AHF, acute heart failure; LAP, left atrial pressure; LHD, left heart decompression; LVP, left ventricle pressure; PAP, pulmonary artery pressure;

VA-ECMO, venoarterial extracorporeal membrane oxygenation.

VA-ECMO IVA—ECMO + LHD (2h)

Late LHD group

13
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than late decompression as reflected in higher PaO, (63.27 +3.35
vs. 24.70 + 444 mmHg, P=0.030; Figure 2A), lower PaCO,
(31.65 £2.87 vs. 41.02 + 4.88 mmHg, P =0.014; Figure 2B), lower
A-aDO, (146.72+4.87 vs. 197.35+27.51 mmHg, P=0.003;
Figure 2C), and lower TPG (3.67 £3.14 vs. 13.35 + 4.26 mmHg,
P =0.017; Figure 2D).

Early decompression also protected cardiac function better
than late decompression, at least according to some parameters.
Early decompression led to significantly smaller LA at 1 h after
VA-ECMO (2.03£0.16 vs. 2.61 £0.35 cm, P <0.001; Figure 3A),
although this difference disappeared by the end of the
experiment; and it led to significantly higher TAPSE at the end
of the experiment (6.38+1.46 vs. 4.03+1.06 mm, P=0.006,
Figure 3F). In the early LHD group, there was no statistical
difference in CO between T1 and T3. However, in the late LHD
group, CO at T3 was significantly lower than that at TI
(1.069 +0.314 vs. 1.695+0.140 L/min, P<0.001; Figure 3E),
indicating that early LHD has a protective effect on CO.
Nevertheless, timing of decompression did not significantly
affect LV (Figure 3B), LVSWI (Figure 3C), EF (Figure 3D) or
CO (Figure 3E) at any time point.

Early decompression led to better hemodynamics than late
decompression in terms of significantly lower LAP (20.33 +4.68
vs. 28.17+5.31 mmHg, P=0.017; Figure 4C), lower LVEDP
(18.67 +3.56 vs. 27.33+3.88 mmHg, P=0.009; Figure 4D),
lower mean PAP (26.50+5.09 vs. 40.17 +8.80 mmHg vs,
P=0.002; Figure 4E), and higher CPP (43.83+6.52 vs.
27.50+9.35 mmHg, P=0.015, Figure 4F) at 1h after VA-
ECMO. The benefits of early compression remained visible at

10.3389/fcvm.2025.1545903

the end of the experiment in terms of higher MBP
(69.35+17.91 vs. 59.95+15.39 mmHg, P=0.047; Figure 4B)
and lower mean PAP (32.17+6.18 vs. 18.50+2.74 mmHg,
P =0.002; Figure 4E).

Timing of left heart decompression did not significantly affect
the ability of VA-ECMO to perfuse the body: the early and late
groups did not differ significantly in SmO, (Figure 4F) or lactic
acid (Figure 4G) at any time point.

Myocardium and lung showed edema, hemorrhage and
of whether
decompression was initiated early or late (Figures 5A-C), but

infiltration by inflammatory cells regardless
early decompression was associated with significantly less
hemorrhaging and inflammatory cell infiltration, whether in the
right ventricular myocardium or lung (Figure 5D). On the other
hand, histopathology of the left ventricular myocardium was
similar between the early and late groups.

Early decompression was associated with a significantly lower
ratio of wet to dry weight of the left lung at the end of the
(7.46 + 1.28% 10.88 £3.06%, P=0.031;
Figure 5E), suggesting milder pulmonary edema.

While timing of decompression did not significantly affect levels

experiment vs.

of TNF-a and IL-6 in myocardium or plasma, early decompression
was associated with significantly lower levels of TNF-a
(275.62 £ 44.95 vs. 383.92 + 47.63 pg/ml, P =0.002; Figure 5F) and
IL-6  (454.68£34.71 vs. 568.65+59.84 pg/ml, P =0.006;
Figure 5G) in the lung. These results link more severe lung injury
to stronger inflammatory responses, and they support our
hypothesis that the ability of decompression to protect lung
function involves attenuation of inflammatory processes.

The changes of pulmonary function in dogs at different time between early LHD group and late LHD group. The change of PaO, (A), PaCO, (B),
A-aDO, (C), TPG (D) in dogs at different time between early LHD group and late LHD group. A-aDO,, alveolar-arterial oxygen pressure
difference; LHD, left heart decompression; PaO,, oxygen partial pressure; PaCO,, carbon dioxide pressure; TPG, transpulmonary pressure
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FIGURE 3
The changes of echocardiographic indicators in dogs at different time between early LHD group and late LHD group. The changes of LA (A), LV (B),
LVSWI (C), EF (D), CO (E) and TAPSE (F) at different time between early LHD group and late LHD group. CO, cardiac output; EF, ejection fraction; LA,
left atrial; LHD, left heart decompression; LV, left ventricle; LVSWI, left ventricular stroke work index; TAPSE, tricuspid annular plane systolic excursion.
Data were present as mean + SD, and were compared by two-way ANOVA. *, P<0.05; **, P<0.01; *** P<0.001.

Discussion

Our experiments in a canine model of acute heart failure being
treated with VA-ECMO is that left heart decompression, when
initiated simultaneously with VA-ECMO, can significantly
mitigate the procedure’s harmful effects on pulmonary and
cardiac function. These protective effects are associated with
mitigation of inflammatory responses and improvement in
hemodynamics, reducing left heart filling pressure. Our findings
justify clinical studies to develop and optimize left heart
decompression as an approach to alleviate or even prevent the
lung and heart injury that VA-ECMO often causes, but also to
improve recovery of cardiac function.

