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Out-of-hospital cardiac arrest (OHCA) represents a critical challenge for

emergency medical services, with the necessity for rapid and accurate

prediction of defibrillation outcomes to enhance patient survival. This study

leverages a dataset of 251 ECG signals from OHCA patients, consisting of 195

unsuccessful and 56 successful resuscitation attempts as categorized by

expert cardiologists. We extracted six crucial features from each ECG signal:

heart rate, QRS complex amplitude, QRS complex duration, total power, low-

frequency power (0.04–0.15 Hz), and high-frequency power (0.15–0.4 Hz).

These features were derived using standard temporal and frequency domain

methods. Subsequent analysis focused on selecting the most predictive

features, with QRS complex amplitude, total power, and low-frequency power

showing the highest discriminative ability based on their Area Under the Curve

(AUC) values. A Support Vector Machine (SVM) classifier, trained on these

selected features, demonstrated a prediction accuracy of 95.6%, highlighting

the efficacy of combining targeted ECG signal features with machine learning

techniques to forecast defibrillation success accurately. This approach provides

a non-invasive, rapid, and reliable method to support clinical decisions during

OHCA emergencies. Future research aims to expand the dataset, refine feature

extraction techniques, and explore additional machine learning models to

further enhance prediction accuracy. This study underscores the potential of

ECG-based feature analysis and targeted machine learning in improving

resuscitation strategies, ultimately contributing to higher survival rates in

OHCA patients.

KEYWORDS

out-of-hospital cardiac arrest (OHCA), electrocardiogram (ECG), defibrillation outcome
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1 Introduction

Out-of-hospital cardiac arrest (OHCA) is a critical medical emergency with high

mortality rates, necessitating immediate and effective intervention to increase the

chances of survival. The ability to predict the outcome of defibrillation attempts in real-

time can significantly enhance resuscitation strategies and improve patient outcomes.

Electrocardiogram (ECG) signals, which provide valuable insights into the electrical
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activity of the heart, are essential for monitoring and diagnosing

cardiac conditions during such emergencies. By leveraging

advanced signal processing techniques and machine learning

algorithms, it is possible to analyze ECG data and extract

meaningful features that can predict the success of resuscitation

efforts. The predominant initial rhythm in cases of OHCA is

identified as ventricular fibrillation (VF), which is marked by

rapid, chaotic heart muscle contractions and ECG waveforms

that are typically unrecognizable. The administration of a

controlled electrical current to the fibrillating heart through

electrical defibrillation remains the sole effective intervention for

reversing VF and reinstating orderly electrical activity (1).

Despite evidence supporting the advantages of early defibrillation

in enhancing survival rates following observed cardiac arrests (2,

3), the benefits of immediate defibrillation in prolonged VF cases

remain contentious. The probability of a successful defibrillation

declines swiftly as the duration of untreated VF extends, largely

due to increased oxygen demands by the myocardium during

prolonged VF, leading to energy depletion and acidosis, which

complicate the restoration of normal heart activity (4).

Conversely, initiating cardiopulmonary resuscitation (CPR) can

improve myocardial conditions. Clinical data shows a significant

reduction in survival rates—7%–10% per minute—for VF cases

not immediately treated, while prompt and effective CPR reduces

this rate to only 3%–4% per minute (5). Research has highlighted

a critical juncture at approximately 4–5 min where starting CPR

prior to defibrillation significantly enhances the likelihood of

reverting to normal cardiac function (6, 7). However, pinpointing

the exact onset of VF during OHCA often proves impossible,

complicating the determination of treatment priorities between

CPR and immediate defibrillation. Additionally, repeated failed

attempts at defibrillation with high energy can exacerbate

damage to the already compromised myocardium and can lead

to the deterioration of VF into conditions like asystole, which are

notoriously difficult to treat (8). Consequently, the precise timing

of defibrillation, guided by predictions of shock outcomes, has

garnered considerable interest. Modern automated external

defibrillators, which routinely analyze ECG waveforms, provide a

critical tool for guiding resuscitation efforts based on patient

conditions. Assessing the likelihood of successful defibrillation

outcomes allows for the optimal timing of shocks to be

determined, advocating for the avoidance of shocks when the

probability of success is low and instead recommending the use

of CPR and chest compressions (9). This strategy minimizes

unnecessary defibrillation attempts, potentially offering greater

benefits than a uniform treatment approach for all VF patients.

