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cMyBP-C in hypertrophic
cardiomyopathy: gene therapy
and small-molecule innovations
Patrick T. Wood1*, Morgan M. Seffrood2, Brett A. Colson2 and
Julian E. Stelzer1

1Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University,
Cleveland, OH, United States, 2Department of Cellular & Molecular Medicine, University of Arizona,
Tucson, AZ, United States
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by
variants in sarcomeric proteins that disrupt myocardial function, leading to
hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on
the precise coordination of thin and thick filament proteins that control the
timing, magnitude of cellular force generation and relaxation, and in vivo
systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin
binding protein C (cMyBP-C) play a crucial role in myocardial contractile
function by modulating actomyosin interactions. Genetic variants in cMyBP-C
are a frequent cause of HCM, highlighting its importance in cardiac health.
This review explores the molecular mechanisms underpinning HCM and the
rapidly advancing field of HCM translational research, including gene therapy
and small-molecule interventions targeting sarcomere function. We will
highlight novel approaches, including gene therapy using recombinant AAV
vectors and small-molecule drugs targeting sarcomere function.
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1 Introduction

Heart disease is a major health challenge in the United States, contributing to millions

of hospitalizations and accounts for 1 in every 5 deaths annually (1). Among the various

forms of heart disease, hypertrophic cardiomyopathy (HCM) is the most common genetic

cardiomyopathy, affecting approximately 1 in 500 people in the U.S (2). GWAS studies

have shown that HCM is an autosomal dominant disease caused by one or more

genetic variants in sarcomeric proteins (3–7). Alterations to sarcomere proteins result in

either a gain or loss of function at the cellular level. This leads to dysregulation in the

precise coordination of cardiac contraction and relaxation at the whole organ level.

Clinically, HCM presents as a heterogeneous phenotype that leads to variable degrees

of cardiac remodeling (8–10). Common features of HCM include asymmetrical thickening

of the left ventricular (LV) wall, hyperdynamic systolic performance, and a preserved or

elevated left ventricular ejection fraction (LVEF) (10, 11). HCM is defined as either

non-obstructive (nHCM), or obstructive (oHCM) depending on the severity of

hypertrophy and the degree of left ventricular outflow tract obstruction (LVOTO), with

the majority of patients with HCM experiencing LVOTO either at rest or during

movement (10, 12).
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Historically, therapeutic interventions such as beta-blockers

(b-blockers), and non-dihydropyridine calcium channel blockers

(CCBs) have been used to treat HCM symptoms by modulating

adrenergic and calcium signaling pathways to improve patient

quality of life (10, 13), but these therapies do not directly address

the underlying problem of pathogenic variants in sarcomeric

proteins (10, 14). Recent advances in therapeutic interventions

are shifting toward directly targeting the primary defects found

in altered sarcomere proteins to restore normal cardiac function

at the molecular level (13, 15). This emerging paradigm

highlights the growing interest in linking genotype to phenotype

and connecting basic research to clinical practice.
2 cMyBP-C regulates contraction

Cardiac sarcomeric function is governed by the complex

interaction of actin and myosin, in addition to several structural/

regulatory proteins, such as the troponin complex, tropomyosin,

and cardiac myosin binding protein C (cMyBP-C). These

proteins are highly regulated and modulate contractile function

in response to extracellular signaling (16). Numerous clinical

studies demonstrate that pathogenic genetic variants of the

myosin MYH7 gene or cMyBP-C MYBPC3 gene account for

roughly 80% of all genetic variants that result in HCM (3, 9, 17),

with MYBPC3 genetic variants being the most common (3, 18, 19).

Variants of MYBPC3 are a growing area of research due to its

regulatory role in the sarcomere [see reviews, (19, 20)]. Localized in

the C-zone of the A-band, cMyBP-C is anchored to the thick

filament and arranged to create nine regularly spaced stripes

∼42 nm apart (21, 22). The 140-kDa protein consists of 11

globular immunoglobulin and fibronectin-like domains (C0–

C10), with a flexible and phosphorylatable M-domain between

C1 and C2, a key regulatory region (23–25).