In our model, as in other animal models and patients, VA-
ECMO induced lung edema, hyaline membranes, alveolar
hemorrhage, thrombosis and focal necrosis (24-26). VA-ECMO
imposes an afterload on the failing left ventricle, which can
prevent the aortic valve from opening normally and thereby
induce blood stasis in that ventricle (27). In parallel, numerous
factors can increase preload on the left ventricle, dilating it and
elevating LVEDP. The myocardium consumes increasing amounts
of oxygen as coronary perfusion falls, prolonging myocardial
ischemia. The persistently elevated LVEDP impairs pulmonary
venous return, which can cause pulmonary edema and even
induce secondary pulmonary hypertension, compromising right
heart function. Indeed, left heart decompression has been shown
to alleviate pulmonary edema and improve pulmonary
dysfunction in patients undergoing cardiopulmonary bypass
surgery (28) and to rapidly alleviate pulmonary edema and

pulmonary hemorrhage in patients receiving VA-ECMO (29).

Frontiers in Cardiovascular Medicine

Using a canine model allowed us to compare the efficacy of
early or decompression, and our results strongly indicate that
early decompression is superior. Early decompression may be
much better than late decompression because it can prevent the
onset of cardiogenic pulmonary edema. Such edema impairs
pulmonary diffusion capacity, reduces local alveolar oxygen
partial pressure, and disrupts alveolar epithelial function (6).
Alveolar hypoxia hinders pulmonary fluid clearance and the
production of surfactant, leading to the accumulation of proteins,
lactate dehydrogenase, neutrophils, and elastase in alveoli,
inducing localized and systemic inflammation (30, 31). Contact of
the blood with the extracorporeal membrane can also trigger
systemic inflammatory responses mediated by TNF-o and by IL-
6, IL-8 and IL-10 (32). While early decompression in our canine
model led to significantly lower levels of TNF-a and IL-6, milder
histopathology and less neutrophil infiltration in the bronchi and
alveoli than late decompression did, the two methods led to
similar intensity of systemic and myocardial inflammatory
responses. This suggests that the observed ability of early left
heart decompression to protect the lung during VA-ECMO does
not involve mitigation of systemic inflammation, but instead
direct mitigation of pulmonary inflammation. We speculate that
early decompression improves pulmonary oxygenation and
alleviates pulmonary edema, thereby interrupting the vicious cycle
of alveolar hypoxia and inflammation.

Our the idea of adding left heart
decompression to the list of published methods to prevent left
ventricular distension during VA-ECMO, which already includes
adjusting the flow rate, applying lung-protective ventilation,

results support

administering diuretics and renal replacement therapy to avoid

06 frontiersin.org
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compared by two-way ANOVA. *, P<0.05; **, P<0.01; *** P<0.001.

volume overload, or administering inotropic drugs and
vasodilators to improve CO and reduce pulmonary pressure (33,
34). Future studies should compare the effects of these various
approaches on the prognosis of different types of patients

undergoing VA-ECMO.

Frontiers in Cardiovascular Medicine

The optimal timing for left heart decompression during VA-
ECMO remains heterogeneous in clinical practice. Some studies
suggest that a visibly enlarged left ventricle on echocardiography
may serve as an indication for decompression (35, 36).
this significant  limitations. In

However, approach has
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pathophysiological states, the relationship between LV size and
LVEDP is not linear, largely due to alterations in intrinsic
myocardial compliance and interindividual variability in baseline
cardiac anatomy and function (37, 38). Moreover, pericardial
constraint may further obscure the hemodynamic interpretation
relying  solely on
echocardiographic LV
decompression may be insufficient to accurately identify patients
LV  distension elevated

of LV dimensions. Consequently,

assessment  of size to guide

experiencing  significant and
filling pressures.

While LVSWI, EF and CO are valuable parameters for
assessing LV performance, its accurate quantification by
echocardiography is subject to multiple limitations, particularly
in the setting of VA-ECMO and surgical interventions such as
LV venting. Factors such as preload and afterload variability,
continuous flow from the ECMO circuit, interference from the

decompression cannula, as well as restricted acoustic windows

Frontiers in Cardiovascular Medicine

can significantly affect pressure and volume estimations needed
for them calculation. Given these technical challenges and the
potential for inconsistent measurements across time points, we
decided not to perform within-group comparisons of them. This
approach was taken to avoid overinterpretation of potentially
unreliable data in this dynamic and highly invasive setting.
Similar concerns regarding the limitations of echocardiographic-
derived them have been raised in prior studies (39-41).

In this study, left ventricular decompression was achieved via
surgical placement of a venting catheter through apical puncture.
This approach was selected for its technical feasibility in the
animal model; however, it may result in myocardial injury and
impaired ventricular function, and is more commonly used in
clinical settings for bridge-to-durable ventricular assist device
(VAD) than
Percutaneous microaxial transaortic ventricular assist devices
(pVADs) are emerging as a less invasive and more clinically

implantation rather routine decompression.
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relevant option for LV unloading during VA-ECMO. Future
studies are planned to evaluate the timing, hemodynamic
impact, and pulmonary protective effects of pVAD-mediated
decompression in a similar model.

Our results should be interpreted with caution given that, for
ethical reasons, our study lacked a control group that did not
receive left heart decompression. Further preclinical studies
should determine whether the observed lack of influence of
early or late decompression on myocardial or systemic
inflammatory responses depends on the severity of myocardial
injury or length of experimental time.

Despite these limitations, our study of a canine model
provides strong evidence that early, but not late, left heart
decompression can reduce LVEDP, improve lung oxygenation,
and mitigate lung injury during VA-ECMO after acute heart
failure. Decompression may exert these effects by reducing
pulmonary congestion and local inflammatory responses.
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