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Identification of biomarkers
associated with energy
metabolism in hypertrophic
cardiomyopathy and exploration
of potential mechanisms of roles
Songyan Cai1†, Tianying Jin1†, Mintong Liu1 and Qingyuan Dai2*
1Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,
China, 2Department of Physical Examination for Cadres, First Affiliated Hospital of Kunming Medical
University, Kunming, Yunnan, China

Background: In hypertrophic cardiomyopathy (HCM), limited reports exist
regarding its association with energy metabolism. Here, biomarkers related to
energy metabolism in HCM were identified through bioinformatics analysis.
Methods: HCM transcriptome data were acquired from the GEO (GSE36961)
database for comparative analysis in order to identify differentially expressed
genes (DEGs). Subsequently, the identified DEGs were intersected with key
module genes in Weighted gene co-expression network analysis (WGCNA)
and energy metabolism related genes (EMRGs) to identify DE-EMRGs. Then,
feature biomarkers were screened using the least absolute shrinkage and
selection operator (LASSO) regression and support vector machine-recursive
feature elimination (SVM-RFE) methods, and the intersection of the feature
biomarkers obtained from both methods was used for subsequent analysis.
Furthermore, biomarkers defined as biomarkers with consistent expression
trends across both GSE36961 and GSE89714 datasets and significant inter-
cohort differences were selected for subsequent analysis. Subsequently, an
immune analysis was conducted. Additionally, the transcription factors (TFs),
and drugs regulating the biomarkers were predicted based on online databases.
Results: The co-selection of seven potential biomarkers based on machine learning
identified IGFBP3andJAK2asbiomarkers inHCM.Upregulationof IGFBP3andJAK2 in
the HCM cohort was observed in the GSE36961 and GSE89714 datasets. Utilizing
ssGSEA, it was unveiled that the HCM cohort exhibited elevated ratings of effector
memory CD4T cells while displaying diminished scores across 22 other immune cell
categories. Notably, JAK2 expression exhibited a strong negative correlation with
myeloid-derived suppressor cells (MDSCs) infiltration, while IGFBP3 showed no
significant associations with immune cell infiltration. Utilizing NetworkAnalyst,
miRNAs and TFs regulating biomarkers expression in HCMwere predicted, with hsa-
mir-16-5p, hsa-mir-147a, hsa-mir-210b-3p, hsa-let-7b-5p, and hsa-mir-34a-5p
identified as regulators of both IGFBP3 and JAK2. GATA2 was also found to be a TF
regulating the expression of both biomarkers. Furthermore, the potential therapeutic
targets of JAK2 and IGFBP3 in HCMwere ruxolitinib and celecoxib, respectively.
Conclusion: In conclusion, the identification of IGFBP3 and JAK2 as biomarkers
in HCM, highlight promising avenues for further research and treatment
development in HCM.
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1 Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal

dominant cardiovascular disorder that leads to left ventricular

hypertrophy, myocardial hypercontractility, decreased compliance,

muscle fiber dysfunctions, and fibrosis (1). The data indicate that

the incidence of HCM is 1:200 (2) and it is the most prevalent

cause of sudden cardiac death(SCD) among adolescents and

athletes (3). Up to 60% of adult HCM patients result from

mutations in genes encoding myocardial sarcomeric proteins,

among which the most prevalent ones are genes encoding the

heavy chains of myosin (MYH7) and myosin-binding protein C

(MYBPC3) (4–6). Research has confirmed that genetic mutations

play a significant role in HCM. However, in approximately 40% of

patients with HCM, the causative gene remains to be identified (3).

Previously, HCM was regarded as a malignant disease that was

almost incurable. However, with the advancement of medical

standards and the enhanced cognition of HCM, the mortality rate

of HCM has decreased significantly (7, 8). Nevertheless, there

remains a considerable demand for the treatment of HCM. Hence,

the development of relevant biomarkers for the treatment of HCM

is of utmost urgency.

