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Background: Phenotypic heterogeneity is apparent among individuals with

putative monogenic disease, such as familial hypertrophic cardiomyopathy.

Genome sequencing (GS) allows interrogation of the full spectrum of inborn

genetic variation in an individual and RNA profiling provides a snapshot of the

cardiac-specific pathogenic effects on gene expression.

Objectives: Identify candidate genetic modifiers of hypertrophic

cardiomyopathy phenotype.

Methods: We performed GS of 48 individuals with variants in MYH7, the gene

encoding beta myosin heavy chain, and a personal or family history of

cardiomyopathy. The genome sequences were annotated with a custom

pipeline optimized for cardiovascular gene variant detection. We utilized

multiple lines of evidence to prioritize genes together with rare variant gene-

based association testing to identify candidate genetic modifiers.

Results: GS identified the MYH7 variant in all 48 cases. Several variants were

reclassified based on best available data. We identified known disease-

associated genes (MYBPC3, FHOD3), a priori candidate modifiers (ATP1A2,

RYR2), and novel candidate modifiers of cardiomyopathy including PACSIN3

and SORBS2. We identified regulatory variants and intergenic regions

associated with the phenotypes. Using RNA profiling, we show that several

genes identified through gene-based association testing are differentially

regulated in human hypertrophic cardiomyopathy, and in models of disease.
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Conclusion: Evaluation of the whole genome, even in the case of alleged

monogenic disease, leads to important new insights. The identified variants,

regions, and genes are candidates to modify disease presentation

in cardiomyopathy.

KEYWORDS

hypertrophic cardiomyopathy, MYH7, modifier, genome sequencing, left ventricular

hypertrophy

Introduction

Familial cardiomyopathy is a major cause of morbidity and

mortality. Hypertrophic cardiomyopathy (HCM) was first

mapped by positional cloning to the cardiac beta myosin heavy

chain (MYH7) (1, 2). Subsequently variants in other sarcomeric

genes were found to be pathogenic for HCM. Today, a

pathogenic genetic variant is identified in <50% of HCM cases

(3), where rare and private variants in myosin binding protein C

(MYBPC3) and MYH7 are most common (4). High variability in

disease presentation, penetrance and expressivity has caused

some to question the single variant nature of these diseases and

led to speculation that additional genetic variation may be

contributing (5–7). Disease heterogeneity, both among families

with identical “disease-causative” variants and between

individuals within these families, can span severity and

presentation and complicates diagnosis and prognosis (6).

Importantly, polygenic risk can explain some variability in

disease presentation in patients with HCM (8). Additionally,

several groups demonstrated that patients harboring multiple rare

variants in disease-associated genes may develop severe

phenotype or present earlier (9–11). Genome-wide association

studies have identified large effect variants with moderate

population frequencies (8, 12), while small to moderate effect

variants and variants of rare frequency that could influence

disease heterogeneity have been less well-characterized. Our

understanding of how additional genetic variants of intermediate

effect, commonly referred to as genetic modifiers, influence the

severity and manifestation of causal alleles has been limited, due

in part to the difficulties encountered in identifying genetic

modifiers. Recent evidence also shows contribution of common

variants to the risk of developing HCM (12), corroborating its

genetic complexity.

Technological advances rapidly reduced the cost of genome

sequencing (GS) such that application is a clinical reality. While

testing continues to be focused on gene panels for primary

variant identification, improved quality of sequencing chemistry

and processing algorithms has enabled clinical exome and

genome sequencing. GS has identified new pathogenic variants in

HCM (13), as well as in diseases previously not considered

genetic such as acute myocarditis (14). Data from gnomAD (15)

have refined our understanding of gene tolerance to variation.

We previously explored the concept of gene tolerance and its

utility in classifying cardiovascular disease variants (16, 17). GS

uniquely allows interrogation of all genes, regulatory regions,

intergenic regions, as well as detection of larger indels and

structural variants. In combination with RNA sequencing, the

regulatory implications of different variants can be investigated

further to improve our understanding of the genetic complexity

of disease.

Here, we utilize patient derived GS and multiple sources of

transcriptomic data to identify genetic modifiers of the disease

phenotype in cardiomyopathy patients with a previously identified

variant in MYH7. We develop a pipeline specific to cardiomyopathy,

update curation of all putatively causal variants, and examine several

aspects of variation uniquely available in genome data. In

combination with transcriptional coexpression network data, we

identify candidate modifiers of the cardiomyopathy phenotype. The

expression profiles of several candidates are assessed in three

independent models of cardiac hypertrophy.

Methods

Cohort

The study was approved by local IRB (GAP 4237) and

conformed to the Declaration of Helsinki. We identified 48

individuals with prior genetic testing for cardiomyopathy

associated variants in MYH7. Patients were recruited from the

inherited cardiomyopathy clinics of Stanford University, University

of Michigan, and the University of Chicago Medical Centers. Prior

to study inclusion, all participants underwent informed consent to

research-based genome sequencing. Clinical details including

variant classification from the original genetic testing report were

obtained. Clinical measurements and demographics are found in

Tables 1, 2 and Supplementary Table S1 (echocardiography) and

Data S1 (individual clinical characteristics).

