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Objectives: Quantitative coronary angiography (QCA) has significantly contributed
to the diagnosis of coronary artery disease. This study aimed to construct and
validate a QCA-based prediction model, represented as a nomogram, for
predicting ischemic lesions defined by invasive fractional flow reserve (FFR)≤0.80.
Methods: In thismulti-centre study,weenrolled 220patientswith 303 interrogated
vessels who underwent FFR measurements during clinically indicated invasive
coronary angiography. QCA predictors for ischemic lesions were extracted to
construct a nomogram model using Least Absolute Shrinkage and Selection
Operator (LASSO) regression analysis of the development set (n= 113 patients).
An external validation (n= 107 patients) was performed to assess the nomogram
model’s discrimination and consistency.
Results: Lesion length, minimal lumen diameter, stenosis flow reserve, percent
diameter stenosis by visual estimation, and weight were included as predictors in
the nomogram. The nomogram yielded an area under the curve (AUC) of 0.922
and 0.912 at per-vessel and per-patient levels, respectively, in the development
set. In the validation set, it achieved an AUC of 0.915 and 0.912 at per-vessel and
per-patient levels, respectively. Per-vessel accuracy, sensitivity, and specificity
derived from the nomogram were 86.5%, 88.2%, 86.2% in the development
cohort and 84.2%, 85.5%, and 83.1% in the validation cohort. For per-patient
analysis, the corresponding values were 85.8%, 85.7%, 86.0% in the development
cohort and 82.2%, 83.3%, 81.1% in the validation cohort.
Conclusion: The nomogram may be useful for predicting ischemic lesions using
QCA measurements and the LASSO regression algorithm, with external
validation indicating potential predictive value in cardiology care settings.
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GRAPHICAL ABSTRACT

Development and external validation of a nomogram prediction model based on quantitative coronary angiography for predicting ischemic lesions: A
multi-centre study.

1 Introduction

Atherosclerotic cardiovascular disease continues to be the

leading cause of morbidity and mortality worldwide, despite

significant improvements over the past few decades (1). The

fractional flow reserve (FFR) measured during invasive coronary

angiography (ICA) is currently considered the reference standard

for the diagnosis of hemodynamically significant coronary

stenosis (ischemic lesions) (2, 3). Prior studies had shown that

the implementation of FFR-guided coronary intervention

strategies can enable both a reduction in stent overuse and a

significant improvement in long-term prognosis (3–7).

With the advancement of medical digital imaging and

communication technology and new contour detection algorithms,

quantitative coronary angiography (QCA), as an objective and high

reproducibility computer-assisted technique, has made significant

contributions to disease diagnosis and clinical decision-making by

providing accurate measurements of each parameter and facilitating

the effective evaluation of treatment efficacy (8–10). According to

Academic Research Consortium-2 (11) and Japanese Association of

Cardiovascular Intervention and Therapeutics (12) clinical expert

consensus documents, the cardiovascular medical team was

suggested to utilize QCA analysis to assess the anatomical structure

of coronary stenosis and predict myocardial ischemia in conjunction

with clinical data. In recent years, several hemodynamic parameters

derived from QCA like stenotic flow reserve (SFR) and the ratio of

lesion length to the fourth power of the minimal lumen diameter

(LL/MLD4) have been confirmed to be associated with ischemic

lesions (13, 14).

Accordingly, the aim of this study was to identify major risk

predictors that correlate with ischemic lesions from QCA-derived

parameters or demographic parameters. More importantly, we

seek to construct and validate a diagnostic prediction model

displayed as a novel nomogram to calculate individualized

predictions of ischemic lesions risk defined by invasive FFR≤ 0.80.

