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Introduction: Patients receiving thoracic radiotherapy (RT) have an increased risk of

major adverse cardiac events (MACE) posttreatment. We utilized machine learning

(ML) to discover novel predictors of MACE and validated them on an external cohort.

Methods: This multi-institutional retrospective study included 984 patients

[n= 803 non-small cell lung cancer (NSCLC), n= 181 breast cancer] treated

with radiotherapy. Extreme gradient boosting was utilized to discover novel

clinical, dosimetric, and anatomical features (CT-based cardiac substructure

segmentations) associated with MACE in a cohort of locally advanced NSCLC

patients. Fine–Gray regression was performed with non-cardiac death as a

competing risk. External validation was performed utilizing independent

cohorts of NSCLC or breast cancer patients.

Results: In the discovery dataset (n= 701), 70 patients experienced MACE. ML

modeling (training AUC, 0.68; testing AUC, 0.71) identified right and left atrial

volume indices (RAVI and LAVI, respectively) as top predictors. After adjusting

for baseline cardiovascular risk and known radiotherapy predictive factors,

RAVI was associated with an increased risk of MACE [subdistribution hazard

ratio (sHR) 1.02/unit, 95% confidence interval (CI): 1.00–1.04; p=0.03]. In the

validation cohorts (n= 102 NSCLC; n= 181 breast cancer), RAVI was associated

with an increased risk of MACE (NSCLC: sHR 1.05, 95% CI: 1.001–1.106,

p= 0.04; breast cancer: sHR 1.06, 95% CI: 1.01–1.11, p= 0.03). Similar findings

were found for LAVI.

Discussion: ML modeling identified right and left atrial enlargement as novel

radiographic predictors for increased risk of MACE following chest radiotherapy,

which was validated in independent breast and lung cancer datasets. Given that

echocardiography studies have demonstrated the prognostic utility of atrial

volume indices across cardiovascular risk groups, these findings warrant further

study to identify additional strategies for upfront cardiovascular risk profiling.
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Introduction

Radiotherapy (RT) forms the cornerstone of definitive

treatment for many thoracic and chest malignancies (1–4);

however, RT-associated cardiac toxicity remains a significant risk

(2–5). Among primary chest malignancies, the highest rates of

major adverse cardiac events (MACE) are observed in patients

with lung cancer (6). For non-small cell lung cancer (NSCLC)

patients undergoing definitive chemoradiation, RT-associated

MACE occur early (median onset within 2 years) and are

associated with increased mortality (3, 5).

Several studies have identified RT dose and volume metrics

associated with increased risk of MACE following RT. These

studies specifically outline cardiac substructure dose constraints

for the left heart, left coronary arteries—left anterior descending

(LAD) coronary artery and left circumflex (LCx) coronary artery

—and left ventricle (LV) (2, 7). NSCLC patients are enriched for

traditional patient-level cardiovascular risk factors, such as older

age, smoking, and coronary heart disease (CHD) (8, 9). Indeed,

25%–40% of lung cancer patients have concomitant CHD

(10, 11). Given elevated baseline cardiovascular risks, combined

with known cancer therapy-related cardiovascular toxicities,

NSCLC patients have an unmet clinical need for improved

baseline cardiovascular risk stratification for MACE following

chest radiotherapy.

Point-of-care interactions between patients and radiation

oncologists represent informative time points for cardiovascular

risk stratification. Mapping the contribution of predictors remains

challenging because of complex interactions between the vast

number of RT variables and patient-level cardiovascular risk

factors. Tree-based machine learning (ML) captures imperceptible

patterns from diverse inputs while limiting multicollinearity from

high-dimensional data and offering reduced bias (omitted variable,

confirmation, etc.). Given its continued applications (12–15), we

utilized tree-based ML to identify MACE predictors from an

expanded pool of features, including baseline cardiac health,

cardiac substructure anatomy from volumetric CT segmentations,

cancer-specific variables, and RT covariates including cardiac

substructure dosimetry. These were identified in a cohort of locally

advanced NSCLC patients. To evaluate generalizability, we

validated a mixed cohort of patients who received chest RT for

NSCLC or breast cancer at an external institution.

