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Introduction: The gut microbiota plays a crucial role in the development of

atherosclerosis. The Dietary Index for Gut Microbiota (DI-GM) assesses the

impact of diet on gut microbiota, and the Atherogenic Index of Plasma (AIP)

serves as a key marker for evaluating atherosclerosis. However, studies

exploring the association between DI-GM and AIP remain limited.

Methods: Data from the 2007–2020 National Health and Nutrition Examination

Survey (NHANES) were analyzed, including 15,471 participants. Weighted

multivariate linear regression models were employed to evaluate the linear

association between DI-GM and AIP, while restricted cubic splines (RCS) were

used to assess potential nonlinear relationships.

Results: After adjusting for confounding factors, multivariate linear regression

analysis demonstrated a significant negative correlation between DI-GM levels

and AIP. Each one-point increase in DI-GM was associated with a 0.007-point

reduction in AIP (95% CI: −0.012 to −0.002). Categorical analysis further

revealed that participants in the DI-GM ≥6 group had significantly lower AIP

levels compared to those in lower DI-GM groups (β=−0.038, 95% CI: −0.059

to −0.017; P for trend = 0.007). Restricted cubic spline (RCS) analysis identified

a significant non-linear dose-response relationship (P for non-linearity = 0.018)

with a threshold at DI-GM= 3.467. Below this threshold, the association was

nonsignificant; however, above it, each unit increase in DI-GM corresponded

to a 0.011 decrease in AIP (P < 0.001). Subgroup analyses indicated that the

relationship between DI-GM and AIP was significantly moderated by age, race/

ethnicity, hypertension, and diabetes (P for interaction < 0.05).

Conclusion: This study demonstrated a non-linear dose-response relationship

between DI-GM levels and AIP, with a significant threshold effect at DI-

GM= 3.467. Beyond this threshold, higher DI-GM levels were linked to lower

AIP, moderated by age, race/ethnicity, hypertension, and diabetes.
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1 Introduction

Atherosclerosis, characterized by the accumulation of plaques

within arterial walls, is a key pathological factor in the development

of cardiovascular disease (CVD) (1, 2). In recent years, the

atherogenic index of plasma (AIP) has gained significant attention

for its critical role in predicting atherosclerosis and CVD risk (3).

AIP is calculated as the logarithmic ratio of triglycerides to high-

density lipoprotein cholesterol (HDL-C) and reflects the particle size

and esterification rate of low-density lipoprotein cholesterol

(LDL-C), which are closely associated with lipoprotein lipase

activity (4, 5). Moreover, studies have demonstrated that AIP is not

only an independent and superior predictor of atherosclerosis

compared to traditional lipid parameters but also serves as a

potential biomarker for evaluating the severity of CVD (6, 7).

Meanwhile, the pivotal role of gut microbiota in the pathogenesis

of CVD has garnered increasing interest (8–10). Advances in high-

throughput gene sequencing technologies have further elucidated

the intricate relationship between gut microbiota and cardiovascular

health (11). Changes in the composition and functionality of gut

microbiota have been strongly linked to the onset and progression

of atherosclerosis (11). Notably, dietary interventions cause

significant changes in the diversity, balance, and function of gut

microbiota, which opens up a new strategy for the prevention and

treatment of CVD. For instance, dietary patterns rich in anti-

inflammatory foods, such as fruits, vegetables, and whole grains,

have been associated with healthier gut microbiota profiles,

improved lipid metabolism, and reduced cardiovascular risk (12).

To systematically evaluate the impact of diet on gut microbiota,

researchers have developed the Dietary Index for Gut Microbiota

(DI-GM), a scoring system comprising 10 beneficial and 4

detrimental dietary components (13). This index assesses how

dietary patterns influence gut microbiota health and provides a

foundation for optimizing diets to prevent and manage diseases

(14). Despite its potential, the relationship between DI-GM and

AIP remains underexplored.

This study aims to address this knowledge gap by investigating

the association between DI-GM and AIP and examining the

potential factors influencing this relationship. By Utilizing data

from the National Health and Nutrition Examination Survey

(NHANES) spanning 2007–2020, we seek to provide

comprehensive and robust evidence supporting the role of

dietary patterns in the prevention of atherosclerosis.

2 Method

2.1 Study population

This study analyzed data from the 2007–2020 NHANES.