2 Methods

2.1 Study design and population

The study is amulti-centre trial designed to develop and validate a

predictive model and evaluate the diagnostic accuracy of QCA-based

model in identifying hemodynamically significant coronary artery

disease (CAD) as defined by invasive FFR reference standard

(Graphical abstract). This study received approval from the local

institutional review boards at each participating centre. All

prospectively enrolled patients provided individual informed

consent, while consent was waived for the anonymized analysis of

retrospective data. We prospectively enrolled 178 patients with

Abbreviations

AUC, area under the curve; CAD, coronary artery disease; DSQCA, QCA-derived

diameter stenosis; DSVE, diameter stenosis by visual estimation; FFR, fractional

flow reserve; ICA, invasive coronary angiography; ICC, intra-class correlation

coefficient; LAD, left anterior descending; LASSO, least absolute shrinkage

and selection operator; LL, lesion length; MLD, minimal lumen diameter;

NPV, negative predictive value; PPV, positive predictive value; QCA,

quantitative coronary angiography; SFR, stenotic flow reserve.
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suspected or known CAD at two tertiary centres in Singapore from

September 2016 to October 2020 and retrospectively included 142

patients in China from January 2014 to December 2021. Patients

who underwent ICA and FFR measurements and had at least one

stenosis with percent diameter stenosis by visual estimation (DSVE)

between 30% and 90% were included in this study for QCA

analysis. Patients were not eligible if they had a history of coronary

artery bypass grafting, myocardial infarction within 72 h of

coronary angiography or severe heart failure (left ventricular

ejection fraction <30%). Angiographic exclusion criteria were as

follows: poor-quality coronary angiograms that precluded contour

detection; interrogated vessels with in-stent restenosis; left main

coronary artery disease; tight stenosis or tortuosity that prevented

the FFR wire from crossing the lesion; severe vessel overlap or

tortuosity at the stenotic segments; luminal reduction caused by

myocardial bridge; and severe aortic stenosis and/or donor vessels

supplying significant collaterals to chronic total occlusion vessels.

Finally, the study included 220 patients with 303 interrogated

vessels. Among the included participants, 113 patients with 170

vessels from Singapore were selected to develop the nomogram

model, while the remaining 107 patients with 133 vessels from

China were used to validate the model. The flowchart depicting

the recruitment process and research design is shown in Figure 1.

2.2 ICA and FFR measurements

ICA and FFR measurements were performed according to

standard guidelines (15) and the institutional protocol. FFR

measurements, using the pressure wire provided by St. Jude Medical

and ACIST Navvus, were conducted at least three times, with the

lowest recorded value for each vessel being assessed (16). Each

patient received adenosine intravenously (140–180 μg/kg/min) or

through an intracoronary bolus (60–200 μg) to induce maximal

hyperemia. A diagnosis of hemodynamically significant coronary

stenosis was based on an invasive FFR value of ≤0.80.

2.3 Quantitative coronary angiography

The QCA analyses were conducted in a core catheterization

laboratory using Qangio XA (version 7.3, Medis Medical Imaging

System BV, Leiden, The Netherlands), with the analysts blinded to

the ICA and FFR results. All QCA analyses were captured during

the end-diastolic phase of the heart cycle, ensuring minimal

movement of the target coronary vessel within the frame. For

sequential lesions, the lesion with the highest degree of stenosis was

selected to represent the vessel. A single frame was selected from the

best available projection with the least foreshortening and overlap

with other structures, demonstrating the most severe lumen

narrowing. Calibration was performed using the catheter tip (16).

Following the determination of a proximal start point and a distal

end point of the coronary segment of interest, a vessel pathline was

created, extending from the proximal to distal points. Subsequently,

the vessel contour was automatically detected in accordance with

the pathline. Both the pathline and vessel contour can be manually

corrected as necessary.

2.4 Extraction of QCA features and
demographic characteristics

The QCA analyses produced a series of parameters, encompassing

morphological, plaque characteristic, and hemodynamic aspects

(Figure 2). The major morphological parameters obtained through

QCA included: (1) Lesion length (LL): the distance from the

proximal lesion-free segment to the distal lesion-free segment;

(2) Reference diameter and area: computer-generated estimates of

FIGURE 1

Flowchart of patient recruitment and study design.

Yang et al. 10.3389/fcvm.2025.1550550

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1550550
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


the diameter and area at the site of lumen stenosis, assuming the

absence of atherosclerotic lesions; (3) Minimal lumen diameter

(MLD) and minimal lumen area: the minimum diameter and

cross-sectional area measured at the site of maximal stenosis;

(4) Diameter stenosis (DSQCA, %): calculated as [1—(MLD/

reference lumen diameter)] × 100%; and (5) Area stenosis:

calculated as [1—(minimal lumen area/reference lumen area)] × 100%.