Under the control of β-adrenergic stimulation, cMyBP-C’s

phosphorylation is regulated to control pressure development

and relaxation in vivo (26). Unphosphorylated, cMyBP-C

preferentially binds to myosin and acts as a mechanical tether

that restrains the myosin heads of the thick filament (27–29).

In this state, the myosin heads are spatially restricted, reducing

their mobility and probability of interacting with actin, thus

slowing the rate of force generation (20, 26, 30). The

sequestration of the myosin heads is relieved via

phosphorylation of the N-terminal domains (NTDs) of cMyBP-

C, specifically at sites within the M-domain (20, 23, 31). The

phosphorylation sites are targeted by various kinases, including

protein kinase A (PKA), Ca2+/calmodulin-dependent protein

kinase II, protein kinase C (PKC), and protein kinase G (PKG)

allowing for precise adrenergic control over cardiac contraction

(23, 32–34). In response to exercise or stress where increased

cardiac output is necessary, phosphorylation of cMyBP-C

relieves the restriction of myosin and reduces the tethering of

cross-bridges via a reduction in cMyBP-C affinity for both

myosin subfragment 1 and 2 (S1, S2) and actin (25, 35–37).

The reduced constraint on myosin increases the probability of

cross-bridge formation and enhances the transition of
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cross-bridges to force-bearing states, thereby accelerating

contraction and increasing force generation (20, 26, 38, 39).

In vitro studies have also shown that specific regions of

cMyBP-C, particularly the C0-C2 region, also modulate force

generation (36, 40–42) by binding to the thin filament at low

calcium concentrations to displace tropomyosin, and activate the

thin filament (40, 43, 44). This way through interactions with

myosin, actin, or both, cMyBP-C provides a high level of fine-

tuning to cardiac contractility with a relatively low cMyBP-C to

myosin ratio (1:8) and cMyBP-C to actin ratio (1:12) (36, 45).
3 Pathogenic variants of MYBPC3 lead
to the development of HCM

In patients with MYBPC3-based HCM, the well-regulated control

of the sarcomere is lost due to genetic variants in the protein.

Pathogenic variants in MYBPC3 occur primarily in two forms:

nonsense and missense, both of which play distinct roles in the

development of HCM (9). The majority of pathogenic HCM-

causing MYBPC3 variants are heterozygous frameshift, nonsense, or

splice site variants (46, 47). These genetic variants result in the

introduction of premature termination codons in one allele and

theoretically result in the production of truncated cMyBP-C

protein, however, truncated cMyBP-C proteins have not been

observed in patient HCM cardiac tissue (47–49). Data from patient-

derived, MYBPC3-variant induced pluripotent stem cell

cardiomyocytes (iPSCMs) suggests that the MYBPC3 mRNA

transcript is degraded through nonsense-mediated RNA decay

resulting in protein haploinsufficiency (50). Reduction in cMyBP-C

protein expression disrupts the stoichiometric balance between

cMyBP-C, myosin, and actin in the sarcomere, leading to a loss of

regulation over cross-bridge formation, and force generation

(Figure 1) (19, 29, 48, 51). Patients with heterozygous MYBPC3

truncating variants can have a range of symptoms that develop over

their life span, while patients with homozygous MYBPC3 truncating

variants develop severe HF within the first year of life (52–54).

