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Background: The transcription factor ERG (erythroblast transformation-specific-

related gene) has been identified as a key regulator of vascular function by

suppressing inflammation in endothelial cells (ECs). Dysregulation of ERG due

to genetic risk variants is linked to chronic inflammation in conditions such as

atherosclerosis and aortic aneurysms.

Case presentation: This research work investigates the role of the ERG gene in

the development of a systemic arterial aneurysm manifestation. Given the

previous implication of ERG in vascular development, we now report a loss-

of-function variant (Leu212*) in the ERG gene, segregating in a family with

vascular pathologies. Multiple arterial aneurysms were observed in one family

member, and early onset of vascular-associated stroke in another individual

carrying the familial ERG variant. Histological analysis of arterial aneurysm

specimen showed comparable expression of ERG in endothelial cells of the

vasa vasorum in samples from the patient and controls.

Conclusion: Our report discusses the possibility that loss-of-function variants in

ERG may act as a risk factor for arterial disease.

KEYWORDS

multiple arterial aneurysms, ERG, abdominal aortic aneurysm, loss-of-function variant,

haploinsufficiency

1 Introduction

The etiology of arterial aneurysms is mostly multifactorial, and both genetic and

environmental factors contribute to their development. Previous research to identify

genetic risk loci for aneurysm development through genome-wide association studies

identified several loci, including the SNP NM_182918.4: c.19-2286G>T (rs2836411) in

the ERG gene (1). ERG (erythroblast transformation-specific-related gene) encodes a

transcriptional regulator protein, which influences endothelial homeostasis,

angiogenesis, cell proliferation, inflammation, and apoptosis. ChIP-seq analysis in

human umbilical vein endothelial cells demonstrated that the ERG protein binds
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lineage-specific endothelial super enhancers; promoting endothelial

homeostasis, and enrichment of SNPs within these super-

enhancers was suspected to contribute to cardiovascular disease

and aortic aneurysm formation (2). Investigation of the gene

regulatory function demonstrated that the rs2836411 SNP

affected ERG expression in vascular endothelial cells and

enhancer activity contributing to abdominal aortic aneurysm

formation (3). In a single-cell transcriptome analysis of ascending

thoracic aortic aneurysms, expression of ERG was found to be

decreased in five cell clusters, when compared to healthy

controls, suggesting a role of ERG in the maintenance of the

aortic wall (4). Population genetics and animal models support a

vascular disease-association of ERG in humans: In the gnomAD

v4.1.0 population database, containing 730,947 exomes and

76,215 genomes the loss-of-function observed/expected upper

bound fraction (LOEUF) score of ERG is 0.234 with 5 observed

LoF variants vs. 44.8 expected variants, suggesting evolutionary

selection against ERG haploinsufficiency. In mouse models,

biallelic knockout of the murine homolog Erg resulted in

embryonic death due to “occlusion and narrowing of pulmonary

venules, pancytopenia, and variable pulmonary capillary

hemorrhage” (5). Endothelial-specific knockout of Erg led to

increased embryonic lethality with disorganized blood vessels in

knockout embryos (6), indicating a pivotal role of the gene

during embryonic development in mice. ERG is specifically

expressed in endothelial cells promoting anti-inflammatory

effects via repression of inflammatory genes such as interleukin-8

(7). Endothelial barrier function is also mediated by claudin 5

(CLDN5) a downstream target of ERG. ERG knockdown was

reported to result in an increase of endothelial gap formation

and permeability (8). We now report a family with a LoF variant

in ERG with multiple aneurysms and early-onset vascular-

associated stroke. The 52-year-old male index patient of this case

report presented with an asymptomatic abdominal aortic

aneurysm which was diagnosed by a routine examination.

Further investigation revealed multiple arterial aneurysms.

Physical examination of the patient was not suggestive of a

known connective tissue disorder (Beighton Score 0, Ghent

Score 0).