TABLE 1 Baseline characteristics.

HCM

Trait N Median Mean SD Min Max

Age (yrs) 42 49.5 47.2 16.1 7 79

Weight (lbs) 40 182.5 177.8 47.7 47 272

Height (inches) 40 67 66.7 5.4 48 80

Other

Trait N Median Mean SD Min Max

Age (yrs) 6 46.0 39.3 21.2 8 61

Weight (lbs) 5 143 117.8 47.8 42 155

Height (inches) 5 68 61.6 10.6 44 69
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Clinical curation

Our curation process was two tiered. First, we manually curated

any variant found within MYH7 to confirm the presence of the

original diagnosis and reclassified pathogenicity according to

additional lines of evidence. Second, we curated a broader set of

candidate myocardial genes (n = 452; Supplementary Table S2) to

identify alternate pathogenic variants, most of which were not

interrogated in the initial gene panel screening. The clinical

curation protocol was based on American College of Medical

Genetics (ACMG) guidelines (18, 19) as described (16). The

curation classes were: (1) Very likely disease causing (equivalent

to “published, disease causing mutation”; “known disease causing

mutation”; “pathogenic”; “disease causing mutation”). (2) Likely

disease causing (Equivalent to “presumed pathogenic mutation”;

“likely pathogenic”; “probably associated”). (3) VUS, likely

disease causing (equivalent to “novel variant of uncertain

significance, likely disease causing”). (4) VUS (equivalent to

“class II possible deleterious mutation”; “VUS”; “novel variant of

uncertain significance”). (5) VUS, likely benign. Primary criteria

for reclassification included population allele frequency

(GnomAD greater than 0.1%), pedigree segregation, supporting

publication evidence and clinical laboratory assertions available

through ClinVar (March 2021).

Sequencing, variant calling, filtering

Genome sequencing was performed on isolated genomic DNA

acquired from blood samples from each participant. DNA library

preparation and 2 × 100 paired-end sequencing was completed by

Illumina. Coverage was on average 30× and sufficient for high

quality germline variant genotyping.

Alignment and variant calling were completed using Real Time

Genomics (20). Filtering was applied based on an AVR (adaptive

variant rescoring) score of 0.02. Variant imputation, filtering and

structural variation calling were performed using a custom

pipeline as previously described (21, 22) with modification.

Variants were only called at positions that had evidence for an

alternate allele. Missing variant imputation was completed to

avoid bias during merging samples with different sets of variants.

First, the union of variants across all samples was selected. Next,

each sample was interrogated for missing genotypes at these

positions. Missing genotypes were set to homozygous reference if

there was in excess of 10 supporting reads and no evidence of an

alternative allele.

The called variants were then limited to those that were novel

or had an allele frequency of less than 1% (GnomAD v2 Spring

2021). The adopted 1% minor allele frequency filter is different

than what was implemented for pathogenicity as we are

considering modifiers of intermediate effect and thus

intermediate population frequency. Regions enriched for false

positives were also removed (Undiagnosed disease program

blacklist (23), ENCODE Mappability (24), Heng Li low

complexity (25), GIAB low confidence (26)). To protect against

overzealous filtering, variants in ClinVar (Sep 2014), GWAS

NHGRI Catalog (Fall 2014) (27), PharmGKB (Fall 2014) (28),

Cosmic(v70) (29) were whitelisted. ClinVar variant classifications

and disease associations are current as of July 2021

(Supplementary Dataset S1).

The remaining rare high confidence variants were further

limited based on functional evidence. Specifically, variants were

selected that were predicted by snpEff (30) to have moderate to

high impact on protein function or have a normalized CADD

score (31) greater than 20. The resulting VCF was subdivided

into three sets depending on the required analysis. Set 1 includes

all functional candidate variants, both genic and intergenic. Set 2

includes the genic region (refFlat Fall 2014) including introns

and 5 kb up and downstream of the transcription start site. Set 3

is a digital exome using a 10 bp extension of the Agilent

SureSelect exome capture v2. Each of these sets was selected for

burden testing in order to compare power of discovery for a gene

agnostic sliding window, whole gene region and coding exome.

We used a custom pipeline to call structural variants (SVs)

across the genome. As structural variant callers are known to

have lower confidence particularly with short read sequences, we

evaluated for SVs that were shared among multiple algorithms

and restricted to no more than 20% of samples. The tools

included—breakdancer v1.1.2 (32), breakseqlite v1.0, cnvnator

v0.2.7 (33), delly v0.0.9 (34) and freec v1.0 (35). High confidence

copy number calls are reported in the analysis. They include

anything called by Breakseqlite (36) (which is considered

conservative) or having greater than 50% reciprocal overlap

between at least two algorithms.