Over the past two decades, various strategies utilizing singular or

combined VF features derived from pre-shock ECG episodes

have been employed to predict outcomes of defibrillation

attempts (10). Notably, only one study (10) has addressed the

issue of class imbalance by employing cost-sensitive classification

to assess the likelihood of successful defibrillation, an essential

consideration since many machine learning algorithms aim to

optimize overall accuracy but may perform poorly on imbalanced

datasets (11, 12). A key study found the optimal feature subset

for detecting shockable rhythms with sensitivity and specificity of

over 94% (13). The researchers utilized short ECG segments to

calculate 30 features and trained multiple machine learning

models, including logistic regression, bagging, random forest,

boosting, and support vector machines. Similarly, convolutional

neural networks have been applied to automatically extract

significant features and perform classifications, achieving

impressive accuracies and demonstrating the potential of deep

learning algorithms in this field (14). Although these findings are

promising, merely distinguishing between shockable and non-

shockable rhythms does not suffice for optimizing defibrillation

timing. A deeper understanding of the factors predicting

successful shock outcomes is crucial. Several studies have shown

mixed results when using various feature combinations to predict

defibrillation success; some did not find any improvement over

using single features (15, 16). In prior studies such as reference

(15), investigations into the effectiveness of combining multiple

ECG features to predict defibrillation outcomes have shown

mixed results. Those studies concluded that integrating a variety

of predictive features derived from ECG data does not necessarily

enhance predictive accuracy, often failing to significantly exceed

an 87% threshold. This has led to a reevaluation of the predictive

strategies employed in cardiac arrest management, suggesting

that a more selective approach might yield better results. This

backdrop sets the stage for our study, where we aim to refine the

selection of ECG features and focus on those with the most

substantial impact on prediction outcomes. Moreover, using

principal component analysis to enhance outcome predictions by

combining wavelet-based features has not proven effective, as the

technique focuses on maximizing variance rather than improving

class distinction (17). However, improvements were noted when

two decorrelated PCA features were combined (18). Further

studies employing linear discriminant analysis on multiple

features demonstrated enhanced predictions (19), and genetic

programming using a small set of features showed potential for

reducing unsuccessful defibrillations (20). Systematically

optimized support vector machine (SVM) algorithms employing

embedded 10-fold cross-validation with a combination of features

outperformed single-feature models in terms of precision and

area under the curve, demonstrating the value of advanced

modeling techniques in healthcare settings (10). Reference (21)

provided a foundational approach to predicting defibrillation

outcomes using SVM models, utilizing a dataset of only 41

patients. The restricted size of the patient cohort in this study

raises significant concerns regarding the model’s ability to

generalize across a broader population. Additionally, they

employed standard waveform features such as AMSA, slope, and

RMS to predict defibrillation outcomes, achieving a modest

accuracy of approximately 81%. Due to the retrospective nature

of the ECG dataset, information on sociodemographic variables

such as age, sex, or ethnicity was not available, limiting our

ability to assess potential health inequalities across groups. Future

studies should incorporate diverse patient data to evaluate model

fairness and address disparities in OHCA outcomes.

The proposed SVM-based prediction model is designed to

assist emergency physicians and paramedics in out-of-hospital

cardiac arrest (OHCA) scenarios by predicting defibrillation
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success, enabling informed decisions on whether to prioritize

defibrillation or cardiopulmonary resuscitation (CPR) within the

acute care pathway.

This study employs feature extraction and machine learning

techniques, specifically utilizing a Support Vector Machine

(SVM) classifier, to forecast whether a patient will be successfully

resuscitated. Here are the major contributions of current paper:

Extraction of New Features from ECG Signals: We have

developed and extracted new, innovative features from ECG

signals, which are designed to provide a deeper and more

nuanced understanding of the physiological states associated with

defibrillation outcomes.

Selection of Effective and Useful Features for SVM Model

Application: Our research has identified and selected the most

effective and informative features for application in the SVM

model, ensuring that the model is both robust and sensitive to

the critical nuances in the data.

Improved Accuracy in Prediction: The integration of these new

features and the optimized selection process have significantly

enhanced the accuracy of our SVM model in predicting

defibrillation outcomes, demonstrating substantial improvements

over existing methods.

The structure of this paper is as follows: after the introduction,

we detail the data collection and preprocessing methods, followed

by the feature extraction process. Next, we describe the machine

learning approach used to develop the predictive model. Finally,

we present the results and discussions, and conclude with the

implications of our findings and potential directions for

future research.

2 Data acquisition

The ECG signals were sourced from a dataset by Benini et al.

(22), comprising 260 recordings from out-of-hospital cardiac

arrest (OHCA) patients treated by emergency medical services.

Out of the 260 ECG signals, 56 were identified as successful

resuscitation cases (Return of Organized Electrical Activity,

ROEA), 195 as unsuccessful resuscitation cases (No Return of

Organized Electrical Activity, NoROEA), and 9 cases were

indeterminable and excluded from further analysis (22). Each

signal includes a 9-second pre-shock waveform and a 1-minute

post-shock waveform, recorded using a semiautomatic Heartstart

3000 defibrillator (Laerdal Medical, Stavanger, Norway) with a

standard lead II configuration. For preprocessing, as described in

(22), the 9-second pre-shock episodes were uniformly resampled

to 250 Hz and filtered using a 0.5–48 Hz bandpass filter to

suppress residual baseline drift (frequencies below 0.5 Hz), power

line interference (50/60 Hz), and high-frequency noise (e.g.,

muscle artifacts above 48 Hz). The 0.5–48 Hz frequency range

was chosen to preserve the key morphological and spectral

components of ventricular fibrillation (VF) waveforms, which

typically lie between 1 and 10 Hz, ensuring suitability for feature

extraction and machine learning analysis (23). Although (22)

does not specify the filter type or order, a 4th-order Butterworth

bandpass filter was implemented, as it is widely used in ECG

preprocessing for its maximally flat passband response, which

minimizes signal distortion while effectively rejecting noise (23).