2 Case presentation

As part of a genetic consultation at our university hospital, a

primary whole exome sequencing (WES) instead of a gene panel

for vascular diseases was performed due to the multiple vascular

manifestations. The results and variants were assessed for rarity

and functionality. WES revealed a heterozygous germline variant

in ERG (NM_182918.4:c.635T>A, p.(Leu212*) in the peripheral

blood of the patient. ClinGen (Clinical Genome Resource

database) has not yet published curations for ERG and the

variant is absent from large population databases including the

gnomAD (Genome Aggregation Database) v4.1.0 dataset of

807.162 samples. The variant is located in the fifth exon of the

10-exon transcript, and is expected to result in heterozygous loss

of function (LoF) due to nonsense-mediated decay of mutant

RNA. The variant location within the ERG gene and protein

structure are illustrated in Figure 1. An additional heterozygous

prothrombin variant [G20210A, a polymorphism associated with

an increased risk of venous thrombotic events (11)] was found

but no other pathogenic variants in genes associated with

arterial aneurysms were detected. The patient’s arterial aneurysm

diameters measured 53 mm of the abdominal aorta (AAA),

50 mm on the right and 52 mm on the left common iliac

arteries, 20 mm on the right and 40 mm on the left common

femoral arteries, 42 mm on the right and 36 mm on the left

popliteal arteries, 6 mm on the anterior cerebral artery and

4 mm on the basilar artery. Open surgical procedures were

performed to prevent rupture and embolism in all aneurysms

except the right femoral and intracranial arteries which are

under radiologic surveillance to detect aneurysm progression.

Despite cardiovascular risk factors such as hypertension and

hypercholesterinemia, the computed tomography angiography

(Figure 2A) revealed only minimal arteriosclerotic vascular wall

changes that could have contributed to the formation of

aneurysms. Other routine angiological examinations, including

carotid duplex sonography and ankle-brachial measurement,

were unremarkable and excluded early atherosclerotic vascular

manifestations. Other cardiovascular risk factors, such as

diabetes or smoking, were not present in the examined family

members. The patient’s father had multiple coronary bypass

interventions. One of the patient’s two sons, who carried the

familial ERG variant, had an ischemic stroke (apoplexy) at the

age of 18 years due to an acute cervical artery occlusion.

Phenotypical signs of lymphatic malformations were absent in

all family members such as chronic swelling of body parts or

other nail and skin changes. Further segregation analysis by

Sanger sequencing neither detected the variant in the proband’s

other (healthy) son, nor in his healthy brothers (aged 46 and 51

years) (see pedigree in Figure 2B). The microsatellite analysis

revealed no evidence of non-relationship between the examined

samples. In order to detect morphological vascular changes, we

performed histological and immunohistochemical staining

(Figure 2C) in aortic, iliac and femoral aneurysm samples of the

patient and control aneurysm samples. Staining of sequential

histological sections with antibodies for ERG, CD31, αSMA and

CD45 revealed expression of ERG in endothelial cells of the vasa

vasorum to a similar extent and pattern as in control samples.

Despite single-cell RNA sequencing demonstrating expression of

ERG mRNA in cellular subsets of smooth muscle cells,

endothelial cells, and fibroblasts in human ascending aortic

tissue (4), we could only identify sparse ERG positive staining in

endothelial cells.

3 Methods

3.1 Immunohistochemistry

Tissues were formalin fixed and embedded in paraffin

according to standard procedures for conventional histology.

Briefly, 4 µm sections were deparaffinized, rehydrated and
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incubated in 100 mM citrate buffer, pH 6.0 for antigen retrieval.

Immunohistochemical staining was performed overnight with the

following primary antibodies: rabbit anti-human ERG (# 97249,

Cell Signaling Technology); mouse anti-human CD31 (# 3528,

Cell Signaling Technology), rabbit anti-human alpha smooth

muscle actin (αSMA) (#19245, Cell Signaling Technology), rabbit

anti-human CD45 (# 13917, Cell Signaling Technology). CD31,

αSMA and CD45 are key markers used to identify endothelial

cells, smooth muscle cells, and leukocytes respectively, and their

expression patterns can provide insight into vascular remodeling

and inflammatory processes regulated by the ERG gene pathway

in vascular biology. After washing, detection was performed by

using the DAKO REAL Detection System Alkaline Phosphatase/

RED, rabbit/mouse, AP/RED, rabbit/mouse (Agilent, Santa Clara,

CA, USA). All sections were counterstained with hematoxylin

and covered with Aquatex (aqueous mounting agent for

microscopy, Merck, Sigma Aldrich, Germany). Detailed protocols

are available on reasonable request.

3.2 Exome sequencing

Blood samples were obtained after signed informed consent.

Exome sequencing was performed using a SureSelect Human All

Exon V7-Kit (Agilent, 48.2 Mb design size) for enrichment and a

HiSeq 4000/NovaSeq System (Illumina, San Diego, California).