Intergenic and pathway burden testing

Intergenic regions were tested through a 50 kb sliding window

with 25 kb overlap (∼5 variants). Pathways were based primarily

on candidates gene sets of mitochondrial and sarcomeric

TABLE 2 Demographics.

Name Level N %

Sample origin Site 1 26 54

Site 2 13 27

Site 3 9 19

Sex F 24 50

M 24 50

Race Caucasian 34 71

Hispanic 2 4

Asian 3 6

Middle Eastern 2 4

African American 7 15

Morphology Apical hypertrophy 2 4.2

Asymmetric septal hypertrophy 30 62.5

Burnt-out hypertrophic 1 2.1

Concentric hypertrophy 6 12.5

Dilated 1 2.1

ECG+/LVH- 3 6.2

Inferior hypertrophy 2 4.2

Isolated noncompaction 3 6.2
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function. Additionally, a large number gene sets from Reactome

(37) and MsigDB (38) were used for exploratory hypothesis

generation. A key challenge with burden testing is appropriate

selection, tuning of the number of variants (or genes) and

subsequent weighting. The default, internally calculated,

frequency based weighting parameters were used with SKAT.

Aggressive post burden test filtering was applied to the case

control analysis to protect against false positives due to platform

bias (genome vs. exome sequencing). Genes were removed if they

were previously implicated as spurious in the UDP (23) or had a

prefix consistent with large paralogous gene families (OR,

PRAME, MUC, POTE, BAGE, ANK, NBF, DNA, DYN, CCDC,

PCD, DUX, D3X, KRT, FOX, PRSS, KIR, OPN, USP).

Preliminary analysis indicated comparison of genome to exome

sequencing results in spurious batch effects enriched for gene

families due to capture specificity or lack thereof. Burden testing

results are available in Supplementary Data S4.

Statistical analysis

All analysis was completed using the R statistical environment

and Bioconductor (39). Burden testing was performed using SKAT

with adaptive weighting and adjustment for small sample sizes

(40). In addition, for each region Fisher exact tests were used to

compare the number of samples with rare variants among high

and low groups. The high group was defined by median

dichotomization for continuous traits or cases with binary trait

analysis. The frequency of observed rare functional alleles was

reported for each group (including a proportion test) to estimate

the direction and magnitude of burden effect.

Burden testing was applied to four traits: maximum left

ventricular wall thickness (LVWT), ejection fraction (EF), left

ventricular outflow tract gradient (LVOTG) and case control

status. The first three traits were analyzed within the cohort

while case control analysis compared HCM patients against

external controls (ARIC, n = 100) (41). For within cohort analysis

a multivariate model using age, sex and BMI was used for

adjustment with SKAT.

Modifier gene prioritization

Modifier identification was performed using a gene-ranking

algorithm based on a custom point system rewarding different

analytical and annotation lines of evidence (Table 3). Gene-based

association testing using both SKAT and SKAT-O was applied to

four traits: maximum LVWT, EF, LVOTG and case control

status. All gene-based association testing was restricted to

unrelated Caucasian patients with clinically diagnosed HCM

(N = 28). For within cohort analysis a multivariate model using

age, sex and BMI was used for adjustment. The modifier

algorithm also incorporated extensive myocardial gene expression

data from heart failure and hypertrophy (42), GnomAD missense

and loss of function scores, cardiac gene expression level, as well

as the curated candidate myocardial gene list (Supplementary

Table S2). The primary analysis was LVWT and therefore any

gene reaching a nominal burden testing p-value < 0.05 was

assigned 2 points. EF, LVOTG and Case-Control were secondary

analyses and assigned 1 point each. The lowest burden test

p-value for LVWT, EF, LVOTG and Case-Control per gene was

used in the modifier scoring algorithm. Heart gene expression

and significant differential expression within hypertrophy or

heart failure coexpression networks (42) were each assigned 1

point. RNA expression was assessed based on the mean RPKM

(reads per kilobase of exon per million reads mapped) values for

82 left ventricle GTEx (43) samples (>10 RPKM gave 1 point).

GnomAD loss of function (LOF) z-score >3 and missense z-score

>3 (positive z-scores indicate fewer variants than expected) each

gave 1 point. Candidate genes (Supplementary Table S2),

manually curated by a group of cardiologists specializing in

inherited cardiovascular disease, were given 2 points.

Genes previously flagged as prone to false positive signals (23)

lost 2 points.

Human HCM validation

Cardiac gene expression of selected top candidate modifiers

were investigated in a separate cohort of 39 HCM patients and

13 healthy control individuals (IRB approval GAP 4237). The

HCM cohort (excluding one individual without available data)

was 34% female and composed of individuals with a mean age of

57.9 years (standard deviation, SD = 15.7), mean height of

169.6 cm (SD = 12.8) and mean weight of 86.7 kg (SD = 34.0).