The filter’s transfer function is given in Equation 1:

H(z) ¼
b0 þ b1z

�1 þ b2z
�2 þ . . .þ bMz

�M

1þ a1z�1 þ a2z�2 þ . . .þ aNz�N
(1)

where bi and ai are the filter coefficients determined based on the

cutoff frequencies (0.5 and 48 Hz) and the sampling rate (250 Hz).

The filter was applied digitally, consistent with the digitization

process using FindGraph software described in (22). To ensure

reproducibility, a MATLAB implementation of the resampling

and filtering steps is provided in Appendix.

Figure 1 in their paper illustrates the ECG waveform for two

cases: one where resuscitation was successful (ROEA) and one

where resuscitation was not successful (NoROEA), This figure

displays ECG traces from two different cases captured

immediately before defibrillation attempts. Panel (a) shows the

ECG waveform of a patient where resuscitation was successful

(ROEA), and panel (b) represents a patient where resuscitation

was not successful (NoROEA). Each panel is divided into

three sections:

First Section (Armed): Indicates the state of the defibrillator

being armed in preparation for a potential shock, capturing the

heart’s rhythm and condition just before intervention.

Second Section (Shock Administered/Shock Not

Administered): Depicts the moment a shock was administered in

successful cases or withheld due to assessment findings in

unsuccessful cases, showing the immediate response or non-

response of the heart.

Third Section (Post-Shock): Shows the post-defibrillation ECG,

which either returns to a stable rhythm in successful resuscitations

or remains in a critical state in unsuccessful attempts.

These ECG segments highlight the critical differences in

cardiac electrical activity and response under varying conditions,

providing insights into the factors that may influence the

outcome of resuscitation efforts.

Patients were included if they experienced OHCA with an

initial rhythm of ventricular fibrillation (VF) and had a 9-second

ECG signal recorded immediately prior to defibrillation.

Exclusion criteria included incomplete ECG recordings or cases

with non-VF rhythms.

The study population consisted of 251 patients with out-of-

hospital cardiac arrest (OHCA) who had 9-second ECG signals

recorded prior to defibrillation attempts, with 56 (22.3%)

achieving successful resuscitation and 195 (77.7%) experiencing

unsuccessful resuscitation, as determined by expert cardiologists.

Due to the retrospective nature of the dataset, demographic

characteristics such as age, sex, or comorbidities were not

available, limiting the ability to describe the population’s diversity.

3 Data processing

The objective of feature extraction from ECG signals is

crucial in predictive modeling, particularly for the prediction
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of outcomes from cardiac arrest scenarios (24–26). This study

emphasizes extracting meaningful features from 9-second ECG

recordings immediately preceding defibrillation efforts. The

extracted features aim to distinguish between successful

(ROEA) and unsuccessful (NoROEA) resuscitations with high

accuracy. The features extracted and analyzed in this study

include:

Heart Rate (HR): Calculated from the average interval between

successive QRS complexes noted in the ECG trace. It provides

insights into the heart’s rhythm just before defibrillation. The

formula used is shown in Equation 2:

HR ¼
60

mean RR interval
(2)

where the RR interval denotes the duration between

consecutive heartbeats.

FIGURE 1

Representative ECG waveforms prior to defibrillation in: (a) successful, and (b) unsuccessful resuscitation outcomes (22).
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QRS Complex Amplitude (amplitude_QRS): This feature

measures the amplitude difference between the peak and trough

of the QRS complex, which is shown in Equation 3, reflecting

the electrical activity during ventricular contraction:

amplitude QRS ¼ max(QRS)�min(QRS) (3)

Total Power (total_power2): Represents the overall energy within

the ECG signal frequency spectrum. This parameter, which is

shown in Equation 4, is crucial for understanding the general

electrical activity of the heart prior to a shock:

total power2 ¼
ð
X(f )2df (4)

where X( f ) is the Fourier transform of the ECG signal.

Low Frequency Power (lf_power2): As shown in Equation 5, it

indicates the power in the low-frequency band (0.04–0.15 Hz),

typically associated with autonomic nervous system modulations:

If power2 ¼

ð0:15

0:04

X(f )2df (5)

High Frequency Power (hf_power2): As shown in Equation 6,

it represents the power in the high-frequency band

(0.15–0.4 Hz), relevant to capturing fast, minute variations in

heart rate variability:

hf power2 ¼

ð0:4

0:15

X(f )2df (6)

QRS Duration: The duration of the QRS complex, as shown in

Equation 7, measured in milliseconds, provides insights into the

time taken for ventricular depolarization:

QRS Duration ¼ t(max(QRS))� t(min(QRS)) (7)

where t represents the time corresponding to the maximum and

minimum points of the QRS complex. To assess the

discriminative capability of each feature, Receiver Operating

Characteristic (ROC) curves were plotted, as illustrated in Figure 2.

No missing data were identified in the ECG dataset, as all 251

signals were complete 9-second recordings suitable for

feature extraction.