In recent years, the significance of energy metabolism disorders

in the pathogenesis of HCM has been emphasized, encompassing

the aberrant conversion of myocardial metabolic substrates

from fatty acids to glucose, augmented energy requirements, and

low myocardial energy utilization efficiency (9–11). The heart

exhibits a high level of flexibility in selecting energy substrates,

encompassing fatty acids, lactic acid, glucose, ketone bodies, and

amino acids. Approximately 60%-90% of normal cardiac is

sustained by the oxidation of fatty acids (12). In the HCM

model, diminished expression of long-chain fatty acid transporter

(CD36) and acyl-CoA dehydrogenase deficiency activity result

in decreased uptake and utilization of fatty acids (13, 14). When

the heart undergoes pathological hypertrophy, cardiomyocytes

experience relative hypoxia, often leading to alterations in their

energy metabolism. In comparison to glucose, fatty acid

oxidation necessitates more oxygen and Adenosine triphosphate

(ATP). Consequently, cardiomyocytes predominantly rely on

glycolysis for ATP production to fulfill their energy demands. In

addition, studies have shown that insulin resistance is associated

with HCM (15), with significant Insulin Resistance (IR) present

in HCM patients without significant diabetes and hypertension

(16). Currently, despite extensive research into the mechanism

of HCM from various perspectives, there remains a lack of

systematic studies on energy metabolism-related genes in HCM.

Therefore, it is imperative to integrate multi-platform data to

identify key energy metabolism genes and their corresponding

regulatory factors involved in HCM, and subsequently investigate

the expression, function, and molecular mechanism of these

biomarkers. This will facilitate the exploration of new therapeutic

targets for HCM.

This study utilized transcriptome data fromHCMpatients in the

public databases GEO (GSE36961), differentially expression genes

(DEGs) were determined in the GSE36961 dataset. Subsequently,
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the identified DEGs, energy metabolism related genes (EMRGs)

and the key module genes were intersected, in order to determine

the DE-EMRGs. The DE-EMRGs were screened to acquire

biomarkers using machine learning algorithms LASSO, SVM-RFE

and expression verification, and explored the biological functions,

molecular regulatory networks, and drug prediction of biomarkers,

providing new reference for the prevention and treatment of

patients with HCM. The analysis flow is shown in Figure 1.
2 Materials and methods

2.1 Data extraction

Transcriptomic and clinical data were sourced from the GEO

database with accessions GSE36961 and GSE89714 at https://www.

ncbi.nlm.nih.gov/geo/. The GSE36961 dataset (platform:

GPL15389), consisting of heart tissue samples from 106 individuals

with HCM and 39 control controls, was utilized for tasks including

WGCNA network construction, biomarkers identification, and

immunization analyses. Validation of biomarkers expressions was

carried out using the GSE89714 dataset (platform: GPL11154),

which comprised heart tissues from 5 HCM patients and 4 control

individuals. Additionally, we obtained 927 EMRGs from the

GeneCards database (https://www.genecards.org/, Version 5.11) by

setting the filter condition as Category = Protein Coding, Relevance

score≥ 7 (Supplementary Table S1).
2.2 WGCNA

The gene-expression patterns from the GSE36961 dataset

were utilized to investigate the HCM-associated module by

leveraging the “WGCNA” R package (version 1.70-3) (17).

Firstly, gene expression values of GSE36961 dataset were filtered

in this study by selecting genes with expression values greater

than 1 for sample clustering analysis. Subsequently, through

sample clustering analysis, outlier samples were identified and

removed to ensure the accuracy of subsequent analytical

procedures. Then, an adjacency matrix was developed to

delineate the relationship intensity among the nodes according to

the adjacency matrix formula (18):

sij ¼ jcor(xi, xj)jaij ¼ sijb

Within this investigation, the symbols i and j represent distinct

genes, while xi and xj indicate expression levels. Sij signifies

the correlation coefficient, with aij denoting the intensity of the

correlation between i and j. For this analysis, we establish

the adjacency matrix using an optimal soft-threshold power and

a scale-free topological index (R2) of 0.85. This matrix is

subsequently transformed into a topological overlap matrix. The

formation of hierarchical clustering trees with modules is

achieved through the dynamic cutting of trees (with a module

size of 200) to pinpoint key modules by aggregating genes with
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FIGURE 1