Materials and methods

Patient cohorts and treatment

This multi-institutional retrospective study included patients

with locally advanced NSCLC or breast cancer treated with chest

radiotherapy. ML modeling utilized 701 NSCLC patients treated

between December 2003 and January 2014 at Brigham and

Women’s Hospital and Dana-Farber Cancer Institute, Boston,

Massachusetts, denoted as the discovery dataset. External

validation was performed on 273 patients treated between August

2005 and August 2021 at Cedars-Sinai Medical Center, Los

Angeles, California, denoted as the validation dataset. To explore

generalizability, the validation dataset included 181 breast cancer

patients (16) and 102 NSCLC patients (17). Radiotherapy was

delivered using 3D conformal RT (3D-CRT) or intensity-

modulated RT (IMRT), excluding stereotactic body radiotherapy.

For NSCLC patients, treatments were delivered free-breathing,

typically based on internal-target volumes generated using four-

dimensional CT scans (breath-hold or phase-based gating was

not used). For the breast cancer validation cohort, deep-

inspiration breath hold (typically for left-sided cancer) was

utilized beginning in 2012. Other radiation planning specifics are

previously described (2, 16, 17).

Clinical and radiotherapy features

Baseline clinical variables were curated from an in-depth

medical record review, including CHD, congestive heart failure

(CHF), arrhythmia, statin use, and cardiac risk factors

(hyperlipidemia, hypertension (HTN), smoking, diabetes

mellitus). CHD included coronary artery disease (CAD), heart

failure (HF), or a CHD risk equivalent (peripheral vascular disease

or stroke) (3). Cancer treatment-specific variables included

chemotherapy, surgery, and RT. Cardiac substructure variables

were generated (for the discovery cohort) by manual delineation

of cardiac chambers and coronary arteries on non-

electrocardiogram-gated radiotherapy planning CTs, as previously

described (2, 17). For the validation cohort, an automated deep

learning algorithm segmented cardiac substructures and was

manually verified (CG) (18). RT dose was converted to an

equivalent dose in 2 Gy fractions for tumor and normal tissue.

The α/β ratios utilized for normal tissue (esophagus, lung, heart,

and cardiac chambers) and NSCLC tumor were 3 and 10,

respectively. Cardiac chamber volumes were indexed to body

surface area (BSA), including right atrial volume index (RAVI)

and left atrial volume index (LAVI). RT dosimetric variables,

including mean (Gy), maximum (Gy), and volume (percent)

receiving specific (X) gray dose [VX Gy (5 Gy increments)] were

calculated for the lungs, esophagus, heart, and cardiac

substructures (chambers and coronaries). For the training and test

datasets, the primary endpoint was MACE (unstable angina, HF

hospitalization or urgent visit, myocardial infarction, coronary

revascularization, and cardiac death) following initiation of RT or

after 30 days postoperatively, if applicable (19). For patients with

preexisting cardiac comorbidity, MACE was recorded if the

cardiac event was either greater in severity compared with the 6

months prior to radiotherapy or of a different MACE category (3,

20). Comprehensive, manual medical record review delineated

cardiac events, as previously described (3).

Statistical analysis

Continuous variables were compared using the Wilcoxon rank

sum test and categorical variables using the chi-square or Fisher
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exact test. Follow-up was calculated from RT start using the reverse

Kaplan–Meier method. Extreme gradient boosting (XGBoost) (21)

identified covariates related to developing MACE within the

discovery cohort. The small proportion of missing data was

binned into categorical unknown columns. The discovery dataset

was split into training (75%) and test (25%) data (Supplementary

Table S1). The training data constructed models, and the test

dataset assessed model performance. XGBoost hyperparameters

were bootstrap-tuned with a 50-round grid search during model

training. The area under the receiver operator characteristic curve

(AUC) evaluated model performance, and total gain ranked

feature importance.

The Cedars-Sinai validation dataset was excluded from ML

modeling and internal validation. Internal validation was

performed on the top 15 ML-identified features utilizing the

entire discovery dataset. Univariable and multivariable Fine–Gray

regression models were utilized to evaluate the relationship

between MACE and top predictors, with non-cardiac death as a

competing risk. The multivariable analysis included ML-

identified features that were significant in univariate analysis and

variables with known prognostic value. Variance inflation factor

and tolerance were used to assess multicollinearity. Given the

multicollinearity between heart volume variables, when testing

the multivariable association between MACE and a given

substructure’s volume, models were limited to a single cardiac

volumetric parameter. External validation of the most predictive

ML-identified features from the discovery dataset was performed

using multivariable Fine–Gray regression on the Cedars-Sinai

validation dataset. Analysis was performed utilizing R v4.2.2. and

Stata SE, v17.0 (StataCorp LLC).