In contrast, pathogenic missense variants in MYBPC3 involve a

single nucleotide substitution that results in the replacement of one

amino acid with another in the protein (19, 55). Unlike truncating

variants that result in haploinsufficiency, pathogenic missense

variants typically lead to the production of full-length proteins

that can be incorporated into the sarcomere, resulting in a

dominant negative effect (19, 55). These variants impair cMyBP-

C’s ability to regulate actin/myosin interactions, however, the

exact mechanism of impairment may vary depending on where

in the protein the genetic variation is located (32, 56, 57). Some

variants may alter cMyBP-C’s structure to increase/decrease

actin/myosin binding while others may affect how the protein is

phosphorylated (32, 57–61). The example in Figure 2 highlights

how a theoretical variation in the NTD can cause a change in

protein structure, leading to increased cMyBP-C/actin binding

and decreased cMyBP-C/myosin binding. Due to the low

population frequency of missense variants, it is difficult to

interpret how patients may develop disease and respond to

treatments. This has led to a rise in novel molecular and
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FIGURE 1

cMyBP-C haploinsufficiency-based HCM. In this form of disease, genetic variations in MYBPC3 result in prematurely truncated cMyBP-C protein.
Reduction in cMyBP-C expression disrupts the stoichiometric balance between cMyBP-C, myosin, and actin in the sarcomere resulting in
dysregulation of sarcomere contractility. Gene therapy using AAV9 aims to restore cMyBP-C levels to normal and mechanistically slow shortening
velocity and increase thin filament drag. In vivo, this normalizes rates of pressure development and systolic ejection times, thereby improving
systolic ejection and diastolic filling.
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computational screens that can be used to improve individualized

patient care (58, 59, 62).
4 Emerging treatments for heart failure
and HCM

Treating HCM is difficult, in part, due to disease heterogeneity

and long patient histories with several potential confounding

variables. Current treatment strategies focus on relieving

symptoms of HCM and improving patient quality of life through

the use of pharmaceuticals with negative inotropic and

chronotropic effects (10). Current AHA/ACC guidelines for the

treatment of HCM suggest using non-vasodilating b-blockers

first, followed by non-dihydropyridine CCBs (10). At the

molecular level, b-blockers and CBCs decrease systolic function

by blocking signaling pathways, inhibiting PKA, and decreasing

intracellular calcium levels in cardiac myocytes to reduce

contractility (63, 64). Due to their indirect mechanism of action,

these drugs have several off-target side effects and do not

specifically address genetic variants in sarcomeric proteins that a

patient may have (65, 66).

Recent therapeutic advances are changing the paradigm in the

treatment of HCM. The concept of direct modulation of the

sarcomere provides an alternative approach to minimize off-target

effects associated with indirect treatments (13, 15, 65). Unlike

therapies that focus on symptom relief, direct sarcomere

modulation addresses the regulation of contraction at the

mechanistic level to reduce hypercontractility. Current direct

modulation therapies for HCM treatment involve selective,

allosteric, small molecules that specifically modulate cardiac
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myosin to directly affect the probability of actin-myosin cross-

bridge formation (67–70). Drugs such as Mavacamten (MYK-461)

and Aficamten (CK-274) are currently undergoing clinical trials to

explore their effectiveness in treating and managing HCM (67, 68,

71). These novel therapeutics are first in class for the treatment of

HCM, but like any new therapy, they have their caveats.

Clinical trials for Mavacamten, PIONEER-HCM, EXPLORER-

HCM, and VALOR-HCM, were conducted on a limited patient

population with oHCM (66, 71–73). These patients did not

undergo genetic screening; leaving uncertainties about how

Mavacamten affects patients with MYBPC3 genetic variants or

other genetic variants. Studies using myocardium isolated from

cMyBP-C−/− knockout (KO) mice, noted that higher

concentrations of MYK-461 were required to achieve similar

degrees of force depression compared with WT myocardium (74)

suggesting genetic variants may play a role in the efficacy of

MYK-461. Furthermore, it remains unclear how patients with

other types of HCM, such as non-obstructive HCM (nHCM),

may respond to Mavacamten treatment. These limitations

ultimately reduce the utility of this drug to a smaller subset of

the population. To address the critical need for the development

of new therapies, there are currently two options under

investigation: gene therapy or small molecule therapy (62,

75–80). Both therapy options allow for a more personalized and

variant-specific approach to treatment.
5 Gene therapy for MYBPC3 variants

The goal of gene therapy is to correct sarcomeric variants that

drive the development of HCM by correcting haploinsufficiency,
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FIGURE 2