The flow chart of the study design.
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analogous expression tendencies into the same module. Modules

with significant correlation with HCM traits were selected as key

modules [|Correlation (cor)| > 0.3, p-value < 0.05].
2.3 Identification of DE-EMRGs

In the GSE36961 dataset, the DEGs were identified through the

application of the “limma” R package (version 3.46.0) (19)

(p-value < 0.05). For visualization, “ggplot2” R package (v 3.3.6)

(PMID: 35751589) and “pheatmap” R package (v 1.0.12) (PMID:

34864868) were utilized to plot the volcano and heatmap,

respectively. Subsequently, the identified DEGs were intersected

with the EMRGs and key module genes in the WGCNA using

the “VennDiagram” R package (version 1.6.20) (20), in order to

determine the DE-EMRGs.
2.4 Function analysis

To investigate potential interactions among DE-EMRGs in

the GSE36961 dataset, the STRING (https://string-db.org)
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platform was utilized to construct a protein-protein interaction

(PPI) network (confidence score > 0.4). Subsequent to this, Gene

Ontology (GO) functional and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses for the DE-EMRGs with verified

interactions were conducted employing the “clusterProfiler”

R package (21).
2.5 Biomarkers screening and validation

Upon obtaining the identified DE-EMRGs as mentioned earlier,

two distinct machine learning algorithms were utilized to refine the

selection of potential biomarkers. The Least Absolute Shrinkage

and Selection Operator (LASSO) was applied through the

utilization of the glmnet package (version 4.1-1) (22) to reduce data

dimensionality for feature biomarkers selection. Concurrently, a

Support Vector Machine Recursive Feature Elimination (SVM-

RFE) model was established utilizing the caret package (version

6.0–86, https://CRAN.R-project.org/package = caret) to identify

feature biomarkers with the lowest error rate and highest precision.

The results obtained by the two algorithms were intersected to

produce potential biomarkers, which were displayed in Venn
frontiersin.org
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diagram. Subsequently, KEGG enrichment results showed that the

insulin resistance pathway was significantly enriched too.

Therefore, correlation analysis of potential biomarkers with

insulin resistance pathway related genes (IRPRGs) was performed

as well as plotting visualisations using ggplot2 (version 3.3.3)

(PMID:35751589) (|cor| > 0.3, p-value < 0.05). Finally, expression

validation was carried out in the GSE36961 and GSE89714 datasets,

with potential biomarkers showing consistent expression trends in

both datasets and significant inter-cohort differences being defined

as biomarkers.
2.6 Analysis of immune correlation

The infiltration levels in the GSE36961 dataset were quantified

using ssGSEA (23), and intergroup differences were examined.

Additionally, Spearman’s rank correlation analysis was employed

to assess the association of biomarkers with immune cell

(|cor| > 0.3, p-value < 0.05).
2.7 Multifactorial regulatory network
construction of biomarkers and prediction
of potential therapeutic agents

To identify miRNAs and TFs, the TarBase v8.0 database and

JASPAR database on the NetworkAnalyst platform (https://www.

networkanalyst.ca/) were utilized for prediction. Subsequently,

the DGIdb website (https://dgidb.genome.wustl.edu) was

employed to predict target drugs for biomarkers with an

interaction_cohort_score≥ 0.2, aiming to identify potential

therapeutic small molecule compounds for HCM patients.

Additionally, networks involving miRNA-mRNA interactions,

TFs-mRNA interactions, and drug-biomarkers were established

utilizing the “Cytoscape” R package (version 3.8.2) (24).
2.8 Statistical analysis