RNA was isolated from cardiac left ventricle tissue from cardiac

transplants or myectomies using the mirVana miRNA isolation

kit (ThermoFisher Scientific) according to the manufacturer’s

specifications. Total RNA was reverse transcribed to cDNA using

the High-Capacity cDNA Reverse Transcription kit

(ThermoFisher Scientific). Quantitative real-time PCR was

performed on a ViiA 7 Real-Time PCR System (ThermoFisher

Scientific) using pre-designed Taqman gene expression assays

TABLE 3 Modifier gene scoring algorithm.

Trait Criteria Points

Left Ventricular Wall Thickness (LVWT) Gene-based ass. test

p < 0.05

2

Ejection Fraction (EF) Gene-based ass test

p < 0.05

1

Maximal Left Ventricular Outflow Tract

Gradient (LVOTG)

Gene-based ass test

p < 0.05

1

Case Control ARIC (WES, N = 100), (Fu et al.,

2013)

Gene-based ass test

p < 0.05

1

GTEx Gene Expression Cardiac RPKM > 10 1

GnomAD LOF >3 SD 1

GnomAD MIS tolerance >3 SD 1

Hypertrophy vs. Normal (coexpression

networks)

Q < 0.01 1

Heart Failure vs. Normal (coexpression

networks)

Q < 0.01 1

Candidate Cardiac Gene N = 452 genes 2

Flagged Prefix or UDP Blacklist −2
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from ThermoFisher Scientific (FHOD3 Hs00400902_m1, MSRB2

Hs00255292_m1, MYH7B Hs00293096_m1, PACSIN3

Hs00367625_m1, SORBS2 Hs01125197_m1) or predesigned

probes from IDT (NPPB HS.PT.58.19450190). The eukaryotic

elongation factor EEF1 (IDT predesigned probe

Hs.PT.58.3514123) was used as a housekeeping gene, and

expression was quantified using the ΔΔCT method followed by

an unpaired t-test with BH-correction.

Functional RNA-seq verification

All animal procedures were in keeping with all federal and state

regulations governing the humane care and use of laboratory

animals, including the USDA Animal Welfare Act, and our

Assurance of Compliance with PHS Policy on Humane Care and

Use of Laboratory Animals, Animal Welfare Assurance Number:

A3213-01, in accordance with the NIH Guide for the Care and

Use of Laboratory Animals. The laboratory animal care program

at Stanford is accredited by the Association for the Assessment

and Accreditation of Laboratory Animal Care (AAALAC

International, Accredited Unit Number 000679). All animals

were handled under protocols 22920 and 22922 approved by the

Stanford Administrative Panel on Laboratory Animal Care. Mice

were anesthetized with 3% isofluorane (inhalation), euthanized

using cervical dislocation, after which the hearts were removed.

The methods used to generate and analyze cardiac RNA

sequencing data from the MYL2 transgenic mouse model have

been described in detail elsewhere (44).

Neonatal rats were anesthetized on a pad on ice for 20 min and

euthanized by decapitation. Neonatal rat ventricular myocytes

(NRVMs) were isolated using standard methods on postpartum

day 3 using the Worthington Neonatal Cardiomyocytes isolation

system. After removal of non-cardiomyocyte cells, myocytes were

plated on collagen I coated plates in DMEM 7.5% FBS, 7.5%

horse serum, and penicillin/streptomycin. Forty-eight hours after

isolation, cells were treated with 50 uM phenylephrine in low

glucose DMEM with ITS and 20 mM AraC. Phenylephrine

treatment (2–50uM) for 24–48 h is known to induce

cardiomyocyte hypertrophy (increased cell volume, cell area and

total protein content) (45–48). A subset of cells were harvested

prior to addition of phenylephrine; half of remaining wells were

treated with media alone. After 24 h and 48 h of treatment, acute

phenylephrine induced cardiac cells were harvested. RNA was

extracted using the Qiagen RNeasy kit according to the

manufacturer’s instructions and was DNase-treated using the

DNA-free RNA kit from Zymo Research. RNA integrity was

verified using a 2100 BioAnalyzer (Agilent) and all samples had

an RIN score of 7.0 or higher. RNAseq libraries were prepared

using the TrueSeq Stranded mRNA kit (Illumina), according to

the manufacturers’ instructions. Libraries were barcoded, quality-

checked and run in rapid run flow cells in a HiSeq 2,500

(Illumina), producing at least 30 million paired-end reads.

Sequencing reads were aligned to the Rattus Norvegicus rn5

UCSC reference genome using the STAR (49) and Cufflinks was

used to quantify and perform differential expression (50). Reads

were normalized using Cufflinks and FPKM (Fragments Per

Kilobase Of Exon Per Million Fragments Mapped) was calculated

on a per gene basis. We evaluated the FPKM count for top

candidate modifiers and canonical markers of the acute

hypertrophic program and evaluated the differential expression

after phenylephrine vs. pre-treatment as a ratio vs. sham vs.

pretreatment. All genes with an FPKM>1 were considered

expressed and included in the analysis.