Results

Baseline characteristics

In the discovery cohort (n = 701), 345 (49.2%) were women,

252 (36.0%) had CHD, and 623 (88.9%) had clinical Stage III

NSCLC. The median RT dose was 66.0 Gy (IQR, 56.0–66.0), with

539 (76.9%) receiving 3D-CRT. In the validation cohort of

NSCLC patients (n = 102), 56 (54.9%) were women, 32 (31.4%)

had CHD, and 74 (72.5%) had clinical Stage III disease. The

median RT dose was 60.0 Gy (IQR, 55.8–60.0), with 20 (19.6%)

receiving 3D-CRT. NSCLC patients from the validation cohort

were generally older and had a lower prevalence of Stage III

disease, lower 3D-CRT usage, and lower prescribed RT dose.

Breast cancer patients from the validation cohort generally had

lower rates of smoking and cardiac comorbidities (Table 1;

Supplementary Table S2).

ML identification of novel predictive
features of MACE

In the discovery cohort, with over a median follow-up of 5.2

years (IQR, 3.4–7.8 years), there were 70 cases of MACE (10%)

with a median time to MACE of 1.6 years (IQR, 0.5–2.8 years).

The final model included 27 baseline characteristics, 164 cancer-

specific or treatment-related variables, and 197 dose/volume

variables (Supplementary Appendix). The training AUC for

MACE was 0.68, and the testing AUC was 0.71 (Figure 1). The

top predictive feature was RAVI, followed by lung V55Gy and

CHD (Figure 2). Additional important predictors included

cardiovascular risk factors (hypertension, CHF), RT dose (LCx

V15Gy, LADV15Gy, lung V55Gy), and BSA-normalized cardiac

substructure volumes (RAVI, LAVI, total heart volume, left main

coronary artery volume). Multiple ML-identified features have

been previously reported as predictors of MACE and/or cardiac

toxicity (CHD, HTN, LCxV15Gy, and LADV15Gy). Novel

features included RAVI, LAVI, and lung V55Gy.

RAVI and LAVI predict MACE in the internal
competing risk regression model

On univariate analysis, each unit (ml/m2) increase in RAVI was

associated with a 2% increased risk of MACE [subdistribution

hazard ratio (sHR) 1.02, 95% confidence interval (CI): 1.01–1.04;

p = 0.001]. Additionally, each unit (ml/m2) increase in LAVI was

associated with a 2% increased risk of MACE (sHR 1.02, 95% CI:

1.01–1.03; p = 0.001, Table 2). Lung V55Gy, lung volume and

maximum dose, esophagus V45Gy, left main (LM) coronary

artery minimum dose, and smoking pack-years were not

significantly associated with MACE on univariable analysis.

Notably, total heart volume and LM volume were significantly

associated with MACE on univariable analysis. To limit multiple

testing and collinearity, we focused exploration on RAVI and

LAVI given RAVI’s importance on ML analysis and the known

impact of elevated atrial chamber volumes as clinical indicators

for cardiac disease (22, 23). The median RAVI and LAVI values

in the discovery cohort were 50.9 ml/m2 (IQR, 42.1–62.8 ml/m2)

and 47.9 ml/m2 (IQR, 40.3–56.5 ml/m2), respectively. The

cumulative incidence of MACE appeared similar for the first

three RAVI quartiles but significantly increased for the highest

quartile (RAVI≥ 62.8 ml/m2; p = 0.02). LAVI showed similar

results; the highest quartile (LAVI≥ 56.5 ml/m2) trended toward

significance (p = 0.052) (Figures 3A,B).