The extracted plaque characteristic parameters were as

follows: (1) Plaque area: the plaque area within lesion length;

(2) Plaque symmetry: the ratio between the plaque areas on

both sides in a two-dimensional plane at the interrogated

lesion, ranging from 0 (indicating complete asymmetry) to 1

(representing complete symmetry).

The following hemodynamic parameters extracted were obtained

through QCA: (1) LL/MLD4: ratio of LL to the fourth power of MLD;

(2) Poiseuille resistance and turbulent resistance: the laminar and

turbulent resistance to blood flow through the stenosis, respectively;

(3) Stenotic flow reserve (SFR): the hemodynamic consequence of

a stenosis (14) based on the assumption of a quadratic relationship

between flow and pressure drop (across the stenotic region).

Detailed lesion characteristics assessed by QCA and their

definitions/descriptions are provided in Supplementary Table S1.

Clinical measurements and essential demographic

characteristics, considered as potential risk predictors, were

reviewed from electronic medical records. These included age,

sex, height, weight, body mass index, blood pressure, symptoms

of angina, and risk factors such as hypertension, diabetes,

hyperlipidemia, current smoking, and family history of CAD.

Additionally, the degree of stenosis by ICA (DSVE) was also

considered an important morphological parameter.

In total, 29 parameters were extracted, including 13

demographic parameters (Table 1), 15 QCA features (Table 2

and Supplementary Material), and 1 ICA parameter (DSVE).

2.5 Feature selection and prediction
model building

The Least Absolute Shrinkage and Selection Operator

(LASSO) regression was utilized to identify the most valuable

FIGURE 2

Overall flow chart of the study, including image acquisition and quantitative analysis, feature extraction, feature selection, nomogram model
construction, and evaluation.
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features in the development set (Figure 2). The LASSO algorithm

was implemented using the “glmnet” package in R software

(version 4.2.1, R Project for Statistical Computing, Vienna,

Austria). To determine the optimal penalty parameter (l),

a ten-fold cross-validated was performed. The value of l

corresponding to the most regularized and parsimonious model

within one standard error of the minimum was selected (17).

This l was then applied in the LASSO model to compute the

regression coefficients for each feature. Features with non-zero

coefficients were selected for subsequent logistic regression

analysis to assess their associations with functional coronary

ischemia, following Harrell’s guidelines. Collinearity of each

selected variable by LASSO regression was diagnosed using

the variance inflation factor, and variables with variance

inflation factor >5 indicated significant multicollinearities (18).

A nomogram visualizing the logistic regression model was

constructed to predict the probability of functional coronary

ischemia (Figure 2). This provides clinicians with an intuitive

and quantitative method to identify suspected CAD patients with

functionally significant stenosis.

According to coefficients in the nomogram model, the

predicted probability of functionally significant coronary stenosis

can be calculated using the following formula:

P(Functionally Significant Coronary Stenosis)

¼
1

1þ exp(�(b0 þ b1x1 þ b2x2 þ � � � þ bnxn))

where b0, b1, b2, . . . , bn are the coefficients corresponding to

the intercept and the respective variables in the final logistic

regression model; x1, x2, . . . , xn are the observed values of

those variables.

A flowchart illustrating the LASSO model training, validation,

and performance evaluation process is provided in Supplementary

Figure S1.

2.6 Development and validation sets

Datasets from two hospitals in Singapore constituted the

development cohort, while datasets from one hospital in China

were designated as an external validation cohort to assess the

generalizability of the prediction model.

2.7 Reliability

For reliability assessment, a random sample of 50 patients with 50

coronary lesions was re-analyzed by the same observer at least one

month after the initial assessment, and it was independently

assessed by another observer. To evaluate both intra- and inter-

observer reliabilities, intraclass correlation coefficients (ICCs) were

calculated for each potential parameter. Following Landis and

Koch’s criteria, ICC values were categorized as follows: excellent

agreement (ICC≥ 0.75), good agreement (0.6≤ ICC < 0.75),

moderate agreement (0.4≤ ICC < 0.6), and poor agreement

(ICC < 0.40) (19).

TABLE 1 Clinical characteristics of study subjects in the development
cohort and validation cohort.