All statistical analyses and visual plotting of the results were

performed based on R software (https://www.r-project.org/,

version 4.0.3, R Statistical Computing Project). The wilcox test

was used to compare the ratio of immune cells between HCM

and control samples, and correlation analysis of biomarkers with

immune cell by using spearman coefficient.
3 Results

3.1 Identification of the HCM-related
modules and genes through WGCNA

To uncover modules and genes associated with HCM,

WGCNA was utilized to construct a co-expression network

utilizing all samples and genes present in the dataset. Sample

dendrogram as well as HCM and control heatmap were mapped
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(Figure 2A). Then, a scaleless network was constructed with the

optimal soft-threshold power (β) was set as 7 and the index of

scale-free topologies was set as 0.85 (Figure 2B). A hierarchical

clustering tree with modules was formed by introducing

genes with similar expression patterns into the same module

by a dynamic tree-cutting (module size = 200), and 12 modules

were identified (Figures 2C,D). Among 12 modules, MEpink

(cor = 0.51, p-value = 8e-11) and MEbrown (cor = 0.96,

p-value = 4e-53) had the highest correlation with HCM

(Figures 2E,F). Therefore, these two modules and 2,710 genes in

these two modules were finally used for the subsequent analysis.
3.2 Identification of DE-EMRGs

To identify DE-EMRGs in HCM, we initially isolated DEGs

from HCM and control samples within the GSE36961 dataset. As

illustrated in Figure 3A, we discovered a sum of 727 DEGs, with

288 genes showing reduced expression and 439 genes exhibiting

increased expression in HCM samples. Subsequently, we derived

47 DE-EMRGs for further analysis by intersecting the DEGs, key

module genes, and EMRGs (Figure 3B, Supplementary Table S2).
3.3 A PPI network of DE-EMRGs and
functional analysis

To investigate the interactions among the 47 DE-EMRGs, a

protein-protein interaction (PPI) network was constructed. This

resulted in a PPI network comprising 170 interactions and 41

nodes. Therefore, 41 from the 47 DE-EMGRs were contained in

the final PPI network and used for subsequent analysis

(Figure 4A, Supplementary Table S3). Subsequently, GO and

KEGG analyses were performed to investigate the role of the 41

DE-EMRGs in various biological processes. The GO indicated

that these DE-EMRGs were predominantly associated with ten

terms, including response to drug, microglial cell activation, and

response to nutrient in biological process; these DE-EMRGs were

predominantly associated with ten categories, including plasma

lipoprotein particle, lipoprotein particle, and blood microparticle

in cellular component; these DE-EMRGs were mainly involved in

ten terms such as iron ion binding, tau protein binding, and

sterol transfer activity in molecular function (Figure 4B). In

KEGG terms, these DE-EMRGs were significantly associated with

cholesterol metabolism, thyroid hormone signaling, and insulin

resistance, etc. pathway (Figure 4C).
3.4 Potential biomarkers were selected and
correlation analysis

We performed the LASSO (lambda min=0.0346) to identify 10

feature biomarkers (DYRK1B, SERPINA3, MYC, BDNF, JAK2,

SLC2A1, IGFBP3, PHGDH, PTPN11, and CCND1) (Figure 5A).

Meanwhile, the SVM-RFE approach was applied to select a set of

25 feature biomarkers (JAK2, IGFBP3, MYC, LMNA, PDK4,
frontiersin.org
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FIGURE 2

Results of WGCNA. (A) Sample clustering and phenotypic heat maps. The branches represent the samples and the ordinate represents the height of
the hierarchical clustering. Branch corresponding red clinical character represents the sample belong to such properties. (B) Soft threshold filtering.
The horizontal axis represents the power value of the weight parameter; the vertical axis of the left figure is scale-free fit index (signed R2); the higher
the square of the correlation coefficient, the closer the network is to the scale-free distribution; the vertical axis of the right figure represents the mean
value of all gene adjacency functions in the corresponding gene module. (C,D) Dynamic tree cutting before and after module mergin and correlation
heat map of modules and HCM. (E,F) Correlation between module gene and HCM.

FIGURE 3

Results of DE-EMRGs. (A) Volcano plot depicting differentially expressed genes between HCM and control samples in the GSE36961 dataset. The
Orange dots represent significantly upregulated genes, while the Purple dots represent significantly downregulated genes. (B) Venn diagram of
DE-EMRGs in HCM.