NHANES employs a multi-cycle, cross-sectional design and

advanced sampling techniques to recruit a nationally

representative cohort. 66,148 participants provided informed

written consent before participating in the survey, 27,715

participants were excluded because they were younger than 20

years old, 4,683 participants were excluded for missing data

required for calculating DI-GM and 18,279 participants were

exclude for missing data required for calculating AIP (as detailed

in Figure 1). The final analysis included data from 15,471 U.S.

adults aged 20 years and older.

2.2 Calculation of AIP

The exposure variable, AIP, as log10(TG/HDL-C), was first

established as a biomarker of plasma atherosclerosis by

Dobiasova M, Frohlich J (15). Direct immunoassay or

precipitation methods measured HDL-C levels following CDC

standardized procedures. Each subject had fasting venous blood

drawn for TG measurement.

2.3 Calculation of Di-GM

This study used the scoring system developed by Kase et al. to

calculate the DI-GM, based on 14 foods or nutrients (13). The DI-

GM was calculated using data from two 24 h dietary recalls, which

is shown in Supplementary Table S1. Beneficial foods received a

score of 1 if intake met or exceeded the sex-specific median,

otherwise 0. Unfavorable foods received a score of 0 if intake

met or exceeded the sex-specific median (or above 40% energy

from fat), otherwise 1. The total DI-GM score spanned a range

of 0 to 14, with beneficial foods contributing 0–10 points and

unfavorable foods 0–4 points. Participants were divided into four

groups based on quartiles of total scores: 0–3, 4, 5, and 6 or higher.

2.4 Covariates

Sociodemographic and socioeconomic characteristics included

age (continuous), gender (male, and female), race (Non-Hispanic

Black, Non-Hispanic White, Mexican American, and Other

Race), marital status (never married/living with partner, married,

and divorced/separated/widowed), education level (less than high

school graduate, high school graduate or GED, and some college

or above), and poverty income ratio [classified as low income

(<1.30), middle income (1.30–3.49), and high income (≥3.50)].

Health behaviors included smoking status (never, ex-smoker, and

current-smoker), alcohol intake (no-drinking, and drinking).

Other potential confounders were diabetes (no/yes), and

hypertension (no/yes). The NHANES dataset includes

comprehensive information on demographics, diet, examinations,

laboratory results, and questionnaires, along with detailed tools,

methods, usage guidelines, and FAQs, as outlined in the

NHANES manuals and reports.

Abbreviations

DI-GM, dietary index for gut microbiota; AIP, metabolic associated fatty liver
disease; NHANES, national health and nutrition examination survey; CI,
confidence interval; PIR, poverty income ratio.
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2.5 Statistical analysis

This study excluded samples with missing information on AIP or

dietary recall data. Samples with missing covariate values exceeding

20% were not included in the analysis. For covariates with less than

20% missing data, the “mice” package in R was employed to

perform multiple imputations. Participant demographic and clinical

characteristics were categorized by quartiles of DI-GM. The

relationships between categorical variables, presented as frequencies

and weighted percentages, were assessed using the Rao-Scott χ²

test. Continuous variables were reported as weighted means and

their corresponding standard errors (SE). The Wilcoxon rank-sum

test for complex survey samples was employed to evaluate

differences in continuous variables.

Weighted multivariable linear regression models were applied

to evaluate the linear association between DI-GM (as both a

continuous and categorical variable) and AIP. Model 1 included

unadjusted data. Model 2 adjusted for age, gender, and race/

ethnicity. Model 3 further included adjustments for marital

status, education level, and poverty-to-income ratio (PIR).

Finally, Model 4 accounted for additional factors such as alcohol

intake, smoking status, hypertension, and diabetes, alongside all

covariates included in the previous models. We employed

Restricted cubic splines (RCS) regression models to further

explore the dose–response between DI-GM and AIP, adjusting

for all confounding variables in model 4 (16). The Akaike

Information Criterion guided the location and number of knots

in RCS knots to balance model fit and overfitting. If a nonlinear

relationship was confirmed, a threshold effect analysis was

performed using a two-segment linear regression model. This

approach analyzed the association between DI-GM and AIP

separately on either side of the inflection point, providing deeper

insights into the nature of the relationship.