Variable Development
(n= 113)

Validation
(n= 107)

P

value

Age, years 60.0 ± 9.2 65.5 ± 8.5 <0.001

Female 31 (27.4) 32 (28.8) 0.816

Weight, kg 72.1 ± 16.4 65.0 ± 12.4 <0.001

Height, m 1.65 ± 0.09 1.64 ± 0.08 0.667

Body mass index, kg/m2 26.3 ± 4.8 23.9 ± 3.6 <0.001

Systolic blood pressure,

mmHg

134.6 ± 18.0 134.4 ± 19.4 0.931

Diastolic blood pressure,

mmHg

76.8 ± 10.2 76.7 ± 12.0 0.939

Hypertension 70 (61.9) 69 (64.5) 0.696

Hyperlipidemia 71 (62.8) 19 (17.8) <0.001

Diabetes Mellitus 32 (28.3) 13 (12.1) 0.003

Current smoker 26 (23.0) 38 (35.5) 0.056

Symptoms with angina 60 (53.1) 58 (54.2) 0.869

Family history of CAD 12 (10.6) 20 (18.7) 0.090

Values are mean ± SD or n (%). CAD, coronary artery disease.

TABLE 2 Characteristics of interrogated vessels in the development
cohort and validation cohort.

Lesion
characteristics

Development
(n= 170)

Validation
(n = 133)

P

value

Anatomical parameters

Reference diameter, mm 2.8 ± 0.6 2.9 ± 0.6 0.303

Reference area, mm2 6.5 ± 2.8 6.8 ± 3.0 0.347

Minimal lumen diameter,

mm

1.3 ± 0.5 1.4 ± 0.5 0.115

Minimal lumen area,

mm2

1.5 ± 1.3 1.7 ± 1.2 0.327

Lesion length, mm 20.0 ± 11.0 14.3 ± 6.4 <0.001

Inflow angle, deg 12.8 ± 7.4 17.3 ± 8.6 <0.001

Outflow angle, deg 12.0 ± 7.7 13.5 ± 7.4 0.078

Area stenosis, mm2 76.6 ± 14.1 76.1 ± 10.9 0.765

Plaque parameters

Plaque symmetry 0.6 ± 0.3 0.6 ± 0.3 0.437

Plaque area 13.0 ± 8.0 9.9 ± 6.0 <0.001

Hemodynamic Parameters

Turbulent resistance 16.4 ± 45.7 4.4 ± 10.1 0.001

Poiseuille resistance 5.9 ± 10.5 2.1 ± 2.7 <0.001

SFR 3.0 ± 1.3 3.3 ± 0.9 0.02

LL/MLD4, mm−3 47.7 ± 117.7 11.8 ± 19.6 <0.001

FFR 0.80 ± 0.14 0.81 ± 0.11 0.345

Vessels with FFR ≤0.80 76 (44.7) 61 (45.9) 0.841

Diameter stenosis of lesion, %

DS by visual estimation

(DSVE)

61.4 ± 18.3 71.6 ± 11.0 <0.001

DS by QCA (DSQCA) 54.0 ± 14.8 52.4 ± 11.0 0.284

DSVE≥ 70% 77 (45.3) 97 (72.9) <0.001

DSQCA≥ 50% 95 (55.9) 78 (58.6) 0.629

Continuous variables are presented as mean ± SD or n (%). LL/MLD4, the ratio of lesion

length to the fourth power of the minimal lumen diameter; DS, diameter stenosis; QCA,

quantitative coronary angiography; FFR, fractional flow reserve; SFR, stenotic flow reserve.
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2.8 Statistical analysis

Continuous variables were expressed as mean with standard

deviation, and categorical variables were presented as counts and

percentages. Student’s t-test or one-way analysis-of-variance was

employed for normally distributed variables, while the nonparametric

Mann–Whitney U test was used for non-normally distributed

variables. Binary variables were compared using the chi-squared test.

Receiver operating characteristic curve for the nomogram

model was generated at the vessel level in both the development

and validation sets. The probability of ischemic lesions for each

patient was calculated based on the nomogram. Sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), and accuracy were determined using the optimal

threshold of the probability of ischemic lesions.

The Hosmer-Lemeshow test was used to assess the diagnostic

consistency of the model and to create smooth-fitting curves

that compare actual and predicted probabilities. A P value >0.05

indicated good agreement between the new model and

standard diagnostic criteria. Calibration curves were plotted to

demonstrate the consistency between predicted and actual

probabilities of ischemic lesions (20). Decision curve analysis was

utilized to determine the net benefit for patients at each

threshold probability, assessing the utility and clinical value of

predictive nomograms (21).