Results

Genome sequencing of patients harboring
MYH7 variants

Patients were classified based on cardiac morphology and

MYH7 variant identified (primary variants identified between

2007 and 2011, n = 33, Tables 1-2, Supplementary Table S1 and

Supplementary Data S1). Of the 48 patients (7 to 79 years old),

50% were female. The cohort included 6 families for a total of 40

unrelated individuals. Cardiomyopathy phenotypes were classified

as hypertrophic in 42, dilated without known prior hypertrophy

in 1, and noncompaction in 3. The overall study design is

illustrated in Figure 1.

Multiple genetic variants of different classifications in MYH7

have been reported in GnomAD (15) and ClinVar (51)

(Figure 2A). Using our automated genome annotation pipeline,

we re-identified all unique MYH7 variants detected on initial

panel-based sequencing (population minor allele frequency

<0.1%, Figure 2B bottom panels, Supplementary Dataset S1).

They were distributed across the actin-binding domain and the

rod region, similar to the majority of reported variants in

ClinVar (Figure 2B, top panels). All MYH7 variants reported on

prior clinical testing were identified and called at high quality

and adequate depth to confidently call heterozygosity. All other

genomic variants identified on panel testing were confirmed.

MYH7 variant reclassification

Secondary findings—coding

We next searched for secondary likely pathogenic genetic

variants that may contribute to the cardiomyopathy phenotype

(Supplementary Data S2). In addition to potentially disease-

associated variants in MYH7 from panel based testing, we

identified one MYBPC3 VUS (p.Val757Met), and rare PRKAG2

variants (p.Val535Gly and p.Val534Gly respectively). We

identified an early termination (p. Cys1013X) and rare missense

(p.Lys953Gln) variant in FLNC, a gene first implicated in

hypertrophic and dilated cardiomyopathy (DCM) years after the

patients’ clinical tests were reported (52, 53). Interestingly, the

former FLNC truncation variant was found in a patient with a

family history of DCM whose MYH7 variant was reclassified to

benign. Another patient whose MYH7 variant was initially

classified as VUS also had a rare nonsynonymous variant in

RNA binding motif protein 20 (RBM20 p.Ile921Val), a titin-
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splicing gene implicated in cardiomyopathy (54). Two rare variants

in BCL2-associated athanogene-3 (BAG3 p.Glu471Gly and

p.Arg473Gly), a stress responsive protein implicated in familial

DCM were also identified (55–57). The MYH7 Variant

Reclassification is summarized in Supplementary Figure S1.

Review of rare coding variants in a cardiovascular subset of the

78 ACMG gene list (58) identified additional rare variants

(Supplementary Data S2). These were found in genes associated

with arrhythmogenic right ventricular cardiomyopathy (DSC2,

DSG2, TMEM43, PKP2, DSP); Catecholaminergic polymorphic

ventricular tachycardia (RYR2, CASQ2, TRDN); DCM (LMNA,

FLNC, TTN, BAG3, RBM20); Vascular Ehlers-Danlos Syndrome

(COL3A1); Long QT Syndrome 3/Brugada Syndrome (SCN5A);

Familial Hypercholesterolemia (LDLR, APOB) and aortopathies

(TGFBR1, SMAD3, MYH11).

Secondary findings—non-coding
Next, we interrogated miRNA binding sites and consensus

promoter regions for potentially interesting variants

(Supplementary Data S3). We identified two variants in

conserved miRNA binding sites of genes previously implicated in

cardiomyopathy: SCN5A (chr3:38589677) and RAF1

(chr3:12625903). The RAF1 miRNA binding site variant alters

position 5 of a consensus seed recognition sequence. This variant

is predicted to disrupt a permissive consensus binding site

recognized by multiple miRNAs and found in more than 290

genes. We also identified a variant in a miRNA binding site of

ACTN2 (chr1:236927207), a gene for which we and others

recently demonstrated that protein-truncating variants cause

hypertrophy and restrictive cardiomyopathy (RCM) in humans

(59). We found variants of uncertain significance in non-coding

RNA, promoter, UTR, enhancers and nonsynonymous variants

in alternative isoforms of tropomyosin found in long-read heart

RNAseq data (Supplementary Table S3). Published work

demonstrates a protective role of long non coding RNAs (mhrt)

that reside in the 3’ myosin tail-coding domain and downstream

of MYH7 (60). We identified 5 rare nonsynonymous variants

that intersect with exons of these transcripts (Supplementary

Data S3 and Table S3). As these variants affect both coding and

non-coding transcripts, the impact of these variants is currently

unknown. Reclassification (61) of these variants without

knowledge of the role of their impact on Mhrt transcripts

resulted in downgraded pathogenicity.