Subgroup analyses were conducted to identify factors

influencing the relationship between DI-GM and AIP. The

analysis involved stratifying the final analytical sample by age

(<65, and ≥65 years), gender (male and female), race (Non-

Hispanic White, Non-Hispanic Black, Mexican American, and

Other Race), marital status (married/living with partner, never

married, and widowed/divorced/separated), education level (less

than high school graduate, high school graduate or GED, and

some college or above), poverty income ratio [classified as low

income (<1.30), middle income (1.30–3.49), and high income

(≥3.50)], smoking status (never, ex-smoker, and current-smoker),

alcohol intake (no-drinking, and drinking), diabetes(no/yes),

hypertension(no/yes), respectively. A multiplicative interaction

term among the subgroups, DI-GM, and AIP was fitted into the

model to assess for potential interaction effects.

FIGURE 1

Selection of participants in the study.
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All analyses were performed using R version 4.4.1

(R Foundation for Statistical Computing, Vienna, Austria http://

www.R-project.org). Differences with P < 0.05 indicated

statistical significance.

3 Results

3.1 Baseline characteristics of participants

The characteristics of the participants categorized by DI-GM

groups was presented in Table 1. A total of 15,471 individuals

participated in the study with an average (SE) age of 48.32 (0.28)

years, with an average (SE) poverty income ratio of 2.94 (0.04)

and a mean (SE) AIP of −0.06 (0.01). Participants in the highest

DI-GM group (Q4) were significantly more likely to be older,

female, of non-Hispanic White backgrounds, married, have

higher educational attainment, higher PIR, be never-smokers,

consume alcohol, and not have diabetes (all P < 0.05) compared

to those in the lower DI-GM groups. Notably, participants with

higher DI-GM levels also exhibited significantly lower AIP

values (P < 0.001).

3.2 Associations between DI-GM and AIP

All four models exhibited a negative correlation between

DI-GM and AIP (Table 2). In model 1, after adjusting for no

covariates, each 1-point increase in DI-GM was associated with a

decrease of 0.011 in AIP. Model 2 (95% CI: −0.017, −0.006),

additionally adjusted for age, gender, and race/ethnicity, showed

that this negative relationship persisted as significant (β =−0.013,

95% CI: −0.018, −0.008). In Model 3, further adjustments were

made for marital status, education level, and poverty income

ratio (PIR), with the association persisting (β =−0.010, 95% CI:

−0.015, −0.005). In Model 4, additional adjustments for smoking

status, alcohol intake hypertension, and diabetes, retained the

significant inverse relationship between DI-GM and AIP

(β =−0.007, 95% CI: −0.012, −0.002).

For categorical analysis, DI-GM levels were divided into four

groups: 0–3, 4, 5, and 6 or higher, with 0–3 serving as the

reference group. In Model 1, after adjusting for no covariates,

DI-GM of 6 or higher were significantly correlated with a

decrease of 0.042 in AIP (95% CI: −0.064, −0.020; P for trend

<0.001). Model 2, with additional adjustment for age, gender,

and race/ethnicity, confirmed this significant association

(β =−0.052, 95% CI: −0.074, −0.031; P for trend <0.001). In

Model 3, further adjusted for marital status, education level, and

PIR, the significant inverse association persisted (β =−0.039, 95%

CI: −0.060, −0.018; P for trend <0.001). Model 4, which

additionally adjusted for smoking status, alcohol intake

hypertension, and diabetes, also sustained the significant inverse

relationship between DI-GM of 6 or higher and reduced AIP

(β =−0.038, 95% CI: −0.059, −0.017; P for trend = 0.007).

3.3 Dose-response analysis of DI-GM
with AIP

A multivariable-adjusted restricted cubic spline analysis

revealed a significant non-linear dose-response relationship

between DI-GM and AIP (P for non-linearity = 0.018; P for

overall < 0.001), with a critical inflection point at DI-GM = 3.467

(Figure 2). Further two-piecewise linear regression analysis,

adjusted for potential confounders such as age, gender, race/

ethnicity, marital status, education level, poverty-to-income ratio,

alcohol intake, smoking status, hypertension, and diabetes,

demonstrated distinct trends (Table 3). When DI-GM was below

3.467, the relationship with AIP was not significant (β =−0.002,

95% CI: −0.021 to 0.018; P = 0.872). However, when DI-GM was

≥3.467, each unit increase in DI-GM was associated with a

significant 0.011 decrease in AIP (β =−0.011, 95% CI: −0.018 to

−0.004; P < 0.001), highlighting a non-linear association and a

potential threshold effect.