cMyBP-C missense variations in HCM. In this form of disease, genetic variations in MYBPC3 result in single nucleotide substitutions. These variations
can have a wide range of effects on cMyBP-C’s ability to regulate actin/myosin interactions. Small molecule (SM) therapy can revert hyper-contractility
to normal, by restoring cMyBP-C’s interactions with actin/myosin. This will have similar effects to in vivo function seen in Figure 1 table inset (right).
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engineering therapeutic proteins, or modifying the expression of

existing genes (81). There are several modalities of gene therapy

for treating genetic-based HCM, including gene replacement,

silencing, or editing.

For patients with truncation variants of MYBPC3, treatments

that involve increasing cMyBP-C protein expression have shown

promising results in small animal studies (82). Gene replacement

therapies use cardiac targeting expression vectors, such as AAV9

vectors, with cardiac-specific promotors to increase the amount

of cMyBP-C protein in the cardiomyocyte. This can be done

with full-length peptides or therapeutic cMyBP-C protein

fragments (Figure 1) (75, 77, 78, 83). Physiologically, in vivo

reintroduction of cMyBP-C protein has been shown to slow

shortening velocity in cMyBP-C −/− mice (83). At the molecular

level, increasing the amount of cMyBP-C protein or protein

fragments restricts myosin head availability, leading to the

normalization of cross-bridge kinetics and cycling (75, 77, 83).

Additionally, the reintroduction of protein or fragments has been

shown to restore cMyBP-C phosphorylation via β-adrenergic
Frontiers in Cardiovascular Medicine 04
stimulation (77). Restoration of cMyBP-C at the molecular level

translates in vivo to a normalized rate of pressure development

and systolic ejection time, thereby improving systolic ejection and

diastolic filling (75, 77, 83).

The first MYBPC3-based clinical trial to treat HCM patients

using a gene replacement technique is underway. The MyPeak-1

(Phase 1b) clinical trial started in 2023 to evaluate the safety and

clinical efficacy of an AAV gene replacement therapy “TN-201”

for pathogenic MYBPC3 variants related to HCM

(NCT05836259). The therapy is a one-time treatment using an

IV infusion of full-length MYBPC3 AAV. To be included in the

trial, patients must be diagnosed with HCM (oHCM or nHCM)

and have a LVEF >45%. Additionally, patients must undergo

genetic testing to confirm the presence of pathogenic or likely

pathogenic MYBPC3 truncating variants. During the 5-year

study, clinicians will monitor changes in patient RV cMyBP-C

protein levels, VO2-max, LV mass index, LV filling pressure, and

New York Heart Association functional class changes (80). The

goal is to halt disease progression or reverse symptoms over 5
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1550649
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wood et al. 10.3389/fcvm.2025.1550649
years. Interim data from Cohort-1 showed that a low dose of TN-

201 was well tolerated and the trial is currently recruiting patients

for a higher dose trial, however, further public data is limited at the

time of writing (80).

Other therapeutic options may be better suited for patients

with missense variants that result in full-length proteins with

negative effects. Under these conditions, gene replacement

therapy might not fully correct the HCM phenotype as the

missense variant is still transcribed. To correct genetic variants

that result in cMyBP-C structural changes causing

hypercontractility, gene silencing techniques could use rAAV to

deliver small interfering RNAs (siRNAs) to stop transcription, or

silence, pathogenic genes (84). This technique successfully

prevented HCM pathology for at least 6 months in mice carrying

a pathogenic variant in the β-myosin heavy chain gene (76) and

could be adapted for MYBPC3 variants. However, SiRNA therapy

could be difficult to implement in MYBPC3-HCM patients, as

this therapy could result in a haploinsufficient phenotype.