Two-sided P values < 0.05 were considered statistically

significant. All analyses were conducted using IBM SPSS version

23.0 (SPSS Inc., Chicago, USA), MedCalc software version 20.100

(MedCalc Software Ltd, Ostend, Belgium), and R software

version 4.2.1 (R Project for Statistical Computing, Vienna,

Austria). The “rms” package of R software was employed to

construct the nomogram and plot the calibration (Figure 2).

Analyses were conducted both on a per-vessel basis and on a

per-patient basis. For the per-patient analysis, the vessel with the

most adverse clinical status (indicated by the minimum FFR and

highest diameter stenosis) was chosen to represent each patient.

3 Results

3.1 Baseline patient and lesion
characteristics

The clinical characteristics of the patients in the development

cohort and external validation cohort are detailed in Table 1.

The mean age of patients in the development cohort and the

validation cohort was 60.0 ± 9.2 and 65.5 ± 8.3, respectively; 31

(27.4%) were women in the development cohort, and 32 (28.8%)

in the validation cohort. The development group had a higher

prevalence of hyperlipidemia and diabetes, higher body mass

index, weight, and younger age compared to the validation

group. The other baseline characteristics of the patients were

similar between the development and validation groups.

Table 2 lists the characteristics associated with interrogated

vessels in both the development and validation cohorts. The

interrogated vessels in both cohorts exhibited similar MLD,

DSQCA, SFR, and invasive FFR. FFR of ≤0.80 was measured in

76 vessels (45%) and 61 vessels (46%) in the development and

validation cohorts, respectively.

3.2 Feature selection and model
construction

This study was designed based on the Transparent Reporting of

a Multivariable Prediction Model for Individual Prognosis or

Diagnosis (TRIPOD) guidelines (22). From the pool of 29

candidate features in the development cohort, the LASSO

algorithm generated a total of 5 feature parameters with non-

zero coefficients. These parameters included DSVE, weight, and

3 QCA-derived features (MLD, LL, SFR) (Figure 3 and

Supplementary Table S2). Supplementary Figure S2 illustrates the

generation of the optimal penalization coefficient lambda. Based

on these results, we constructed a nomogram model to predict

functionally significant coronary stenosis (Figure 3A).

3.3 Diagnostic performance of nomogram
model for identifying significant stenosis

As shown in Figure 4A, in the development population, the

vessel-level analysis demonstrated that the nomogram model

exhibited discriminative ability to predict ischemic lesions with

an area under the curve (AUC) of 0.922 (95% CI, 0.871–0.958).

This performance was significantly higher than that of DSVE

(P = 0.005). In the validation population, the AUC for the

nomogram model was also significantly larger than for DSVE

(0.915 vs. 0.790, P < 0.0001, Figure 4B). Similar results were

observed in the patient-level analysis in both the development

and external validation populations (Supplementary Figure S3).

The predicted probability can be calculated using following

formula: Probability = 1/(1 + exp(−(−0.021 + 0.057 × LL (mm)—

1.291 ×MLD (mm) + 0.076 × DSVE (%)−0.566 × SFR

−0.039 × weight (kg)))). The risk probability of 0.5 was calculated

as the cutoff value to identify physiologically significant coronary

stenosis. In the development population, per-vessel diagnostic

sensitivity and specificity were significantly larger with the

nomogram model than that with DSVE≥ 70% (sensitivity: 88.2%

vs. 78.9%; specificity: 86.2% vs. 81.9%). The diagnostic accuracy,

PPV, and NPV of the nomogram model were 86.5%, 83.5%, and

89.0%, respectively, which were also significantly higher than

DSVE≥ 70% (Table 3). In the validation population, the

diagnostic sensitivity of the nomogram model was slightly lower

than that of DSVE≥ 70% (sensitivity: 85.5% vs. 87.1%). However,

specificity, accuracy, PPV, and NPV of the nomogram model

significantly outperformed DSVE≥ 70% (83.1%, 84.2%, 81.5%,

and 86.7% vs. 38.0%, 60.9%, 55.1% and 77.1%, respectively).