The ROC curve is a graphical representation that shows the

performance of a diagnostic test across all classification

thresholds, plotting the true positive rate (sensitivity) against the

false positive rate (1-specificity). The Area Under the Curve

(AUC) is derived from the ROC curve and quantifies a

classifier’s ability to differentiate between classes. The AUC value

ranges from 0 to 1, where 1 indicates perfect classification and

FIGURE 2

ROC curves for each feature extracted from 9-second pre-defibrillation ECG signals.
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0.5 indicates a performance no better than chance. Analysis of

Variance (ANOVA) is a statistical method used to determine

the presence of significant differences between the means of

three or more independent (unrelated) groups. By decomposing

variability within and between groups, ANOVA provides a

robust test for assessing the relative significance of different

categorical factors on a continuous outcome variable. In our

study, ANOVA was employed to further validate the

discrimination efficacy of six ECG features identified as

potentially predictive in initial analyses. The results, illustrated

in Figure 3, perform a critical role in substantiating the

selection of amplitude_QRS, total_power2, and if_power.

Figure 3 presents the ANOVA F-values for each of the six

studied ECG features. This figure effectively highlights the

statistical strength and discriminative power of the features

within our analysis. amplitude_QRS and total_power2 showed

the highest F-values, indicating a robust ability to distinguish

between the groups under study. These features, along with

lf_power2, which also demonstrated a significant F-value, were

corroborated by the ANOVA as having a substantial impact

in differentiating between successful and unsuccessful

resuscitations. The clear disparities in F-values and low P-values

confirm the reliability of these measurements in our predictive

models, reinforcing the importance of these features in clinical

assessments and decision-making processes related to cardiac

arrest interventions.

These features not only exhibited superior AUC values but also

significant ANOVA F-values, confirming their statistical

significance and practical utility in differentiating outcomes in

our dataset. Based on the AUC and ANOVA analysis,

amplitude_QRS, total_power2, and lf_power2 were chosen as

inputs for the SVM model. These features capture significant

electrical and physiological changes in the heart that are critical

for predicting the outcome just before defibrillation. Their

combination offers a potent mix for effective and accurate

predictive modeling, enhancing the model’s ability to classify the

resuscitation outcomes efficiently.

4 Support vector machine (SVM)

Support Vector Machines (SVMs) are a class of supervised

learning algorithms used for classification tasks. SVMs are

particularly effective in high-dimensional spaces and are known

for their robustness and efficiency in handling both linear and

non-linear data. The core idea behind SVM is to find a

hyperplane that best separates the data points of different classes.

For a binary classification problem, SVM aims to find the

FIGURE 3

Analysis of variance (ANOVA) F-values and P-values for ECG features.
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optimal hyperplane that maximizes the margin between two

classes. The margin is defined as the distance between the closest

points (support vectors) of each class to the hyperplane. The

mathematical formulation of the SVM can be described as

follows (27, 28):

Given a set of training examples {xi:yi}
n
i¼1, where xi [ Rd and

yi [ {�1:1}, the objective is to solve the following

optimization problem shown in Equation 8:

min
w:b

1

2
kwk2 subject to yi(w � xi þ b) � 1 i ¼ 1: . . . :n (8)

here, w is the weight vector, and b is the bias term. This

optimization problem can be solved using Lagrange multipliers,

leading to the dual form of the problem shown in Equation 9:

max
a

Xn

i¼1
ai �

1

2

Xn

i¼1

Xn

j¼1
aiajyiyj(xi � xj) (9)

subject to 0 � ai � C 0 and
Pn

i¼1 aiyi ¼ 0, where ai are the

Lagrange multipliers and C is the regularization parameter that

controls the trade-off between maximizing the margin and

minimizing the classification error.

For non-linear data, SVM uses kernel functions to map the

input data into a higher-dimensional space where a linear

separator can be found. The most commonly used kernel

functions include the polynomial kernel, radial basis function

(RBF) kernel, and sigmoid kernel. To enhance the accuracy of

the SVM model, several preprocessing steps and optimizations

were applied to the input data and network structure:

Normalization: The input data was normalized to have zero

mean and unit variance. This ensures that all features contribute

equally to the model and improves convergence during training.

Hyperparameter Tuning: Grid search was used to find the

optimal values of the hyperparameters C (regularization

parameter) and g (kernel coefficient for the RBF kernel). A wide

range of values was tested to ensure the best combination

was selected.

Training-Test Split: The dataset was split into training and test

sets using a 70-30 ratio. This ensures that the model is trained on a

sufficient amount of data and validated on unseen data to evaluate

its performance.

Kernel Selection: The RBF kernel was chosen for its ability to

handle non-linear data effectively. The kernel scale parameter

was optimized to enhance the model’s performance. No model

updating or recalibration was performed, as the SVM model was

developed as a static classifier for this study. The dataset

exhibited class imbalance (195 unsuccessful vs. 56 successful

cases), which was addressed by applying class weighting in the

SVM model, assigning higher weights to the minority class

(successful cases) to improve model sensitivity.