Alternatively, missense variants can be corrected or edited

using a genome editing technique instead of silenced. By

delivering an RNA-guided Cas9 nuclease via AAV9, the variant

gene can be edited back to its non-variant state (79). Genetic

editing of β-myosin heavy chain gene R403Q variant mice

corrected 70% of variant transcripts and prevented the associated

HCM phenotype (79). While promising, gene therapy is still a

novel technique and faces barriers like manufacturing ability,

scalability, and cost (85). Additionally, some patients may also

have strong immunity to AAV-based therapies that prevent

delivery and transcription of the treatment, thus these patients

may require higher doses (85) or alternative therapies, such as

small molecules.
6 High-throughput screening for novel
small molecules

Small-molecule drugs that bind to cMyBP-C and alter its

interaction with the thick and thin filaments could be used to

improve cardiac function in HCM patients with genetic variants of

MYBPC3. By acting to inhibit or enhance cMyBP-C binding with

actin and myosin, small molecules directly target the dysfunctional

protein interactions at the sarcomeric level to normalize cardiac

muscle performance at the whole heart level (Figure 2).

To treat HCM patients with hyper-contractility and incomplete

relaxation, the mechanisms of drug action on cMyBP-C function

can either increase or decrease interactions with actin and myosin

to result in reduced contractility and enhanced relaxation. In one

scenario, several HCM-linked missense variants located in the

M-domain of cMyBP-C exhibit enhanced interactions with actin

and myosin (30, 61). Thus, compounds designed to modulate

actin-cMyBP-C interactions and reduce myocardial ATPase activity

(58, 62) could result in therapies that directly normalize affinities

and conformations of variant cMyBP-C with the myofilaments,

improving heart function. Contrary, in the case of cMyBP-C

haploinsufficiency (i.e., less cMyBP-C protein) or missense variants

in non-cMyBP-C sarcomeric proteins (i.e., beta-myosin) that result
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in hyper-contractility due to an increased probability of cross-

bridges, drugs designed to modulate cMyBP-C interactions with

myosin to decrease actin-myosin interactions in favor of relaxed

myocardium and reduced contractility (27–29, 86) could mitigate

hyper-contractility in these patients. Alternatively, drugs that target

cMyBP-C to modulate its binding to actin and tropomyosin to

lessen cMyBP-C-induced thin filament activation that sustains

force generation (43, 44) could reduce hyper-contractility and

enhance relaxation. Thus, cMyBP-C targeting modulators for the

treatment of HCM would be expected to impact in vivo cardiac

performance by suppressing systolic contractility while enhancing

diastolic relaxation to ameliorate symptoms.

There are currently no known cMyBP-C binding drugs despite

the desirability of such modulators of cMyBP-C. This is due to the

lack of high-throughput screening (HTS) assays to identify drugs

that bind specifically to cMyBP-C and alter its function. Current

industry screening methods mostly rely on myosin ATPase assays

which have been used to identify small molecule treatments for

HCM such as Mavacamten and Omecamtiv mecarbil (69, 87)

which target cardiac myosin. It is possible that these myosin

ATPase assays (activated by actin, Ca2+, cMyBP-C NTDs), could

be used with the addition of cMyBP-C or its fragments (e.g.,

C0-C2); however, these methods are not ideally suited for

identifying cMyBP-C-specific binding compounds (without actin

or myosin binding properties). Other approaches such as using

genetically altered or iPSC-derived cardiomyocytes in contractility

assays, are time-consuming, expensive, and labor-intensive and still

have their caveats. Testing for small molecules that specifically

target and bind to cMyBP-C and modulate its interactions with

actin or myosin is the critical first step in the drug development

process. Using HTS assays expedites this process and accelerates

the identification of drugs for treating HCM.