Scoring algorithm for modifier identification

We developed a multi-omic cardiomyopathy-data rich metric

of modifying potential to evaluate for genetic modifiers of the

HCM phenotype. To prioritize genes, we developed a 12-point

scale (Table 3; Methods) that combined rare variant gene-based

association testing with multiple external priors, including

extensive myocardial gene expression data from heart failure and

hypertrophy. Inclusion of parameters such as LVWT and

disease-specific gene expression data enhanced sensitivity to an

HCM-specific phenotype and cardiac function. There were 165

genes that reached a modifier score of 6 or better

(Supplementary Table S4, see Supplementary Data S4 for full

table) and 51 genes had scores ≥7. CACNA1C scored 10, while

RYR2, TTN, ATP1A2, FHOD3, TJP2, CACNA1D and DYNC1H1

had modifier scores of 9. Several were identified as a priori

candidates. The sodium-potassium ATPase subunit alpha 2 gene

(ATP1A2) was highly significant in the case-control comparison

(p < 4 × 10−19). The cardiac specific ryanodine receptor encoded

FIGURE 1

Overall study design and workflow. Main patient cohort (N= 48) all harbored MYH7 variants. 42 patients had been diagnosed with HCM, and 6 had

other diagnoses. Genome sequencing (GS) was performed with an Illumina HiSeq on all patients, followed by variant calling and curation. HCM

candidate modifiers were identified through a scoring system that utilized a combination of RNA expression data, gene-based association testing

and previous candidate hypertrophy-associated genes. Molecular follow-up of top modifier candidates was performed in three separate models of

cardiac hypertrophy.
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by RYR2 was associated with increased wall thickness (p < 0.01), a

trend towards LVOT gradient (p = 0.07) and with HCM in the

case-control comparison (p < 0.05). Several variants in the L-type

calcium channel component CACNA1C have also been

demonstrated to predispose for arrhythmic phenotypes, especially

long-QT syndromes (62), while the gap junction protein encoded

by TJP2 has been associated with hypertrophy in other cell types (63).

Validating our approach, the known modifier Formin

homology 2 domain containing 3 (FHOD3) was a top scoring

modifier. FHOD3 has been implicated as disease predisposing

in DCM and HCM (64, 65) and as an HCM modifier in case-

control common variant analysis and a genome-wide

association study (12, 66). Previously cited high frequency

variants (rs516514, rs2303510) were not included in the rare

functional variants used for gene-based association testing;

despite this, variation in FHOD3 was associated with increased

LVWT (p < 0.05). SORBS2 (sorbin and SH3 domain-

containing 2), modifier score 6, is an adhesion junction

protein that was recently associated with arrhythmogenic

cardiomyopathy (ACM). Knockdown of SORBS2 in mice

resulted in an ACM-like phenotype and two patients with

ACM have been identified to carry likely pathogenic variants

in SORBS2 (67).

We identified several genes as novel candidate modifiers of the

HCM phenotype (Supplementary Table S4). Rare variant gene-

based association testing of DYNC1H1 (score 9), the heavy chain

component of dynein, was associated with increased LVWT

(p < 0.01) and reduced EF (p < 0.01). Another top modifier,

HNRNPC (score 8), was recently identified as a regulator of

sarcomeric protein translation with higher expression in failing

hearts (68). ERBB2 (score 8) and ERBB4 (score 7), both

Neuregulin-1 receptors, are involved in cardiac regeneration after

injury (69, 70), and Neuregulin-1 itself is a therapeutic target for

heart failure (71). Rare variants in CAMSAP1 (score 7) were

found in 8 participants with severely increased LVWT but not in

participants with milder hypertrophy (p < 0.001). ASH1l

(score 7), a histone H3 methyltransferase, was most significant in

the case-control comparison (p < 1 × 10−35). The transcription

cofactor LIM domain binding 2 (LDB2, score 6) was associated

with LVWT (p < 0.01) and with case status in case-control

analysis (p < 2 × 10−15). PACSIN3 (score 6) is an adapter protein

that regulates membrane dynamics. Cardiomyocytes in PACSIN3

FIGURE 2

Distribution of MYH7 variants. (A) Variants observed in ClinVar and GnomAD across the length of MYH7, 1935 amino acid residues in total. The gray

region of MYH7 (residues 1-959) is illustrated in the 3D model in (B). (B) Top panels (different sides of the protein) show all variants classified as

pathogenic or likely pathogenic in ClinVar, including patient variants classified as pathogenic or likely pathogenic. At amino acid residues where

multiple variants of different classification are present, the residue is colored based on the variant with maximum severity. Residues in both A and

B are colored based on ClinVar classification with pathogenic variants in red, likely pathogenic variants in orange, variants with conflicting

interpretations of pathogenicity in blue, variants of uncertain significance (VUS) in dark blue, likely benign variants in green and benign variants in

yellow. GnomAD variants without a ClinVar classification are shown in dark green.
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knockout mice lack caveolae (72), while its potential modifying

function in cardiac hypertrophy remains to be elucidated.