3.4 Subgroup analyses

Subgroup analyses were conducted to examine whether any

factors modified the relationship between DI-GM and AIP

(Table 4). After adjusting for confounders, no significant

interactions were found across subgroups stratified by gender,

marital status, education level, PIR, smoking status, or alcohol

intake (P for interaction > 0.05). Conversely, age, race/ethnicity,

hypertension, and diabetes emerged as a potential moderating

factor in the relationship between DI-GM and AIP (P for

interaction < 0.05).

3.5 Sensitivity analysis

Sensitivity analysis was conducted to ensure the robustness of

the findings. Additional adjustments for total caloric intake and

overall dietary quality were performed. The results remained

highly consistent, and the sensitivity analyses further confirmed

the substantial association between DI-GM and AIP

(Supplementary Table S2).

4 Discussion

With the accelerating pace of population aging, CVD—a major

age-related condition—has become the leading cause of death and

disability worldwide, highlighting the urgent need for effective

prevention and intervention strategies (17). Among various risk

factors, dyslipidemia plays a central role in the development of

CVD. Although clinical interventions have long focused on

lowering LDL-C to reduce CVD risk, this single marker does not

fully capture the complexity of lipid metabolic disorders (18, 19).

Other indicators, such as the apolipoprotein B to apolipoprotein

A-I ratio (ApoB/ApoA-I) and coronary artery calcium scores,

Liu et al. 10.3389/fcvm.2025.1556650

Frontiers in Cardiovascular Medicine 04 frontiersin.org

http://www.R-project.org
http://www.R-project.org
https://doi.org/10.3389/fcvm.2025.1556650
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


may provide more accurate assessments of atherosclerosis severity,

but their clinical utility remains limited due to high testing costs

and low accessibility (20, 21). AIP, calculated as log₁₀(TG/HDL-

C), has emerged as a promising biomarker that reflects the

dynamic balance between pro-atherogenic and anti-atherogenic

lipids (15). Studies have demonstrated that AIP outperforms

conventional lipid markers in predicting adverse cardiovascular

events (22, 23). Moreover, AIP independently predicts the

presence of vulnerable plaques beyond traditional factors (24).

Targeting AIP may thus represent a potential strategy for

improving the lipoprotein profile and reducing the risk of

cardiovascular events.

Recent advances in high-throughput gene sequencing have

revealed the critical role of gut microbiota in CVD (25).

Alterations in the composition and function of the gut

microbiome have been closely associated with atherosclerosis and

heart failure (26, 27). A healthy diet is essential for

cardiovascular risk management, exerting both direct effects on

cardiovascular health and indirect effects through modulation of

the gut microbiota. To assess dietary quality, several scoring

systems have been widely adopted, including the Healthy Eating

Index (HEI), the Alternate Healthy Eating Index (AHEI), the

Mediterranean Diet Score (MDS), and the Dietary Approaches to

Stop Hypertension (DASH) (28, 29). Although validated for

predicting cardiovascular outcomes, these indices do not

explicitly incorporate microbiota-related dietary components, and

their associations with gut microbial diversity and composition

remain inconsistent (29–32).

TABLE 1 Characteristics of the NHANES 2007–2020 participants based on quartiles of DI-GM.

Characteristics Total adults
(N= 15,471)

DIGM Q1
(N= 3,837)

DIGM Q2
(N= 3,896)

DIGM Q3
(N= 3,543)

DIGM Q4
(N= 4,195)

P

value

Age, mean (SE), years 48.32 (0.28) 46.47 (0.48) 47.17 (0.43) 48.08 (0.40) 50.77 (0.47) <0.001

Age, n (%) 0.001

20–65 11,742 (79.81) 3,011 (82.41) 3,006 (81.13) 2,693 (79.46) 3,032 (77.12)

≥65 3,729 (20.19) 826 (17.59) 890 (18.87) 850 (20.54) 1,163 (22.88)

Gender, n (%) 0.003

Male 7,515 (48.25) 1,993 (50.44) 1,912 (50.54) 1,692 (46.74) 1,918 (45.97)

Female 7,956 (51.75) 1,844 (49.56) 1,984 (49.46) 1,851 (53.26) 2,277 (54.03)

Race and Ethnicity, n (%) <0.001

Non-Hispanic White 6,461 (66.57) 1,465 (61.97) 1,479 (62.21) 1,485 (66.98) 2,032 (73.12)

Non-Hispanic Black 3,225 (10.74) 1,036 (15.52) 882 (12.38) 695 (9.77) 612 (6.62)