After adjusting for age and ML-identified cardiovascular and

cancer treatment factors, we observed similar results; each unit

increase in RAVI was associated with a 2% increased risk of

MACE (sHR 1.02, 95% CI: 1.01–1.04; p = 0.03). Among the

baseline characteristics, CHD (sHR 5.98, 95% CI: 2.99–11.94;

p < 0.001) and hypertension (sHR 2.84, 95% CI: 1.54–5.23;

p = 0.001) significantly increased the risk of MACE. Among the

RT and anatomical covariates, LADV15Gy (sHR 1.03, 95% CI:

1.02–1.04; p < 0.001) and utilization of 3D-CRT (vs. IMRT) (sHR

3.22, 95% CI: 1.42–7.14; p = 0.005) significantly increased risk of

MACE (Table 2). LCxV15Gy also ranked highly but was

excluded from the primary multivariable model due to its

multicollinearity with LADV15Gy. A model substituting

LADV15Gy with LCxV15Gy showed a significant relationship

between MACE and RAVI (Supplementary Table S3). Given the
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collinearity between RAVI and LAVI, a separate analysis was

performed using identical prognostic factors, which showed a

significant relationship between LAVI and MACE. Each unit

increase in LAVI was associated with a 1% increased risk of

MACE (sHR 1.01, 95% CI: 1.00–1.03; p = 0.044), Supplementary

Table S4.

External validation of RAVI and LAVI

With a median follow-up of 4.5 years (IQR, 2.3–8.0 years) in

the NSCLC subset (n = 102) and 6.5 years (IQR, 5.1–7.7) in the

breast cancer subset (n = 181), there were 26 cases of MACE

(n = 11 NSCLC, n = 15 breast cancer). The median time to

MACE was 1.8 years in the lung cohort (IQR, 1.3–4.3 years) and

5.7 years in the breast cancer cohort (IQR, 4.4–7.1 years). The

median RAVI was 43.7 ml/m2 (IQR, 35.9–54.9 ml/m2) and

42.6 ml/m2 (IQR, 35.2–49.0 ml/m2) for the NSCLC and breast

cancer subsets, respectively. The median LAVI was 41.9 ml/m2

(IQR, 35.4–51.9 ml/m2) and 40.9 ml/m2 (IQR, 34.9–48.0 ml/m2)

for the NSCLC and breast cancer subsets, respectively. The

2-year cumulative incidence of MACE in the NSCLC subset was

10.3% (95% CI, 5.3%–17.3%). The 5-year cumulative incidence in

the breast cancer subset was 7.3% (95% CI, 4.0%–12.0%).

TABLE 1 Patient characteristics across discovery and external validation cohorts.

Characteristic Discovery NSCLC
cohort (n= 701)

Validation cohort

NSCLC (n = 102) p (vs. discovery) Breast cancer
(n= 181)

p (vs. discovery)

Age median (IQR,

years)

65 (57, 73) 71 (64, 77) <0.0001 63 (53, 72) 0.073

Female sex 345 (49.2%) 56 (54.9%) 0.46 181 (100%) <0.001

Tobacco

Never 56 (8.0%) 24 (23.5%) 114 (63.3%)

Current 279 (39.8%) 11 (10.8%) 6 (3.3%)

Former 366 (52.2%) 67 (65.7%) 60 (33.3%)

Unknown 0 (0.0%) 0 (0.0%) <0.001 1 (0.6%) <0.001

Medical history

HTN 362 (51.6%) 66 (64.7%) 0.25 77 (42.5%) 0.030

HLD 341 (48.6%) 56 (54.9%) 0.25 108 (59.7%) 0.055

DM 97 (13.8%) 30 (29.4%) <0.001 25 (13.8%) 1.0

Stroke 13 (1.9%) 7 (6.9%) 0.008 1 (0.6%) 0.32

CAD 202 (28.8%) 32 (31.4%) 0.78 9 (5.0%) <0.001

CHF 58 (8.3%) 8 (7.8%) 1.0 3 (1.7%) 0.001

Any CHDb 252 (36.0%) 32 (31.4%) 0.44 97 (53.6%) <0.001

NSCLC clinical stage

II

III

Unknown

78 (11.1%)

623 (88.9%)

0 (0.0%)

I–II: 19 (18.6%)

III: 74 (72.5%)

IV: 8 (7.8%)

Unknown: 1 (0.9%)

0.033 aI-II: 137 (76.0%)