Reads were aligned to the UCSC human reference assembly

(GRCh38) with BWA. Single nucleotide variants (SNV), small

insertions and deletions were detected using GATK. Variants

were analyzed in the in-house exome variant analysis database

FIGURE 1

Structure of the human ERG gene and protein. Structure of the human ERG gene and protein p55, according to the nomenclature suggested by

Zammarchi (9). Top: schematic representation of ERG coding exons (encoding eight isoforms), shown with their size in base pairs (bp) below each

exon. Middle: genomic region of ERG isoform p55, showing position of the affected exon and the STOP codon, predicted size of the WT and

mutant allele. Below: the ERG/p55 exon structure and nucleotide length (in base pairs) is aligned with the predicted protein sequence showing

the amino acid position of the main protein domains. PNT (pointed domain), ETS (ETS DNA-binding domain). The phosphorylated serine residue

at position 215 is indicated by an arrow.
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(VarViewS). Variants with a minor allele frequency (MAF) in

gnomAD <1% and our in-house database, respectively, that

yielded at least one (likely) pathogenic score using different in-

silico prediction tools, were assessed. Additionally, the databases

ClinVar and HGMD® Professional were reviewed for assessment.

Sanger sequencing was performed to confirm the ERG variant in

the index patient and to exclude the variant in the relatives

mentioned below.

3.3 Relative mRNA expression of ERG and
endothelial ERG target genes

Four fresh frozen biopsies from the individual III/2 were

ground with pestle and mortar in liquid nitrogen for RNA

extraction using the RNeasy Fibrous Tissue Mini Kit (Qiagen,

Hilden Germany) according to the manufacturer’s instructions.

These biopsies were obtained from surgical aneurysm procedures

FIGURE 2

Multiple aneurysms in an individual with ERG haploinsufficiency. (A) 3-dimensional reconstruction of the computed tomography angiography of the

index patient revealed multiple aneurysm formation. Red arrows indicate aneurysmatic vascular segments. (B) Family pedigree including the index

patient with multiple arterial aneurysms (age 52 years) and an affected son (18 years) with cervical artery dissection and the same ERG gene

variant. Other family members were not available for Sanger sequencing analysis. WT/WT: wild type homozygous, WT/MUT: heterozygous variant,

white coloration: investigated without phenotype, black coloration: affected individual, grey: clinically not investigated. (C) Immunohistochemically

and magnification (indicated by black rectangles) stained sections comparing the abdominal aortic aneurysm (AAA) of the index patient and a

healthy control aorta. Staining of sequential histological sections with antibodies for ERG, CD31, αSMA and CD45 revealed expression of ERG

exclusively in individual endothelial cells (red arrows) of the vasa vasorum in a similar extent and pattern as in healthy aortas. Scale bars: 100 μm

(top) and 50 μm (magnification sections). Red arrows indicate ERG-positive cells in the area of the tunica media (index patient) and in the

transition zone between the tunica media and tunica adventitia (control sample).
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including the femoral-, internal iliac-, common iliac arteries and

the abdominal aorta. Two control samples of human non-

diseased aortic tissue (Aorta Co 1 and Co2) were obtained from

organ donors stored in the vascular biobank Heidelberg (VBBH)

and used for comparison. Real-time RT-PCR was performed by

using primers specific for the ERG and four of its genetic targets,

ICAM2, CDH5, CLDN5 and NOTCH4 (Figure 3). Samples were

loaded onto 96-well PCR plates and analysed in a StepOnePlus

real time PCR System. Quantitative analysis of gene expression

was performed relative to expression of GAPDH and ACTB

mRNA in corresponding samples by using the 2−DDCt method.

4 Discussion and literature review

The ERG gene encodes a transcription factor that play a critical

role in the endothelial cell function, vascular integrity, and

angiogenesis. Mutations or dysregulation of this gene can disrupt

downstream pathways, such as the regulation of VEGF (vascular

endothelial growth factor) signalling impairing endothelial

proliferation, migration and survival (12). Another major

downstream pathway regulated by ERG is TGF-β (transforming

growth factor-beta) signalling controlling endothelial-to-

mesenchymal transition leading to fibrosis or atherosclerosis (13).