Independent experimental RNA profiling of
identified candidate modifiers

To further evaluate if the identified candidate modifier genes were

involved in cardiac hypertrophy, we analyzed RNA sequencing data

from a mouse model of RCM and a cellular model of acute

hypertrophy in neonatal rat ventricular myocytes (NRVMs). We

specifically investigated the relative change in expression for all

modifier genes with a score of 6 or above (n = 165) in response to

the chronic and acute hypertrophic stimulus (n = 106 detected in

both, Figures 3A,B, Supplementary Table S5, with low-scoring

genes shown in Supplementary Figure S2A). While a change in

expression suggests a role in development of cardiac hypertrophy,

lack of change does not invalidate a potential modifier. We

confirmed several genes as highly potentiated by a hypertrophic

signal, including the known modifier FHOD3, and UCHL1

(Supplementary Figure S2B), for which knockdown in

cardiomyocytes was recently shown to prevent hypertrophy (73). In

contrast, other modifiers were modestly changed or expressed at

low levels in cardiomyocytes, such as CAMSAP1 and ASH1l. The

most downregulated modifier in response to both acute and long-

term hypertrophy was the potassium channel gene KCNJ3 (score 7,

Supplementary Figure S2C). Genetic variation in KCNJ3 is

associated with arrhythmias, and blocking the channel in zebrafish

improved the arrhythmogenic phenotype (74).

Next, we analyzed gene expression differences in human left

ventricular myocardial tissue from an independent cohort of 39

HCM patients compared to healthy controls (N = 13). Expression of

the hypertrophy marker NPPB and five candidate modifiers

(FHOD3, MSRB2, MYH7B, PACSIN3 and SORBS2) in all three

experiments are shown in Figure 3C. The expression changes in

SORBS2 follows the effect of NPPB, suggesting a role in

hypertrophic remodeling. To further explore the utility of gene

expression data in identifying and explaining the roles of modifiers,

we assessed the expression of genes with recently-identified HCM

susceptibility loci (8, 12) in our cardiomyopathy models. Genes

with known cardiac functions, including BAG3, PLN, TBX3, TRDN,

and MTSS1, all had lower expression in both the acute and chronic

cardiomyopathy compared to controls (Supplementary Figure S3).

SLC6A6, a taurine transporter, was higher in both models.

ADPRHL1, a gene implicated in cardiac development, was

upregulated in response to acute hypertrophy and downregulated in

the chronic hypertrophy model (Supplementary Figure S3, Table S5).

Discussion

Genome sequencing offers unique and untapped power for

understanding the complexity of genetic disease. Variability in

severity, penetrance, and phenotype found within and among

families harboring putatively disease-causative MYH7 variants is

presumed to be caused by both genetic and environmental

modifiers. We evaluated the utility of GS in combination with

cardiac expression data to identify candidate genetic modifiers in

a patient cohort initially diagnosed with monogenic

cardiomyopathy attributed to variants in MYH7.

Whereas prior studies of GS in HCM have focused on its utility

in providing a genetic diagnosis in cardiomyopathy (13, 75), we

showed how comprehensive data from GS of genetically

diagnosed HCM patients identified potential genetic modifiers of

the phenotype. Increasing evidence suggests that HCM is not a

wholly monogenic disease. We searched each genome for

evidence of additional rare variants causative of or substantially

contributory to the observed cardiomyopathy phenotype and

found rare protein altering variants in multiple genes and

individuals, including an early termination variant in the

cardiomyopathy associated gene FLNC. A VUS in FLNC in the

presence of a VUS in MYBPC3 has previously been suggested as

a potential modifier of HCM (75). These findings support

previously identified advantages of GS in HCM, including the

potential to improve yield in testing for primary pathogenic

variants (13), and identify a range of secondary findings

throughout the genome (75). Further exploration of secondary

genetic variants, where gene expression is one potential tool, is

necessary to validate their significance in disease pathophysiology

and translate such findings into clinically actionable insight.

Novel potential genetic contributors to disease were discovered

in the non-coding genome, including microRNA sites and

lncRNAs. The discovery of non-coding DNA variants that may

act as disease modifiers is the first step in developing a new field

of biology aimed at understanding how regulatory gene variants

impact Mendelian disease; this is fodder for applied genetic

research. Further mechanistic research is needed to understand

the impact of non-coding variants in the genetic basis for HCM.