Additionally, in the development population, the nomogram

model exhibited per-patient diagnostic sensitivity and specificity

of 85.7% (95% CI, 76.0–92.9%) and 86.0% (95% CI, 72.6–93.7%),

respectively, which were significantly larger than those of

DSVE≥ 70%. Moreover, the nomogram model demonstrated
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higher accuracy, PPV, and NPV compared to DSVE≥ 70%. Patient-

level analysis revealed similar diagnostic accuracy in the validation

population (Supplementary Table S3).

To assess the model’s performance across different coronary

territories, we conducted a subgroup analysis comparing lesions

in the left anterior descending (LAD) artery vs. non-LAD vessels.

In the development cohort, the model achieved an AUC of 0.955

(95% CI, 0.892–0.986) for LAD lesions and 0.901 (95% CI,

0.808–0.959) for non-LAD lesions. Similarly, in the validation

cohort, the AUC was 0.935 (95% CI, 0.863–0.976) for LAD and

0.919 (95% CI, 0.794–0.980) for non-LAD vessels. These results

indicate that the model maintained strong and comparable

discriminatory performance across both LAD and non-LAD

territories in both cohorts (Supplementary Figure S4).

For vessel-level analysis, the calibration curves demonstrated

good consistency between the predicted and actual probabilities

of functionally significant stenosis for the nomogram model in

both the development and validation cohorts (Figures 3B,C).

Similarly, at the patient level, good calibration curves for risk

estimation were observed in both the development and validation

cohorts (Supplementary Figure S5). Meanwhile, the Hosmer-

Lemeshow test indicated that the nomogram was well-fitted,

showing no significant differences (all P > 0.05).

3.4 Decision curve analysis

Decision curve analysis was employed to assess the utility of

different predictive models by calculating the clinical net benefit

at various probability thresholds. In Supplementary Figure S6,

the decision curve analysis curve demonstrates that the predictive

nomogram (the green line), derived from the development

set, exhibits higher net benefits compared to DSVE when the

probability threshold of ischemia ranges from 10%–80% in both

FIGURE 3

Nomogram and calibration performance of the model for predicting functionally significant stenosis. (A) Nomogram to estimate the risk of functionally
significant stenosis in patients with suspected or known CAD. To use the nomogram, find the position of each variable on the corresponding axis, draw
a line to the points axis for the number of points, add the points from all of the variables, and draw a line from the total points axis to determine the
ischemic lesions probabilities at the lower line of the nomogram; The calibration curve of the nomogram model in estimating the risk of ischemic
lesions in the (B) development cohort and (C) validation cohort. CAD, coronary artery disease; DS%, percent diameter stenosis; SFR, stenotic flow
reserve; VE, visual estimation.
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the development and validation sets. This holds true for both

the treat-all-patients and treat-none schedules. These findings

indicate that the nomogram model is a reliable clinical tool for

predicting functionally significant coronary stenosis.

3.5 Reliability

The ICC values for QCA parameter analysis indicated that 14

parameters exhibited excellent correlation, 4 demonstrated good

correlation, 5 showed moderate correlation, and only 1 exhibited

poor correlation for intra-observer reliability. Similarly, for

inter-observer reliability, 7 parameters demonstrated excellent

correlation, 9 exhibited good correlation, 5 demonstrated

moderate correlation, and only 2 showed poor correlation. More

importantly, the ICC values for the three QCA parameters in the

predictive model—MLD, LL, and SFR—showed excellent intra-

and inter-observer reliability with correlation coefficients of

0.94, 0.82, and 0.92, and 0.90, 0.76, and 0.84, respectively

(Supplementary Table S4).

4 Discussion

In this multi-centre study, we observed that a nomogram

model, constructed using QCA-derived parameter features,

exhibited superior performance in identifying hemodynamically

significant coronary stenosis defined by invasive FFR≤ 0.80. In

both the development cohort and the external validation cohort,

the diagnostic accuracy at both the vessel and patient levels was

significantly higher than that achieved with traditional DSVE

based on visual assessment, yielding notable insights into the

potential clinical utility of the nomogram.

Angiographic physician visual assessment, being the most

common method, has been routinely employed to determine

stenosis severity and guide revascularization interventions (16).