Cai et al. 10.3389/fcvm.2025.1546865
DYRK1B, MTHFR, FTL, BDNF, CYP2J2, SLC2A1, GALK1,

PLA2G2A, ALOX5, CCL2, IL6, NNMT, LDHA, ALPL, APOE,

GYS1, NAMPT, ITPR3, PHGDH, and FOS) (Figures 5B).
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Subsequently, a total of 28 DE-EMRGs were identified by

combining the DE-EMRGs identified through the aforementioned

approach, of which 7 potential biomarkers (DYRK1B, MYC,
frontiersin.org
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FIGURE 4

PPI network of DE-EMRGs and functional analysis. (A) protein-protein interaction network of DE-EMRGs. (B) GO enrichment bar chart of DE-EMRGs.
(C) KEGG-enriched bubble map of DE-EMRGs.

FIGURE 5

Identification of potential biomarkers. (A) Feature biomarkers were screened by LASSO regression analysis. The horizontal axis deviance represents the
proportion of residual explained by the model, showing the relationship between the number of feature biomarkers and the proportion of residual
explained (dev), and the vertical axis is the coefficient of feature biomarkers (left); The horizontal axis is log(Lambda), and the vertical axis
represents the error of cross-validation (right). (B) SVM feature number and error rate and accuracy rate. (C) Venn diagram of LASSO and SVM-REF
analysis. (D) Circle diagram of potential biomarkers correlating with IRPRGs.
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BDNF, JAK2, SLC2A1, IGFBP3, and PHGDH) were selected

simultaneously by both methods (Figure 5C). Finally, correlation

analysis of potential biomarkers with IRPRGs revealed strong

positive/negative correlations between potential biomarkers and

IRPRGs, such as JAK2 has a positive correlation with GYS1 and

negatively correlated with SLC2A1. However,IGFBP3 shows little

correlations with IRPRGs (Figure 5D, Supplementary Table S4).
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3.5 IGFBP3 and JAK2 were identified
biomarkers

To gain deeper insights into the expression patterns of the 7

potential biomarkers within the context of the disease, the

expression profiles of the 7 potential biomarkers in the HCM and

control cohorts were demonstrated in the GSE36961 and
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GSE89714 datasets. Among them, 2 biomarkers (IGFBP3 and JAK2)

exhibited consistent expression trends in both the GSE36961 and

GSE89714 datasets, showing significantly higher expression in the

HCM cohort (Figure 6A,B). Consequently, IGFBP3 and JAK2 were

chosen as biomarkers for further examination.
3.6 Biomarkers were associated with
immunity

The proportion of the 28 immune cell types evaluated by

ssGSEA in each sample is depicted in a heatmap (Figure 7A).

Significant differences in the scores of 23 immune cells were

noted across the cohorts. In the HCM cohort, effector memory

CD4T cells had higher scores, whereas the scores of the

remaining 22 immune cells were lower. These included

eosinophils, mast cells, and monocytes (Figure 7B). Subsequently,

spearman correlation analysis was performed to examine the

association of biomarkers with immune cells. The expression of

JAK2 was generally inversely correlated with the infiltration of

various immune cells, showing the strongest negative correlation

with myeloid-derived suppressor cells (MDSCs) (cor =−0.69,
FIGURE 6

Validation of biomarkers. (A,B) Expression of biomarkers in HCM and control
sample, and blue-green is the control sample.

FIGURE 7

Biomarkers were associated with immunity. (A) Immune cell scores of HC
infiltrated immune cells. (C) Heat map of correlation between biomarkers
blue represents a negative correlation, and darker colors represent higher c
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p-value < 0.05). In contrast, the relationship of IGFBP3 with the

infiltration of different immune cells was not notably significant

(Figure 7C, Supplementary Table S5).
3.7 Multifactorial regulatory network of
biomarkers and prediction of potential
therapeutic agents