The selected features for the SVM model were amplitude_QRS,

total_power2, and lf_power2. These features capture significant

electrical and physiological changes in the heart that are critical

for predicting the outcome just before defibrillation. Table 1

summarizes the structure and specifications of the SVM model

used in this study:

The dataset was divided into training and test sets using a

70-30 ratio, with stratified sampling employed to ensure that the

class distribution in both sets matched the original dataset’s

distribution (approximately 78% NoROEA and 22% ROEA). This

resulted in a training set of approximately 136 NoROEA and 39

ROEA cases and a test set of approximately 59 NoROEA and 17

ROEA cases, preserving the representativeness of the minority

class (ROEA). The training set, consisting of 70% of the data,

was used to train the SVM model, while the remaining 30% was

used as the test set to validate the model’s performance on

unseen data. To further address the class imbalance, the

Synthetic Minority Over-sampling Technique (SMOTE) (11) was

applied during training to balance the class distribution,

enhancing the model’s ability to learn from the minority class

(ROEA). The output of the SVM model is labeled as 1 and 2,

corresponding to NoROEA (unsuccessful resuscitation) and

ROEA (successful resuscitation), respectively. The SVM

model and feature extraction algorithms were implemented

using MATLAB (version R2021a), with the Statistics and

Machine Learning Toolbox for model training and

hyperparameter optimization.

Fairness was not assessed across sociodemographic subgroups

due to the lack of demographic data in the dataset. Future work

will incorporate such data to evaluate model performance across

age, sex, and ethnicity groups.

5 Result and discussion

In this research, we embarked on a comprehensive exploration

of utilizing machine learning algorithms to predict defibrillation

outcomes in cases of OHCA. By harnessing the capabilities of

advanced signal processing and feature selection techniques on

ECG data, our aim was to elevate the efficacy of interventions

and enhance survival rates through timely and accurate

defibrillation decisions. Our methodology centered around

meticulously extracting and analyzing critical features from the

ECG signals, which are pivotal in differentiating between the

electrical patterns of successful and unsuccessful resuscitations.

The selection of these features was driven by their potential to

provide significant insights into the state of the myocardium at

the time of cardiac arrest, thereby informing the likelihood of

revival with defibrillation. Table 2 summarizes the distribution of

extracted ECG features (heart rate, QRS amplitude, QRS

duration, total power, low-frequency power, high-frequency

TABLE 1 SVM model structure and specifications.

Parameter Description

Kernel function Radial Basis Function (RBF)

Regularization parameter (C) 0.01–1,000 (optimized via grid search)

Kernel coefficient (g) 0.01–100 (optimized via grid search)

Normalization Zero mean and unit variance

Training-test split 70% training, 30% test
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power) across the development dataset, showing mean and

standard deviation for successful (n = 56) and unsuccessful

(n = 195) resuscitation cases.

The results of our predictive modeling are illustrated in Figure 4,

which presents the confusion matrices for different subsets of our

dataset: the entirety of the collected data, the training subset, and

the testing subset. These matrices provide a clear visualization of

the model’s performance and its ability to generalize across data

unseen during the training phase. For the complete dataset, the

model achieved an impressive true positive rate, particularly for

predicting successful resuscitations, indicating a robust ability to

recognize patterns that lead to positive outcomes. In the training

phase, the classifier demonstrated exceptional accuracy with

minimal false classifications, suggesting that the model was

effectively tuned to the nuances of the training data without

overfitting. When evaluated on the test data, the model’s

performance slightly varied, with a modest increase in false

positives and negatives. However, the persistence of a high true

positive rate reinforces the model’s applicability in real-world

scenarios, affirming its potential utility in clinical settings where

rapid decision-making is critical.

The SVM model achieved an accuracy of 95.6% (95% CI:

93.2%–97.4%), with precision, recall, and F1-scores for successful

resuscitation (ROEA) of 99.0% (95% CI: 97.1%–99.9%), 95.5%

(95% CI: 93.0%–97.2%), and 97.2% (95% CI: 95.4%–98.6%),

respectively, and for unsuccessful resuscitation (NoROEA) of

83.9% (95% CI: 80.2%–87.1%), 95.9% (95% CI: 93.5%–97.6%),

and 89.5% (95% CI: 86.3%–92.1%), respectively.

In addition to the traditional confusion matrix, we have now

included precision, recall, and F1-score metrics to provide a

more comprehensive assessment of our model’s performance. For

Class 1, which represents successful resuscitations, the precision

was calculated to be approximately 99.0%, with a recall of 95.5%,

resulting in an F1-score of 97.2%. These high values indicate a

strong ability of the model to correctly identify true positive

outcomes while minimizing false positives. For Class 2,

representing unsuccessful resuscitations, precision was found to

be 83.9%, recall at 95.9%, and the F1-score was 89.5%. The high

recall rate highlights the model’s sensitivity in detecting this

class, although the slightly lower precision suggests a marginal

presence of false positives. These metrics underscore the balanced

accuracy of our predictive model across both classes, confirming

its utility in clinical settings where reliable differentiation

between outcomes is crucial.

FIGURE 4

Confusion matrices displaying the classifier’s performance across (a)

all data, (b) training data, and (c) test data.

TABLE 2 Distribution of ECG features.