Fluorescence lifetime (FLT) and FLT-detected FRET assays

using probes on human cMyBP-C C0-C2, and actin (or myosin)

have recently been developed (58, 60–62). Combined with a plate

reader, drug screens of ∼1,300–2,800 compounds have been

performed (58, 62). Pharmacologically active compounds

identified with changes in lifetime or FRET indicated a change in

cMyBP-C binding to actin. Further testing of some of the

compounds identified from the HTS in vitro assays on function

revealed effects on modulating myosin ATPase activity measured

by in situ assays using skinned cardiac or skeletal muscle (88).

Thus, the HTS assays developed can quickly and accurately

detect valid cMyBP-C binding compounds to be further validated

in downstream functional assays of muscle function (62).

Currently, small-molecule modulators binding to C0-C2 have

been identified to either inhibit or enhance interactions with

actin (58, 62). A subset of these modulators affect the

Ca2+-sensitivity ATPase activity in cardiac myofibrils (62). For

example, Pneumocandin B0 increased ATPase activity in cardiac

myofibrils and was identified to increase FRET between cMyBP-

C C0-C2 and actin in the screen (62), suggesting it may be an

activator of cMyBP-C. In another example, Enoxaparin sodium

decreased ATPase activity in cardiac myofibrils and was

identified to decrease FRET between C0-C2 and actin in the

screen (62), suggesting it could be an inhibitor of cMyBP-C.
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A cMyBP-C C0-C2-myosin assay has also been developed (61). In

addition to primary HTS for compounds affecting myosin-cMyBP-

C interactions, these assays are also useful for deprioritizing actin

and myosin-binding drugs (to prioritize cMyBP-C binding

drugs). Future work will establish the efficacy of screened

compounds in vitro and in vivo models of HCM.

Ideal compounds would only bind to cardiac MyBP-C and not

skeletal MyBP-C (62). Additionally, they may also bind to the

interface of cMyBP-C in complex with actin or myosin. The

drugs should have good ADMET properties, such as cell

permeability, be nontoxic, and have minimal side effects.

Additionally, ideal compounds should effectively treat certain

HCM subtypes (obstructive or non-obstructive, cMyBP-C or

non-cMyBP-C variants).
7 Future directions

Several avenues for future investigation are in development

using the techniques described above to treat HCM and other

cardiomyopathies. Gene therapies could introduce designer

cMyBP-C proteins that mimic different phosphorylation states,

thereby providing more nuanced and targeted treatment for

different cardiomyopathies (75). The engineered cMyBP-C

variants would be designed to express phospho-mimetic variants

that can modulate contractility in specific HCM subtypes or

other cardiomyopathies where increased or decreased

contractility might be beneficial. Similarly, drugs that mimic

cMyBP-C phosphorylation by affecting cMyBP-C structure (30,

60, 62, 89) and function (90, 91) can enhance myocardial

contraction and relaxation. Importantly, these perturbations

would be independent of adrenergic stimuli or neurohormonal

signaling, which are often dysregulated in heart failure.

cMyBP-C-targeted small molecules could also treat other

cardiac disorders, such as dilated cardiomyopathy (DCM) by

reducing myosin and increasing actin interactions to enhance

contractility. Likewise, non-genetic HF (HFrEF/HFpEF) by

similar mechanisms of action to change cMyBP-C interactions as

in HCM/DCM for alleviating dysfunction of hypo- or hyper-

contractility could provide effective new intervening therapies.

HCM is a diverse and complicated disease that can have

multiple genetic aspects in different sarcomere and potentially

non-sarcomere proteins (6, 7). By working closely with clinicians

and developing genetic screens and patient-specific treatment

regimes, it may be possible to combine multiple therapeutic

approaches to deliver a personalized approach to HCM

treatment. Additionally, investigating the safety and efficacy

profiles of these novel interventions in pediatric populations may

offer unprecedented opportunities for preventing or delaying the

onset of HCM in genetically susceptible individuals (52). These

novel therapies will need to be tested against current standard-

of-care treatments to establish cMyBP-C-targeted therapies

within the broader therapeutic landscape.
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