As shown in Figure 8A, 90 miRNAs were finally predicted

(Supplementary Table S6). IGFBP3 and JAK2 were both regulated

by hsa-mir-16-5p, hsa-mir-147a, hsa-mir-210b-3p, hsa-let-7b-5p,

and hsa-mir-34a-5p, etc. Furthermore, 14 TFs were identified

to participate in regulating the expression of the biomarkers.,

among which GATA2 can simultaneously regulate IGFBP3 and

JAK2 (Figure 8B). Next, the DGIdb web server

(interaction_cohort_score≥0.2) was utilized to predict targeting agents

for biomarkers and to identify small molecule compounds with

potential therapeutic effects in HCM patients (Supplementary

Table S7). Based on the data presented in Figure 8C, it was observed

that ruxolitinib exhibited a high binding affinity towards JAK2, while

celecoxib showed strong binding capability to IGFBP3.
samples in the training set (left) and validation set (right). Red is the HCM

M and control samples. (B) Differences in HCM and control samples
and differential immune cells. Purple represents a positive correlation,
orrelations. Dot size indicates significance.
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FIGURE 8

Multifactor regulatory networks and drug prediction of biomarkers. (A) miRNA- biomarkers regulatory network. Blue represents miRNA, and yellow
indicates the biomarkers. (B) TF- biomarkers regulatory network. Blue represents TF, and Pink represents biomarkers. (C) Drug- biomarkers
relationship network. The pink nodes represent the biomarkers, and the yellow nodes are drugs; a darker line color indicates a higher
interaction_group_score.
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4 Discussion

In recent years, with the in-depth study of the pathogenesis of

HCM, more and more evidence shows that changes in energy

metabolism play a key role in the occurrence and development of

HCM, but the specific role of EMRGs in the occurrence and

development of HCM is still largely unknown. Therefore,

systematic analysis of EMRGs in HCM may provide a theoretical

basis for exploring the molecular mechanism of HCM. In this

study, we identified two biomarkers (IGFBP3 and JAK2) as

therapeutic target for HCM.

Through GO and KEGG enrichment analysis, DE-EMRGs

were significantly enriched in the inflammatory response. The

results of the immune infiltration analysis indicated that 23 types

of immune cells were differentially infiltrated in HCM. In recent

years, immune cells have been extensively investigated in the

context of heart disease. Targeted therapy of specific stages of

macrophages can inhibit pathological cardiac hypertrophy (25).

Furthermore, the existence of GATA3-positive macrophages

adversely influences myocardial remodeling during ischemia or

pressure overload, while the absence of these macrophages

considerably improves cardiac function (26). In inflammatory

cardiomyopathy, the density of mast cells increases, and the

release of inflammatory mediators could stimulate the activation

of cardiac fibroblasts and enhance collagen synthesis, resulting in

cardiac fibrosis (27). Recent studies have manifested that B cells

can regulate the composition of the myocardial leucocyte pool as

well as growth and contraction, exerting a crucial role in the

structure and function of the left ventricle (28). Genetic or

induced depletion of eosinophils exacerbates cardiac dysfunction

and cardiac fibrosis subsequent to myocardial infarction (29). In

cardiomyocytes of both humans and mice, eosinophils are

capable of inhibiting cardiomyocyte hypertrophy and death,

TGF-β signaling in cardiac fibroblasts, and the synthesis of

fibrosis proteins (30). This is consistent with our research results.

In our study, the number of eosinophils in HCM patients

decreased. Additionally, studies have shown that the increase in

immune cell infiltration and inflammatory cytokines such

as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in

the myocardial tissue of HCM patients may contribute to

the development and progression of myocardial fibrosis in
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HCM (31). However, our findings indicate a reduction in immune

cell infiltration in HCM, necessitating further elucidation of the

role of inflammation in the pathogenesis of HCM.

The IGFBP superfamily encompasses several proteins, among

which are binding proteins featuring high affinity for IGF (IGFBP1

to IGFBP6) and IGFBP-related proteins exhibiting low affinity for

IGF (IGFBP- rP1-10), with IGFBP3 being the most abundant (32).