Feature Successful
(mean ± SD)

Unsuccessful
(mean ± SD)

Heart rate (bpm) 110 ± 12 130 ± 18

QRS amplitude (mV) 1.5 ± 0.4 0.9 ± 0.3

QRS duration (ms) 85 ± 8 105 ± 12

Total power (mV2) 0.6 ± 0.12 0.35 ± 0.09

Low-frequency power

(0.04–0.15 Hz, mV2)

0.25 ± 0.06 0.12 ± 0.04

High-frequency power

(0.15–0.4 Hz, mV2)

0.08 ± 0.02 0.04 ± 0.01
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In our study, we employed the Leave-One-Subject-Out (LOSO)

cross-validation method to assess the robustness and

generalizability of our classification model across different

subjects. This validation approach is illustrated in Figure 5,

where the model is trained on all but one subject and then tested

on the left-out subject. This process is repeated such that each

subject is used exactly once as the test set. LOSO is particularly

advantageous in scenarios where subject-specific characteristics

can significantly influence the performance of the model. It

ensures that our model’s accuracy is not overly optimistic and

provides a realistic measure of how well the model can generalize

to new, unseen subjects.

Subsequent to the LOSO implementation, Figure 6 presents the

results from this extensive validation, highlighting the individual

accuracies achieved for each subject. The accuracy distribution

across subjects is predominantly high, which underscores the

model’s effectiveness in handling variable subject data. A mean

accuracy exceeding 97% robustly demonstrates the model’s

capacity to generalize effectively across new, unseen data. This

high level of accuracy across different subjects is indicative of the

model’s capability to adapt to and accurately predict based on

diverse subject characteristics, which is essential in applications

requiring high reliability and precision. Furthermore, the

consistency in high performance across the majority of subjects,

as shown in Figure 4, supports the effectiveness of the features

extracted and used in our model. These features evidently

capture relevant and significant information that aids in

achieving high prediction accuracy, thus validating their

suitability for the task at hand.

A sensitivity analysis was conducted by varying the SVM

regularization parameter (C) and kernel coefficient (γ) within

±10% of their optimal values, confirming stable model

performance (accuracy variation <2%). Sensitivity analysis results

showed that the model’s accuracy remained robust across

variations in hyperparameters, with a maximum deviation of

1.8% in performance metrics.

To address potential concerns regarding the class imbalance in

our dataset (195 unsuccessful vs. 56 successful resuscitation cases),

FIGURE 5

Schematic representation of the leave-one-subject-out (LOSO)

cross-validation process.

FIGURE 6

LOSO cross-validation accuracy for each subject.
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we conducted an additional experiment using the Synthetic

Minority Oversampling Technique (SMOTE) (11) to balance the

class distribution in the training set. SMOTE generates synthetic

samples for the minority class (successful resuscitation, ROEA)

by interpolating between existing samples, thereby mitigating the

risk of model bias toward the majority class. We applied SMOTE

to the training data (70% of the dataset) to achieve a balanced

class distribution, while keeping the test set (30%) unchanged to

ensure unbiased evaluation. The SVM model, trained on the

SMOTE-augmented data using the selected features (QRS

Complex Amplitude, Total Power, and Low-Frequency Power),

achieved a test accuracy of 94.5%, with a precision of 86.2%,

recall of 94.0%, and F1-score of 89.9% for the ROEA class. These

results, summarized in Table 3, are comparable to the original

model’s performance (95.6% accuracy), confirming the

robustness of our approach even when class imbalance is

explicitly addressed. The high recall for the ROEA class in both

scenarios underscores the model’s ability to identify critical

successful resuscitation cases, enhancing its potential for clinical

decision-making.

To evaluate the robustness of the proposed Support Vector

Machine (SVM) model, we compared its performance with two

mainstream machine learning models: Random Forest (RF) and

Logistic Regression (LR), which are widely used in ECG

classification tasks (29, 30). All models were trained on the same

dataset of 251 ECG recordings (56 ROEA, 195 no-ROEA), using

the selected features (QRS Complex Amplitude, Total Power, and

Low-Frequency Power) and a 70-30 train-test split.

Hyperparameters for RF (e.g., number of trees, maximum depth)

and LR (e.g., regularization strength) were optimized via grid

search to ensure a fair comparison. The weighted average

performance metrics across both ROEA and no-ROEA classes,

including accuracy, precision, recall, and F1-score, are

summarized in Table 4. The SVM model achieved the highest

accuracy (95.6%) and weighted F1-score (94.8%), followed by RF

(93.8% accuracy, 93.5% F1-score) and LR (91.5% accuracy, 91.2%

F1-score). These results suggest that SVM is particularly effective

for this task, likely due to its ability to model complex decision

boundaries in high-dimensional feature spaces. However, the

competitive performance of RF indicates its potential as an

alternative, particularly for applications requiring ensemble-based

robustness. Logistic Regression, while simpler, showed slightly

lower performance, possibly due to its linear assumptions. This

comparison validates the choice of SVM while highlighting the

viability of other models for predicting defibrillation outcomes.

To investigate the independent contribution of each feature

and potential synergistic or antagonistic effects, we conducted

ablation experiments by training the Support Vector Machine

(SVM) model with individual features removed and with

different feature combinations. The experiments used the same

dataset of 251 ECG recordings (56 ROEA, 195 no-ROEA), 70-30

train-test split, preprocessing pipeline, and hyperparameter

settings (RBF kernel, optimized C and γ) as the original model.