According to the 2021 ACC Guideline for Coronary Artery

Revascularization, visually estimated DS severity of ≥70% for

non-left main disease has been used to identify significant

stenosis and guide revascularization strategy (23). An

angiographically intermediate coronary stenosis is defined as a

DS severity ranging from 40%–69%, often requiring additional

investigation to determine physiological significance. However, it

can be challenging to ascertain on the coronary angiogram,

through simple visual assessment, which lesions cause ischemia.

FIGURE 4

Comparison of vessel-level diagnostic performance in discriminating functionally significant stenosis: (A) development cohort, and (B) validation
cohort. The AUCs of the nomogram model were both significantly higher than that of DS% (VE). AUC, areas under the receiver operator
characteristics curve; DS%, percent diameter stenosis; QCA, quantitative coronary angiography; VE, visual estimation.

TABLE 3 Per-vessel diagnostic accuracy of nomogram model, and DSVE in
the development and validation sets.

Cohort Metric Nomogram model risk
score ≥0.5

DSVE ≥70%

Development

cohort

Accuracy 86.5 (80.5–90.9) 80.6 (74.0–85.9)

Sensitivity 88.2 (78.2–94.1) 78.9 (67.8–87.1)

Specificity 86.2 (77.2–92.1) 81.9 (72.3–88.8)

PPV 83.5 (73.1–90.6) 77.9 (66.8–86.3)

NPV 89.0 (80.3–94.3) 82.8 (73.3–89.6)

Validation

cohort

Accuracy 84.2 (77.0–89.5) 60.9 (52.4–68.8)

Sensitivity 85.5 (73.7–92.7) 87.1 (75.6–93.9)

Specificity 83.1 (71.9–90.6) 38.0 (27.0–50.4)

PPV 81.5 (69.6–89.7) 55.1 (44.7–65.1)

NPV 86.7 (75.9–93.4) 77.1 (59.4–89.0)

Metrics are expressed as percentage (95% confidence interval).

DSVE, diameter stenosis by visual estimation; PPV, positive predictive value; NPV, negative

predictive value.
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Reports indicate high frequencies of visual-functional mismatch

between angiography and invasive FFR, signifying inaccuracy in

assessing the functional significance of coronary stenosis, not

only in the 50% to 70% category but also in the 70% to 90%

angiographic severity category (24, 25). Similarly, prior studies

(26–28) have demonstrated substantial discrepancies between

DSQCA≥ 50% and physiological significance confirmed by

invasive FFR≤ 0.8. Therefore, it is reasonable to hypothesize that

incorporating lesion geometry and physiological blood flow is

more accurate in diagnosing ischemic lesions than relying solely

on anatomical stenosis. The results of this study did indeed

support our supposition.

To the best of our knowledge, this study is the first to apply the

LASSO regression algorithm to select features and construct a

nomogram model based on QCA for identifying ischemic

lesions. The LASSO regression parameter selection algorithm is a

crucial component of machine learning under artificial

intelligence. Unlike other statistical modeling methods, the

LASSO procedure enables compression estimation through a

shrinkage property, leading to more stable variable selection and

improved prediction accuracy and model interpretation (29–31).

In this study, 29 candidate QCA-derived and demographic

features were reduced to 5 potential predictors by evaluating the

predictor-outcome association and applying the LASSO method

to shrink the regression coefficients. This approach is more

effective than selecting predictors solely based on their

univariable association with the outcome (29, 30).

Among the QCA-based parameters, LL, MLD, and SFR were

selected using LASSO. A study by Yong et al. (31) revealed a

moderate correlation between 2-dimensional QCA parameters, such

as MLD and minimal lumen area, with invasive FFR. SFR, denoting

coronary flow reserve at a specific aortic pressure in the presence

of stenosis, is calculated as the maximal to resting flow ratio based

on Poiseuille’s law of fluid dynamics. This parameter has

demonstrated close associations with ischemia, as assessed through

pharmacological stress echocardiography and perfusion imaging

(32, 33). In the evaluation by Potter et al. (14), SFR exhibited

modest predictive value for functionally significant coronary

stenosis, as determined by invasive FFR. Nevertheless, the accuracy

of these QCA features remains uncertain when externally validated

in patients from different centres. In this study, we not only

constructed a nomogram model incorporating several QCA-derived

features to identify physiologically significant coronary stenosis

but also externally validated the feasibility and accuracy of this

nomogram, yielding excellent results. Notably, there was no

significant difference in the diagnostic performance of the

nomogram model in discriminating hemodynamically significant

lesions in the development and validation cohorts (AUC 0.922 vs.