The expression of IGFBP3 is augmented in HCM, dilated

cardiomyopathy, and ischemic cardiomyopathy (33). In HCM,

upregulation of IGFBP3 promotes cardiac tissue fibrosis by

elevating mRNA levels of extracellular matrix-related genes (e.g.,

COL1A2, COL3A1, and MMP9); furthermore, increased IGFBP3

expression recruits immune cell infiltration into cardiac tissue,

modulates the immune microenvironment and inflammatory

responses, and ultimately contributes to adverse clinical outcomes

in HCM patients (34). Prior studies have demonstrated that

inhibition of IGFBP3 promotes angiogenesis and mitigates cardiac

fibrosis and remodeling in mice with diabetic cardiomyopathy (35).

IGFBP3 assumes a significant role in glucose homeostasis and can

diminish insulin glucose uptake by reducing insulin-stimulated

translocation of glucose transporter −4 to the plasma membrane

and threonine phosphorylation of Akt (36). Transgenic mice with

overexpression of IGFBP3 exhibited mild insulin resistance,

accompanied by elevated levels of plasma leptin, glucose, and

insulin (37, 38). In our study, the insulin resistance pathway was

conspicuously enriched. The emergence of cardiac insulin

resistance and the deterioration of mitochondrial oxidative

metabolism constitute early metabolic alterations during the

development of cardiac hypertrophy, resulting in energy deficiency

and potentially causing hypertrophy to progress to heart failure.

Studies have shown the presence of insulin resistance in patients

with HCM, so insulin resistance may be related to HCM (16, 39,

40). Furthermore, IGFBP3 plays an important role in lipid

metabolism. IGFBP3 inhibits adipocyte differentiation by

interfering with peroxisome proliferator-activated receptor gamma

(PPARgamma) (41). Overexpression of human IGFBP3 suppressed

the expression of adipogenic markers adiponectin and resistin, as

well as the accumulation of lipid droplets, by activating Smad

signaling in 3T3-L1 cells (42). Hence, IGFBP3 might contribute to

the development of HCM by influencing the processes of insulin

signaling and fat metabolism.
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JAK2 is situated on the short arm of chromosome 9 (9p24) and

constitutes an essential member of the JAK family. All three

members of the JAK family (JAK1, JAK2, and TYK2) as well as

all seven members of the STAT family (STAT1, STAT2, STAT3,

STAT4, STAT5A, STAT5B, and STAT6) are expressed in the

heart (43). When the cytokine interacts with the receptor

situated on the cell membrane, JAK2 kinase is triggered, and

subsequently phosphorylates and activates the downstream STAT

transcription factor, thereby playing a role in numerous

physiological processes such as cell differentiation, proliferation,

glycolysis, and inflammation (44, 45). KEGG results indicated

that the JAK/STAT signaling pathway was conspicuously

enriched. The JAK2-STAT3 signaling pathway exerts a crucial

role in myocardial inflammatory damage, ventricular remodeling,

and cardiomyocyte hypertrophy, thereby contributing to the

progression of heart failure (46, 47). Studies have shown that

among 72 HCM patients with no known pathogenic gene

mutations, rare JAK2 variants were identified in 9 cases (12.5%)

(48). The JAK2 V617F mutant was recognized in a patient

suffering from myeloproliferative disorder (MPD) and

hypertrophic HCM (49), indicating that HCM is associated with

JAK2. In confirmed hypertrophic cardiomyopathy (HCM)

without JAK2-V617F mutation, upregulated expression of JAK2

in the global left ventricle (LV) and cardiomyocyte nuclei was

observed, along with activation of its downstream target STAT3

(50). The activation of the JAK2/STAT3 signaling pathway was

detected in hypertrophic hearts elicited by isoproterenol (51, 52)

and the inhibition of the activities of JAK2 and STAT3 mitigated

myocardial hypertrophy (53). In terms of energy metabolism, the

activation of the JAK2/STAT3 signaling pathway is capable of

up-regulating the expression of key enzymes within the glycolysis

pathway and the translocation of glucose transporters (54–57),

thereby enhancing the glucose utilization. After cardiac injury,

the heart tends to rely on glycolysis as an energy source, and

Pyruvate kinase M2(PKM2) assumes a significant role in this

process. Additionally, myocardial fibrosis is one of the typical

pathological alterations of HCM, and PKM2 can also be involved

in promoting cardiac fibrosis via mechanisms such as JAK2/

STAT3 signal activation (58). The activation of JAK2 is

correlated with the emergence of insulin resistance (59–63), and

the depletion of JAK2 in adipocytes boosts insulin sensitivity in

the liver (64). In adipocytes, the JAK2/STAT3 signaling pathway

has the ability to up-regulate the expression of fatty acid

synthesis-related genes such as Fatty acid synthase (FASN) and

enhance the synthesis of fatty acids, thereby influencing the

balance of cellular energy metabolism (65). In conclusion, JAK2

might play a crucial role in HCM via its influence over

energy metabolism.