Mexican American 2,319 (8.45) 555 (9.08) 643 (10.25) 577 (9.20) 544 (5.98)

Other Race 3,466 (14.24) 781 (13.43) 892 (15.16) 786 (14.04) 1,007 (14.28)

Marital status, n (%) <0.001

Married/Living with partner 9,243 (62.76) 2,213 (59.07) 2,224 (59.77) 2,159 (63.11) 2,647 (67.59)

Never married 2,807 (18.47) 808 (21.45) 770 (19.75) 629 (19.77) 600 (14.27)

Widowed/Divorced/Separated 3,421 (18.77) 816 (19.48) 902 (20.48) 755 (17.12) 948 (18.14)

Education level, n (%) <0.001

Less than high school graduate 3,707 (15.60) 990 (17.74) 1,103 (20.28) 835 (14.99) 779 (10.78)

High school graduate or GED 3,519 (23.32) 1,075 (29.12) 889 (24.67) 774 (21.56) 781 (19.28)

Some college or above 8,245 (61.08) 1,772 (53.15) 1,904 (55.05) 1,934 (63.46) 2,635 (69.94)

PIR, n (%) 2.94 (0.04) 2.67 (0.05) 2.73 (0.05) 3.00 (0.05) 3.27 (0.05) <0.001

PIR, n (%) <0.001

≤1.3 4,988 (22.90) 1,384 (26.31) 1,420 (27.32) 1,126 (23.11) 1,058 (16.71)

1.3–3.5 5,857 (35.29) 1,560 (39.64) 1,477 (36.61) 1,295 (32.97) 1,525 (32.77)

>3.5 4,626 (41.82) 893 (34.05) 999 (36.07) 1,122 (43.92) 1,612 (50.52)

Smoking, n (%) <0.001

Never 8,577 (54.68) 2,000 (53.55) 2,147 (54.18) 1,997 (56.02) 2,433 (54.88)

Ex-smoker 3,800 (26.06) 906 (23.80) 901 (24.62) 845 (24.44) 1,148 (30.09)

Current-smoker 3,094 (19.27) 931 (22.64) 848 (21.20) 701 (19.54) 614 (15.03)

Drinking, n (%) 0.040

No 2,151 (10.79) 487 (10.27) 577 (12.31) 495 (11.03) 592 (9.80)

Yes 13,320 (89.21) 3,350 (89.73) 3,319 (87.69) 3,048 (88.97) 3,603 (90.20)

AIP, mean (SE) −0.06 (0.01) −0.05 (0.01) −0.04 (0.01) −0.06 (0.01) −0.09 (0.01) <0.001

Hypertension, n (%) 0.220

No 8,772 (60.93) 2,117 (59.65) 2,199 (60.24) 2,045 (63.00) 2,411 (60.87)

Yes 6,699 (39.07) 1,720 (40.35) 1,697 (39.76) 1,498 (37.00) 1,784 (39.13)

Diabetes, n (%) <0.001

No 12,092 (83.04) 2,885 (80.45) 3,014 (82.01) 2,822 (84.34) 3,371 (84.79)

Yes 3,379 (16.96) 952 (19.55) 882 (17.99) 721 (15.66) 824 (15.21)

All means and SEs for continuous variables and percentages for categorical variables were weighted. The DI-GM ranges from 0 to 13 [including beneficial to gut microbiota [ranges from 0 to 9]

and unfavorable to gut microbiota [ranges from 0 to 4]] and grouped according to 0–4, 5, 6, and >6.

AIP, atherogenic index of plasma; DI-GM, dietary index for gut microbiota; NHANES, national health and nutrition examination survey; PIR, poverty income ratio; SE, standard error.
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In response to this gap, more targeted indices have emerged. For

instance, the Sulfate-Metabolizing Diet Score reflects dietary patterns

associated with sulfur-metabolizing bacteria, which are linked to

increased colorectal cancer risk; however, its applicability is limited

to specific microbial taxa (33). In contrast, the DI-GM provides a

more comprehensive framework for evaluating diet–microbiome

interactions (13). Though originally designed to assess microbiota-

related dietary quality, DI-GM also correlates positively with HEI-

2015 and MDS, supporting its dual relevance in both microbiome

and overall dietary health research (13).