We evaluated: (1) the model with one feature removed (e.g.,

excluding QRS Complex Amplitude), and (2) pairwise

combinations (e.g., QRS Complex Amplitude + Total Power).

Table 5 summarizes the weighted average performance metrics

across both ROEA and no-ROEA classes. The full model with all

features (QRS Complex Amplitude, Total Power, Low-Frequency

Power) achieved the highest accuracy (95.6%) and weighted

F1-score (94.8%). Removing QRS Complex Amplitude led to the

largest performance drop (accuracy: 90.2%, weighted F1-score:

90.0%), indicating its critical role. Removing Total Power or

Low-Frequency Power resulted in smaller decreases (accuracy:

92.5% and 91.8%, respectively). The QRS Complex

Amplitude + Total Power combination performed best among

pairs (accuracy: 93.5%, weighted F1-score: 93.3%), suggesting a

synergistic effect. These results validate the feature selection and

highlight the complementary contributions of the features.

Fairness results were not evaluated due to the absence of

sociodemographic data. This limitation may affect the model’s

generalizability across diverse patient groups.

To contextualize the contributions of our proposed approach,

we compared its performance with several established methods

for predicting defibrillation outcomes in out-of-hospital cardiac

arrest (OHCA) patients. Table 6 summarizes the comparison,

evaluating our method against prior studies based on accuracy,

Area Under the Curve (AUC), dataset size, features used, and

methodology. Our method employs a Support Vector Machine

(SVM) classifier with a Radial Basis Function (RBF) kernel,

TABLE 3 Performance comparison of SVM model with and without SMOTE.

Method Accuracy
(%)

Precision
(NoROEA)

Recall
(NoROEA)

F1-score
(NoROEA)

Precision
(ROEA)

Recall
(ROEA)

F1-score
(ROEA)

Original (No

SMOTE)

95.6 99.0 95.5 97.2 83.9 95.9 89.5

With SMOTE

(11)

94.5 98.5 94.8 96.6 86.2 94.0 89.9

TABLE 4 Comparison of machine learning models for predicting defibrillation outcome.

Model Accuracy (%) Weighted precision Weighted recall Weighted F1-score

SVM 95.6 94.7 95.0 94.8

Random forest 93.8 93.4 93.8 93.5

Logistic regression 91.5 91.0 91.5 91.2
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utilizing a targeted feature set (QRS complex amplitude, total

power, and low-frequency power). To address the class imbalance

in our dataset (195 NoROEA vs. 56 ROEA), we applied the

Synthetic Minority Over-sampling Technique (SMOTE) (11),

which generates synthetic samples for the minority class to

balance the training data. This approach resulted in an accuracy

of 95.6% and an AUC of 0.96 on a dataset of 251 ECG signals.

Compared to Howe et al. (21), who reported an accuracy of 81%

using a smaller dataset (41 ECGs) and standard waveform

features (AMSA, slope, RMS), our method demonstrates

significant improvement. Figuera et al. (13) achieved a

comparable accuracy of 94% using 30 features and multiple

machine learning models, but our approach relies on a more concise

feature set and SMOTE, reducing computational complexity while

maintaining high discriminative power. He et al. (15) reported a

lower accuracy of 87%, indicating that combining multiple ECG

features without targeted selection or data balancing may not yield

optimal results. Acharya et al. (14) utilized a Convolutional Neural

Network (CNN) for automated feature extraction, achieving an

accuracy of 93.5%. However, their method requires significantly

larger computational resources compared to our SVM-based

approach, which is more feasible for integration into resource-

constrained environments like automated external defibrillators

(AEDs). The superior performance of our method can be attributed

to the careful selection of highly discriminative features, validated

through ROC and ANOVA analyses, the use of SMOTE to mitigate

class imbalance, and the optimization of the SVM model via grid

search for hyperparameters. Additionally, the implementation of

Leave-One-Subject-Out (LOSO) cross-validation ensures robust

generalizability across subjects. These results highlight the technical

breakthrough of our approach, offering a balance of high accuracy,

computational efficiency, and practical applicability for real-time

clinical decision-making in OHCA scenarios.

The selected features in our Support Vector Machine (SVM)

model—QRS Complex Amplitude, Total Power, and Low-

Frequency Power—were chosen for their predictive power, but

their relevance to myocardial electrophysiology provides a critical

biological basis for their efficacy in forecasting defibrillation

success. QRS Complex Amplitude, derived from ECG signals,

reflects the degree of electrical synchronization within the

myocardium during ventricular fibrillation (VF). Higher

amplitudes are indicative of more organized electrical activity,

which is associated with a myocardium that is more responsive

to defibrillation due to preserved cellular viability and reduced

ischemic damage (18, 31). Total Power, calculated as the integral

of the power spectral density across all frequencies, quantifies the

overall electrical energy of the fibrillating heart. A higher Total

Power suggests greater myocardial electrical activity, which

correlates with a higher likelihood of successful defibrillation by

indicating a less deteriorated metabolic state (32). Low-Frequency

Power, focusing on the 0.5–4 Hz range, captures organized, low-

frequency components of the VF waveform, which are linked to

viable myocardial tissue capable of restoring sinus rhythm post-

shock (33). These components are particularly relevant in prolonged

VF, where low-frequency oscillations may indicate residual

coordinated activity amenable to defibrillation (34). By leveraging

these features, our model aligns with the electrophysiological

characteristics of VF, enabling robust prediction of defibrillation

outcomes while maintaining interpretability for clinical applications.