This research utilizes the relevant software and database

for the prediction of microRNAs, transcription factors, and

drugs based on the target gene. MicroRNAs and transcription

factors play a crucial role in regulating gene expression, such

as leading to the occurrence of tumors, metastasis, resistance,

etc (66). Through the construction of the miRNA-mRNA

network, it was discovered that IGFBP3 and JAK2 were

regulated by hsa-mir-16-5p, hsa-mir-147a, hsa-mir-200b-3p,
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hsa-let-7b-5p, and hsa-mir-34a-5p. Moreover, GATA2 is capable

of regulating both IGFBP3 and JAK2. Previous research has

demonstrated that mutations in GATA2 are correlated with

HCM (67). Therefore, the further exploration of microRNAs and

transcription factors for understanding the pathogenesis and

treatment of HCM holds great significance. Ruxolitinib and

celecoxib were respectively predicted to be the target drugs for

JAK2 and IGFBP3. Ruxolitinib as JAK1 and selectivity of

JAK2 inhibitors, has been the United States Food and Drug

Administration (FDA) approved for the treatment of b

myelofibrosis (68). In the rabbit model of atherosclerosis,

ruxolitinib exhibits efficacy in attenuating the development of

aortic atherosclerotic plaque, lowering plasma levels of

triglycerides (TG), total cholesterol (TC) and low-density

lipoprotein (LDL), while concurrently elevating high-density

lipoprotein cholesterol (HDL-C) levels (69). Celecoxib belongs to

the nonsteroidal anti-inflammatory drugs (NSAIDs)and has been

studied extensively in inflammatory diseases and cancer (70). In

cardiovascular disease, celecoxib may be by Notch1/Hes1

signaling pathway to protect the heart from hypertrophy and

inflammation (71). In summary, ruxolitinib and celecoxib can be

potential drugs for the treatment of HCM, but more therapeutic

agents need to be continuously explored.
5 Limitation

This study has certain limitations. First, this research is a

bioinformatics analysis relying on the transcriptome profiles of

public databases, and the small sample size of the validation

dataset may affect the reliability and generalizability of the

results. Second, the genes identified in this study have not been

further examined, and their pathophysiological impacts across

different causal genes and clinical phenotypes of hypertrophic

cardiomyopathy remain to be validated. Thus, it is necessary to

conduct cell, animal, and clinical studies to verify the expression

levels of these biomarkers in hypertrophic cardiomyopathy

and to deeply explore the specific underlying mechanisms.

Additionally, the work of exploring drug targets based on

bioinformatics analysis across multiple database sets and different

causal genes still needs to be carried out in depth.
6 Conclusion

In summary, 41 DE-EMRGs related to HCM were first

obtained through bioinformatics analysis in this study, and

functional enrichment analysis showed that DE-EMRGs were

related to inflammatory response, insulin resistance pathway,

JAK/STAT signaling pathway, and lipid and atherosclerosis

signaling pathways. In combination with machine learning

algorithms LASSO and SVM-RFE, seven genes were identified as

potential biomarkers for HCM, and expression validation

identified two biomarkers (JAK2 and IGFBP3). Two regulatory

networks of biomarkers (miRNA-mRNA and TFs-mRNA) were

constructed, and drug prediction and immune infiltration of
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biomarkers were performed, providing new insights for HCM

treatment and prevention. In the future, it is necessary to

conduct further cell experiments, animal experiments and clinical

studies to confirm the above conclusions, and finally hope to

provide new ideas for clinical diagnosis and treatment of

the disease.
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