In this cross-sectional study, we found a significant inverse

association between DI-GM and AIP, suggesting that a higher

FIGURE 2

Association between DI-GM and MAFLD using a restricted cubic spline model. Multivariable adjusted odds ratios (solid line) with 95% confidence

interval (shaded area) for the association of DI-GM with MAFLD disease. Adjusted for age (continuous), gender (male, and female), race (Non-

Hispanic White, Non-Hispanic Black, Mexican American, and Other Race), marital status (married/living with partner, never married, and widowed/

divorced/separated), education level (less than high school graduate, high school graduate or GED, and some college or above), PIR (continuous),

smoking status (never, ex-smoker, and current-smoker), alcohol intake (no-drinking, and drinking). DI-GM, dietary index for gut microbiota;

MAFLD, metabolic associated fatty liver disease; PIR, poverty income ratio.

TABLE 2 Association between DI-GM and AIP of the NHANES 2007–2020 participants.

Variables Model 1 P value Model 2 P value Model 3 P value Model 4 P value

β (95% CI) β (95% CI) β (95% CI) β (95% CI)

DI-GM −0.011 (−0.017, −0.006) <0.001 −0.013 (−0.018, −0.008) <0.001 −0.01 (−0.015, −0.005) <0.001 −0.007 (−0.012, −0.002) 0.007

DI-GM group

Q1 1 [Reference] 1 [Reference] 1 [Reference] 1 [Reference]

Q2 0.011 (−0.008, 0.031) 0.261 0.004 (−0.015, 0.024) 0.650 0.005 (−0.014, 0.024) 0.596 0.005 (−0.014, 0.024) 0.592

Q3 −0.015 (−0.038, 0.008) 0.187 −0.021 (−0.043, 0.001) 0.064 −0.012 (−0.033, 0.009) 0.244 −0.013 (−0.033, 0.008) 0.232

Q4 −0.042 (−0.064, −0.020) <0.001 −0.052 (−0.074, −0.031) <0.001 −0.039 (−0.060, −0.018) <0.001 −0.038 (−0.059, −0.017) <0.001

Trend test <0.001 <0.001 <0.001 0.007

AIP, atherogenic index of plasma; DI-GM, dietary index for gut microbiota; CI, confidence interval; PIR, poverty income ratio.

Crude: unadjusted model.

Model 1 no covariates were adjusted.

Model 2 was adjusted for age, gender, and race/ethnicity.

Model 3 was adjusted for age, gender, race/ethnicity, marital status, education level, and PIR.

Model 4 was adjusted for age, gender, race/ethnicity, marital status, education level, PIR, alcohol intake, and smoking status, hypertension, and diabetes.
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TABLE 3 The results of two-piecewise linear regression analysis between DI-GM (cutoff = 3.467) and AIP of the NHANES 2007–2020 participants.

Variables Model 1 P

value
Model 2 P

value
Model 3 P

value
Model 4 P

value
β (95% CI) β (95% CI) β (95% CI) β (95% CI)

DI-GM < 3.467 0.001 (−0.019, 0.020) 0.936 −0.004

(−0.023, 0.015)

0.681 −0.004

(−0.023, 0.016)

0.719 −0.002

(−0.021, 0.018)

0.872

DI-GM ≥ 3.467 −0.018

(−0.026, −0.010)

<0.001 −0.019

(−0.027, −0.011)

<0.001 −0.014

(−0.021, −0.006)

<0.001 −0.011

(−0.018, −0.004)

<0.001

P for log likelihood

ratio test

<0.001 <0.001 <0.001 <0.001

AIP, atherogenic index of plasma; DI-GM, dietary index for gut microbiota; CI, confidence interval; PIR, poverty income ratio.

Crude: unadjusted model.

Model 1 no covariates were adjusted.

Model 2 was adjusted for age, gender, and race/ethnicity.

Model 3 was adjusted for age, gender, race/ethnicity, marital status, education level, and PIR.

Model 4 was adjusted for age, gender, race/ethnicity, marital status, education level, PIR, alcohol intake, and smoking status, hypertension, and diabetes.

TABLE 4 Associations between DI-GM and AIP of the NHANES 2007–2020 participants, stratified by selected factors.