Additionally, inflammatory processes are modulated by ERG,

such as NF-κB activity and expression of adhesion molecules

(ICAM-1, VCAM-1) involved in leukocyte infiltration and

chronic inflammatory processes (14). Furthermore, vascular

relaxation and increased vascular resistance are disrupted by ERG

dysfunction via the eNOS (endothelial nitric oxide synthase)

cascade (10). Endothelial dysfunction may lead to impaired anti-

thrombotic protection resulting in thrombosis and coagulopathy

(15) represents an independent risk factor for multiple arterial

aneurysms and dissection (16). Given the previous implication of

ERG in vascular development, and endothelial homeostasis, and

the rarity of heterozygous LoF germline variants in the general

population, a connection between the familial LoF variant in

ERG and the vascular pathologies observed in the patient and his

son appears plausible despite the unexplained phenotypic

variability of vascular diseases. To date, two distinct phenotypes

have been reported in individuals with ERG haploinsufficiency.

A rare variant association study of 77,539 individual genomes

found different germline frameshift variants of ERG in patients

with primary lymphedema from four different families (17). Two

of the variants found in lymphedema patients were predicted to

result in nonsense-mediated decay, while two others located in

the last exon potentially resulted in a truncated or elongated

protein. Another group functionally characterized 10

heterozygous germline ERG variants identified in a cohort of

patients with cytopenia and/or hematological malignancies,

demonstrating partial or complete LoF in 8 of the reported

missense variants. Some patients with lymphatic malformations

have been reported to carry abnormally extended ERG proteins

(8). As a limitation this study did not perform functional

analysis. Another de novo ERG variant most likely resulting in

nonsense-mediated decay (Tyr372*), was reported in a patient

with congenital pancytopenia and bone marrow failure (18).

Neither lymphedema, nor hematological disorders, were reported

in our pedigree, which could be explained by incomplete

penetrance of both phenotypes. We now suggest a connection of

ERG haploinsufficiency to a third phenotype, i.e.,

arterial pathologies.

In this case report cryo-conserved specimen were used to

perform relative mRNA expression of ERG and endothelial ERG

target genes in aortic and control aortic tissues. The significance

of the results is limited, as only a few ERG-positive cells were

present in the endothelial layer. Additionally, the analysis is

confounded by the presence of other vascular wall cells, such as

FIGURE 3

Relative mRNA expression of ERG and endothelial ERG target genes in aneurysmatic and control aortic tissues. Data are shown as the mean with SD of

three technical replicates. Statistical analysis was performed by ordinary one-way ANOVA with Dunnett’s multiple comparison test. *: P < 0.05;

***: P < 0.001; ****: P < 0.0001. ACTB, actin beta; Aorta Co1 and Aorta Co2, control aortic specimen 1 and 2; ICAM2, intercellular adhesion

molecule 2; CDH5, cadherin-5; CLDN5, claudin-5; GADPH, glyceraldehyde-3-phosphate dehydrogenase; ns, not significant; NOTCH4, neurogenic

locus notch homolog 4; VE-Cad, vascular endothelial (VE)-cadherin.
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smooth muscle cells, adventitial fibroblasts, and leukocytes.

Therefore, these results cannot be used for definitive conclusions,

and isolated endothelial cells should be used to perform ERG-

specific expression analysis.

The challenges of investigating the functional consequences of

haploinsufficiency of a given gene are steep, as the utility of biallelic

knockout models is questionable, and tissue-specific expression

alone is not indicative of relevant functional defects.

Additionally, evolutionary selection against LoF variants, as

observed in the case of ERG, is not probative for a measurable

postnatal phenotype. A possible selection bias may occur entirely

prenatally, and the loss of reproductive fitness required to

significantly skew population data against a variant type can be

much smaller than expected: An estimation based on the ExAC

database of 60,706 human exomes, which focused on selective

effects of protein truncating variants (PTVs), found a mean

fitness loss of only ∼0.5% for all PTVs, although with a broad

distribution (19). The authors proposed that even small selective

effects of PTVs could have disproportionate impacts after a

sufficiently large number of generations.

ERG can be considered as a potential candidate gene, i.e., a

gene of unknown significance (GUS), in the context of arterial

aneurysms. Within the ACMG classification system, any

potentially causative variant in a GUS is classified as a variant of

unknown significance (VUS) (20). The question then remains

whether the reported disease associations of LoF variants in ERG

amount to true Mendelian disorders, or whether ERG

haploinsufficiency may contribute, as a risk factor, to different

human phenotypes in conjunction with other (common)

variants. The answer to this question will require the compilation

and characterization of additional individuals with germline ERG

variants. The authors actively seek additional cohorts and

collaborations to collect further pathogenic ERG variants.

Researchers are encouraged to contact the corresponding author.
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