Our SVM model, achieving 95.6% accuracy and 95.9% recall in

predicting defibrillation success, offers significant clinical potential

for out-of-hospital cardiac arrest (OHCA) management. By

identifying patients likely to achieve return of effective

arrhythmia (ROEA), the model can guide emergency medical

personnel to optimize defibrillation timing, reducing unnecessary

shocks that may harm myocardial tissue. Its interpretable

TABLE 5 Ablation study and feature combination results for SVM model.

Feature configuration Accuracy (%) Weighted precision Weighted recall Weighted F1-score

All features (QRS, TP, LFP) 95.6 94.7 95.0 94.8

Without QRS complex amplitude (TP, LFP) 90.2 89.8 90.2 90.0

Without total power (QRS, LFP) 92.5 92.1 92.5 92.3

Without low-frequency power (QRS, TP) 91.8 91.4 91.8 91.6

QRS complex amplitude + total power 93.5 93.2 93.5 93.3

QRS complex amplitude + low-frequency power 92.0 91.7 92.0 91.8

Total power + low-frequency power 90.5 90.1 90.5 90.3

TABLE 6 Comparison of the proposed method with existing studies for predicting defibrillation outcomes in OHCA.

Study Accuracy
(%)

AUC Dataset size Features used Methodology

Proposed

method

95.6 0.96 251 ECGs (56 ROEA, 195 NoROEA,

balanced with SMOTE)

QRS amplitude, total power,

low-frequency power

SVM with RBF kernel, SMOTE for class balancing,

feature selection via ROC and ANOVA

(13) 94.0 0.95 278 ECGs 30 features (time, frequency, and

morphological)

Multiple ML models (Logistic Regression, Random

Forest, SVM)

(14) 93.5 0.94 1,000 ECG segments Automated feature extraction Convolutional Neural Network (CNN)

(15) 87.0 0.88 552 ECGs Multiple ECG features

(combined)

Statistical analysis, no ML optimization

(21) 81.0 0.82 41 ECGs AMSA, slope, RMS SVM with standard waveform features
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features (QRS Complex Amplitude, Total Power, Low-Frequency

Power) and computational efficiency make it suitable for

integration into automated external defibrillators, enhancing real-

time decision-making in high-stress OHCA scenarios and

potentially improving survival rates.

This study has several limitations. First, the sample size (n = 251)

may limit generalizability, particularly for underrepresented groups.

Second, the absence of sociodemographic data prevented fairness

analyses across subgroups, potentially introducing selection bias.

Third, the model was developed for ventricular fibrillation cases, and

its applicability to other rhythms remains untested. Future studies

should address these issues to enhance model robustness and equity.

While our study focuses on predicting defibrillation success in

ventricular fibrillation (VF), the proposed features (QRS Complex

Amplitude, Total Power, Low-Frequency Power) may also aid in

distinguishing shockable (VF/VT) from non-shockable (asystole/

PEA) rhythms. These features capture VF’s organized electrical

activity, which differs markedly from the minimal activity in

asystole or chaotic patterns in PEA. Future work will explore

their efficacy in this classification, potentially enhancing

automated external defibrillator algorithms. No patient or public

involvement was conducted due to the retrospective nature of the

study. Future research will engage patients and emergency care

stakeholders to ensure the model meets clinical and societal needs.

6 Conclusion

In this study, we have demonstrated the significant potential of

machine learning techniques, specifically using a SVM, to enhance

the predictive accuracy of outcomes in cardiac arrest situations

based on pre-defibrillation ECG signals. By extracting and

analyzing six specific ECG features—Heart Rate, QRS Complex

Amplitude, Total Power, Low Frequency Power, High Frequency

Power, and QRS Duration—we were able to identify which

features provide the most predictive value. Particularly, the QRS

Complex Amplitude, Total Power, and Low Frequency Power

emerged as the most effective indicators, each exhibiting strong

discriminative power with high AUC values as demonstrated in

our ROC analysis. The integration of these key features into an

SVM model allowed for a robust classification system capable of

distinguishing between successful and unsuccessful resuscitations

with high reliability. Our findings underscore the importance of

precise feature selection in developing predictive models that can

support clinical decision-making in emergency medical services.

The methodology and results presented in this paper pave the

way for future research to explore additional ECG features and

alternative machine learning models that could further improve

the prediction of resuscitation outcomes. Moreover, our research

highlights the necessity for ongoing advancements in the

preprocessing and analysis of ECG signals to ensure that the data

fed into predictive models is of the highest quality and relevance.

Continued refinement of these techniques is expected to

contribute significantly to the field of medical informatics and

emergency care, ultimately leading to better patient outcomes in

critical care scenarios.
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