Character DI-GM< 3.467 DI-GM≥ 3.467

OR (95% CI) P value P for interaction OR (95% CI) P value P for interaction

Age, years 0.287 0.047

20–65 −0.006 (−0.028, 0.016) 0.601 −0.015 (−0.024, −0.007) <0.001

≥65 0.017 (−0.017, 0.051) 0.316 −0.001 (−0.014, 0.012) 0.868

Gender 0.678 0.517

Male −0.006 (−0.033, 0.022) 0.685 −0.011 (−0.021, 0.000) 0.047

Female 0.003 (−0.027, 0.033) 0.854 −0.011 (−0.020, −0.001) 0.027

Race and Ethnicity 0.844 0.011

Non-Hispanic White −0.006 (−0.033, 0.022) 0.692 −0.015 (−0.025, −0.005) 0.003

Non-Hispanic Black −0.005 (−0.039, 0.029) 0.765 −0.002 (−0.016, 0.011) 0.719

Mexican American 0.019 (−0.029, 0.068) 0.427 −0.010 (−0.025, 0.004) 0.160

Other Race 0.003 (−0.052, 0.058) 0.915 0.003 (−0.008, 0.014) 0.557

Marital status 0.667 0.877

Married/Living with partner 0.000 (−0.027, 0.026) 0.983 −0.011 (−0.021, −0.001) 0.037

Never married −0.014 (−0.058, 0.030) 0.525 −0.017 (−0.034, −0.001) 0.038

Widowed/Divorced/Separated 0.011 (−0.033, 0.054) 0.625 −0.006 (−0.020, 0.007) 0.328

Education level 0.676 0.533

Less than high school graduate −0.002 (−0.043, 0.038) 0.912 −0.003 (−0.021, 0.015) 0.736

High school graduate or GED 0.005 (−0.027, 0.037) 0.768 −0.015 (−0.035, 0.005) 0.151

Some college or above −0.009 (−0.035, 0.018) 0.512 −0.010 (−0.019, −0.001) 0.026

PIR 0.202 0.124

≤1.3 0.021 (−0.012, 0.053) 0.205 −0.024 (−0.037, −0.012) <0.001

1.3–3.5 −0.013 (−0.041, 0.014) 0.334 −0.012 (−0.023, −0.001) 0.027

>3.5 0.004 (−0.031, 0.040) 0.804 −0.004 (−0.014, 0.006) 0.435

Smoking 0.518 0.315

Never −0.007 (−0.037, 0.022) 0.610 −0.010 (−0.019, −0.001) 0.023

Ex-smoker −0.004 (−0.041, 0.033) 0.819 −0.014 (−0.029, 0.000) 0.049

Current-smoker 0.018 (−0.017, 0.054) 0.310 −0.002 (−0.020, 0.016) 0.858

Drinking 0.071 0.460

No −0.032 (−0.072, 0.008) 0.111 −0.002 (−0.018, 0.014) 0.801

Yes 0.004 (−0.016, 0.024) 0.714 −0.012 (−0.020, −0.004) 0.005

Hypertension 0.912 <0.001

No −0.001 (−0.025, 0.023) 0.916 −0.018 (−0.027, −0.010) <0.001

Yes −0.001 (−0.030, 0.027) 0.935 0.002 (−0.007, 0.011) 0.689

Diabetes 0.017 0.023

No −0.012 (−0.034, 0.010) 0.286 −0.015 (−0.022, −0.007) <0.001

Yes 0.03 (−0.005, 0.066) 0.094 0.007 (−0.009, 0.023) 0.390

Each stratification was adjusted for age, gender, race/ethnicity, marital status, education level, PIR, smoking status, alcohol intake, hypertension, and diabetes, if not already stratified.

AIP, atherogenic index of plasma; CI, confidence interval; DI-GM, dietary index for gut microbiota; NHANES, national health and nutrition examination survey; PIR, poverty income ratio.
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DI-GM score may exert a protective effect against atherosclerosis

and cardiovascular diseases. Interestingly, we observed a non-

linear dose–response relationship between DI-GM and AIP, with

a significant threshold effect identified at a DI-GM value of

3.467. When DI-GM was below this threshold, its association

with AIP was not statistically significant; however, beyond this

point, higher DI-GM scores were progressively associated with

lower AIP values. Practically, a DI-GM of 3.467 typically reflects

dietary patterns characterized by only limited intake of

microbiota-supportive foods and/or continued consumption of

adverse components. These findings suggest that a minimum

dietary quality may be required to exert beneficial effects on lipid

metabolism. At lower DI-GM levels, individuals may remain in a

state of gut dysbiosis, and further improvements in DI-GM may

be necessary to elicit favorable lipid profiles. Our results

underscore that only when dietary patterns achieve a certain

degree of “gut-friendliness” can the diet–microbiota–

cardiometabolic axis be effectively activated to improve

lipid metabolism.