We further explored the genomes for modifiers of disease

phenotype. With limited sample size to afford true statistical

power for genome wide testing we undertook two strategies to

maximize the robustness of findings. We used a gene scoring

algorithm that boosted nominally significant modifier phenotype

associations with specialized annotation of hypertrophic

cardiomyopathy and heart failure molecular phenotypes. We

prioritized variants based on cardiac expression and differential

expression in cardiac hypertrophy and heart failure. Several

candidates were investigated for cardiac expression changes in a

separate cohort of human HCM, a transgenic mouse model of

chronic hypertrophy and an acute hypertrophy model in

NRVMs. Our top candidates included previously known modifier

genes (FHOD3), a gene known to cause DCM and HCM when

mutated (TTN) and genes associated with related cardiovascular

phenotypes such as heart failure (HNRNPC) and arrhythmia

(CACNA1C, RYR2). The plausibility, and in the case of for

example FHOD3, SORBS2 and UCHL1, replication of prior

published results, lends credibility to our method and strengthen

the discovery of novel candidates such as CAMSAP1, MYH7B

and PACSIN3. Importantly, rare genetic variation does not

inform directionality of effects, and utilizing several disease

models for investigation of potential modifier expression changes

in response to acute or chronic hypertrophy emphasizes the
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FIGURE 3

Cardiac candidate modifier gene expression changes. (A) Differential expression analysis of all candidate modifiers with a score 6 or higher that were

expressed in both a chronic model of hypertrophy (MYL2 transgenic mice compared to WT mice, x-axis) and an acute model of hypertrophy

[phenylephrine-treated (PE) compared to non-treated (Ctrl) neonatal rat ventricular myocytes (NRVMs), y-axis]. Expression changes are shown as

log2 of the fold difference and genes are colored based on modifier score. (B) Table of all labeled candidate modifiers in (A), with score and

log2FD listed for the acute and chronic hypertrophy models. Blue indicates negative change (log2FD -1 or lower), orange indicates positive

change (log2FD 1 or more). (C) Differential expression of selected modifiers and the hypertrophy marker NPPB was investigated in a separate

cohort of human HCM compared to healthy control left ventricle cardiac tissue, shown in the top left panel for each gene. Differential expression

is also reported for the chronic hypertrophy model (MYL2 transgenic mice compared to WT, top right panel for each gene) and in the acute

model of cardiomyocyte hypertrophy (PE, red lines) of NRVMs. Candidate modifier expression in human cardiac left ventricle samples was

investigated with qRT-PCR (N= 34-39 HCM patients for all factors, and N= 5-13 control individuals for each factor). Expression in MYL2 transgenic

mice (Mut, N= 3 mice) vs. littermate WT controls (WT, N= 3 mice), and in PE treated (N= 3 wells per time point) and non-treated (N= 3 wells per

time point) NRVMs was investigated using RNA sequencing. For NRVMs, results are shown for 3 time points: 0 h when PE was added, after 24 h of

PE treatment and after 48 h of PE treatment. NRVM data is shown as mean ± 95% CI (# indicates p < 0.05 ANOVA treatment effect), human and

mouse data as mean ± SEM, * p < 0.05, ** p < 0.01 (BH-corrected unpaired t-test).
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complexity of the observed effects. For FHOD3, for example,

expression was substantially lower in RCM mice, but showed a

trend towards higher levels in the HCM validation cohort and in

response to acute hypertrophy.

Our study has several limitations. Our sample size is limited and

includes mostly Caucasian individuals. The modifier scoring

algorithm was developed to include cardiomyopathy-relevant

metrics, but is limited by its scope and selection of scoring cutoff.

While we further evaluated some of the modifiers using cardiac

hypertrophy models and a separate HCM cohort, larger cohort

studies are needed to examine their potential clinical relevance and

future mechanistic studies to establish causal evidence. Importantly,

the cell and animal models are limited with regards to cross-species

concordance and the potential impact by acute or chronic

hypertrophy at two time points. They are therefore unlikely to

capture all differential signaling that influence human HCM

development over time. Lack of validation thus does not invalidate

a putative modifier. In addition, identified phenotypic associations

were concurrent with the point of assessment. Hence, the

phenotypic association is contingent upon the gene’s direct impact

but also on potential gene-mediated influences on ascertainment

timing, treatment history etc. The test statistics and p-values will be

inflated/deflated due to multiple tests using sparse data and should

therefore only be used for ranking purposes and not to determine

actual statistical significance. Furthermore, no validation was

performed at the protein level, which will be an important avenue

for future research as proteomic and phosphoproteomic signatures

also impact disease severity in sarcomeric HCM (76, 77).

In summary, our results provide new insights into genetic

modifiers of HCM, including disease-associated genes, proximal

regulatory regions and non-coding variants. The complexity of

secondary genetic variants with respect to modifying effects is

currently minimally evaluated. The initial cataloging of these

gene-gene interactions are preliminary and will require

refinement and extension, just as the initial discovery of causal

MYH7 variants have been. We hypothesize that these secondary

findings provide greater understanding in the interpretation of

primary variants, and could eventually provide utility in

predicting disease severity. True modifiers of disease severity

represent promising targets for drug therapy irrespective of

causative variants and warrant further mechanistic investigation.
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