0.915, P > 0.05), underscoring its robustness and generalizability. It

is noteworthy that the external validation cohort was derived from a

real-world dataset obtained from a large-scale hospital. This is a

crucial step in ensuring that the model’s performance holds in

diverse patient populations and clinical settings, reinforcing its

applicability beyond the development cohort.

The construction of the nomogram represents a practical and

user-friendly application of the study’s findings. By converting

complex regression coefficients into a visual tool, clinicians can

readily estimate individualized probabilities of functionally

significant coronary stenosis. Additionally, the nomogram’s

reliability was assessed through intra- and inter-observer reliability

analyses, demonstrating excellent correlation for key QCA

parameters (MLD, LL, and SFR). This underscores the

reproducibility and consistency of the nomogram model in different

clinical settings. The nomogram’s potential impact on clinical

decision-making is underscored by its superior performance in

decision curve analysis. The consistently higher net benefits across

various probability thresholds indicate that the nomogram could

provide valuable guidance in determining the need for further

diagnostic and therapeutic interventions.

The developed model serves as a valuable adjunct to traditional

assessment methods, including FFR, rather than a complete

replacement. Its primary utility lies in providing a comprehensive

risk stratification tool that integrates multiple imaging and

clinical parameters to identify patients at higher risk for

significant coronary artery disease. In routine catheterization

laboratory practice, the model can assist clinicians in several key

ways. First, it supports clinical decision-making by evaluating

lesion characteristics and predicting ischemic potential, thereby

helping to prioritize which lesions warrant FFR assessment and

which may be managed conservatively. Second, by identifying

low-risk cases, the model has the potential to reduce unnecessary

FFR testing, enhancing workflow efficiency and conserving

resources. Lastly, it facilitates more personalized treatment

planning by enabling tailored strategies based on individual risk

profiles, which may contribute to improved patient outcomes

through more targeted interventions.

This study has limitations. First, vessels with in-stent restenosis

or side branches of bifurcation lesions with Medina type 1,1,1 were

not assessed. Further research is needed to assess the

generalizability of this nomogram model to the side branches of

coronary bifurcation lesions. Second, this analysis was based on

data from three institutions, which were primarily high-volume

ICA centres. Additional centres with larger sample sizes are

warranted to further validate the results. Third, the difference in

QCA availability between the development and validation

cohorts is primarily due to the nature of data collection. The

development cohort was part of a prospective study, where QCA

acquisition was pre-specified and systematically performed,

resulting in near-complete data (only one case excluded). In

contrast, the validation cohort was retrospective, and QCA data

were not consistently available due to factors such as suboptimal

image quality, incomplete data, presence of myocardial bridges,

in-stent restenosis, and vessel overlapping and foreshortening. As

a result, approximately 21% of patients in the validation cohort

were excluded from QCA-based analyses. Fourth, in this study,

the decision to proceed with FFR was made at the discretion of

the interventionalist, based on the severity of stenosis, lesion

characteristics, and clinical judgment. Patients with clearly non-

significant or clearly severe stenoses—where FFR was deemed

clinically unnecessary—were not subjected to FFR, resulting in a

larger number of patients without FFR measurements,

particularly in the development cohort. Fifth, future research
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avenues may explore the incorporation of additional QCA-derived

parameters or the refinement of the model based on evolving

technology and clinical insights. Long-term prospective studies

could further elucidate the nomogram’s impact on patient

outcomes and its potential role in optimizing treatment

strategies. Finally, this study did not include a comparison with

the instantaneous wave-free ratio, a widely used non-hyperemic

pressure index for assessing CAD.

5 Conclusions

Our study introduces a novel nomogram model based on QCA-

derived parameters for predicting FFR-defined coronary ischemia.

The model, validated externally, demonstrates superior diagnostic

performance compared to traditional visual diameter assessment.

By combining lesion geometry and physiological blood flow

parameters, the nomogram provides a nuanced and personalized

approach to predicting FFR-defined coronary ischemia.
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