Several biological mechanisms may account for the inverse

association observed above the DI-GM threshold. First, higher

DI-GM diets promote the growth of short-chain fatty acid

(SCFA)-producing bacteria (13, 34). SCFAs such as acetate,

propionate, and butyrate have been shown to exert multiple

lipid-modulating effects, including enhancing HDL cholesterol

and reducing triglycerides, thereby improving AIP (35). In

addition, trimethylamine N-oxide (TMAO) production may also

play a role. Low DI-GM diets, which are often rich in animal-

derived foods (e.g., red and processed meats), supply abundant

precursors such as carnitine and choline, which gut microbes

convert into TMA and subsequently oxidize into TMAO—a

metabolite known to promote atherosclerosis by inhibiting

cholesterol efflux, promoting foam cell formation, and enhancing

inflammation and thrombosis (36, 37). In contrast, high DI-GM

diets, predominantly plant-based, not only reduce TMAO

precursors but also reshape the gut microbiota toward a

composition less conducive to TMAO production. Therefore,

reduced TMAO levels at higher DI-GM scores may contribute to

lower AIP. Furthermore, several favorable components of DI-GM

—such as avocados, soybeans, dietary fiber, and whole grains—

help reduce intestinal cholesterol absorption (38–41).

Antioxidant-rich foods, including cranberries, broccoli, green tea,

and coffee, exert antioxidant and anti-inflammatory effects,

which may further decrease cardiovascular risk (42–45).

Chickpeas and fermented dairy products promote the growth of

probiotics, thereby improving insulin sensitivity (46, 47).

Conversely, unfavorable components such as high-fat diets and

refined grains can stimulate the production of pro-inflammatory

metabolites like lipopolysaccharides, which contribute to chronic

inflammation and plaque instability (48, 49). Collectively, high

DI-GM dietary patterns may improve AIP and reduce

cardiovascular risk by modulating gut microbiota composition,

microbial metabolites, and host inflammatory responses.

These findings suggest that higher DI-GM scores may exert a

protective effect against atherosclerosis and cardiovascular

diseases. Our findings highlight a critical inflection point in the

diet–microbiota–host metabolism axis, suggesting that only after

achieving a sufficient level of dietary quality can the gut

microbiota exert their full potential to favorably regulate host

lipid metabolism. This has important implications for precision

nutrition strategies aimed at reducing cardiometabolic risk

through gut microbiota-targeted dietary interventions. If

confirmed by future longitudinal studies, then dietary

recommendations based on DI-GM could be used to

individualize dietary interventions aimed at enhancing lipid

profiles and preventing CVD.

This study has several limitations. First, because this work is

cross-sectional, we cannot determine if changes in DI-GM lead

to changes in AIP. Longitudinal studies and randomized

controlled trials are required to establish whether dietary

interventions that target DI-GM can decrease AIP. Second, the

use of self-reported data may have introduced recall bias,

potentially affecting the accuracy of the collected data. Third,

dietary information in the NHANES dataset was collected using

only two 24 h dietary recalls, which may not adequately capture

temporal variations in dietary patterns over time. Future research

should employ repeated dietary assessments at multiple time

points to better evaluate the dynamic relationship between DI-

GM and AIP. In addition, although we controlled for many

demographic and clinical variables, we did not account for

potential confounders such as macronutrient distribution, other

lipid markers, and physical activity directly. Future analyses with

these variables included may help to better understand the

relationships observed. Moreover, although the DI-GM

specifically emphasizes gut microbiota–related dietary

components, future research should investigate whether it

provides additional predictive value for cardiovascular health

beyond established dietary indices such as the MDS and the

DASH diet. Lastly, as the study population was drawn from the

NHANES, the generalizability of the findings to other

populations and regions remains uncertain.

5 Conclusion

In summary, this study demonstrated a significant inverse

association between DI-GM and AIP, characterized by a non-

linear dose-response relationship with a critical threshold at DI-

GM= 3.467. Above this threshold, higher DI-GM levels were

strongly associated with lower AIP, with the most pronounced

reductions observed in the DI-GM ≥6 group. Subgroup analyses

revealed that this relationship was moderated by age, race/

ethnicity, hypertension, and diabetes. These findings highlight the

potential of DI-GM as a dietary marker for cardiovascular risk

and emphasize the importance of personalized dietary strategies.
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