III/IV: 44 (24.3%)

Unknown: 0 (0.0%)

NA

Tumor laterality

Right 392 (55.9%) 68 (66.7%) 84 (46.4%)

Left 263 (37.5%) 34 (33.3%) 97 (53.6%)

NA/unknown 46 (6.6%) 0 (0.0%) 0.23 0 (0.0%) 0.002

Treatment

Definitive CRT 405 (57.8%) 63 (61.8%) BCT:

RT alone 56 (8.0%) 4 (3.9%) 122 (67.4%)

Neoadjuvant 154 (22.0%) 4 (3.9%) Mastectomy:

Adjuvant 86 (12.3%) 31 (30.4%) <0.001 59 (32.6%) NA

RT technique

3D-CRT 539 (76.9%) 20 (19.6%) 175 (96.7%)

IMRT 162 (23.1%) 82 (80.4%) <0.001 6 (3.3%) NA

RT dose

Median (IQR, Gy) 66.0 (56.0, 66.0) 60.0 (55.8, 60.0) <0.001 50.0 (42.7, 50.4) NA

Individual values are listed to represent n (%) unless otherwise specified as median (IQR).

IQR, interquartile range; HTN, hypertension; HLD, hyperlipidemia; DM, diabetes mellitus; CAD, coronary artery disease; CHF, congestive heart failure; CHD, coronary heart disease; NSCLC,

non-small cell lung cancer; CRT, chemoradiotherapy; BCT, breast-conserving treatment; Gy, Gray; 3D-CRT, three-dimensional conformal radiation therapy; IMRT, intensity-modulated

radiation therapy; NA, not applicable.
aPathological breast cancer stage.
bCHD includes CAD, CHF, or CHD risk equivalent (stroke, peripheral artery disease).
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Stratifying by quartiles, the cumulative incidence was greatest

among the highest RAVI quartile (≥49.9 ml/m2; p = 0.02) and

highest LAVI quartile (≥49.6 ml/m2; p < 0.001) (Figures 3C,D).

After adjusting for age and baseline CHD, RAVI was associated

with an increased risk of MACE (lung cancer subset: sHR 1.05, 95%

CI: 1.00–1.11, p = 0.044; breast cancer subset, sHR 1.06, 95% CI

1.01–1.11; p = 0.025; Table 3). There was a significant interaction

between CHD and RAVI in the breast cancer cohort (p = 0.041),

such that the risk of MACE associated with RAVI was more

pronounced in those without baseline CHD (sHR 1.07, 95% CI:

1.02–1.12; p = 0.009) than those with CHD (sHR 0.96, 95% CI:

0.86–1.06; p = 0.36). LAVI showed similar findings in the breast

cancer and NSCLC subsets (Supplementary Table S5), but no

significant interaction between CHD and LAVI was observed.

Discussion

In this multi-institutional retrospective study of nearly 1,000

patients with detailed cardiovascular and individual radiotherapy

FIGURE 1

Performance of machine learning model on test dataset. This figure

demonstrates the receiving operating characteristic curve for the

extreme gradient boosting model to predict MACE in the test

dataset utilizing the discovery cohort. The area under the curve

(AUC) assesses the model’s accuracy. AUC, 0.71.

FIGURE 2

Most important features for MACE prediction. This figure shows the top 15 most important features identified by the machine learning model in the

discovery dataset, ranked by total gain. RAVI, right atrial volume index; Gy, Gray; V55Gy, volume receiving 55 Gray; CHD, coronary heart disease LAVI,

left atrial volume index; LCx, left circumflex artery; V15Gy, volume receiving 15 Gray; Dmin, dose minimum; V45Gy, volume receiving 45 Gray; CHF,

congestive heart failure.
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parameters, we utilized ML to analyze high-dimensionality clinical,

anatomical, and dosimetric data. This allowed a less biased search

through feature spaces to identify the most salient predictors. These

data highlight readily available cardiovascular prognostic

information acquired during radiation oncology point-of-care

(routine CTs for RT planning). We report modest model

performance for MACE prediction. Our ML framework not only

identified risk factors consistent with previously reported (2) but

also identified right and left atrial enlargement (RAVI, LAVI) as

novel predictors of MACE following chest radiotherapy. Among

these predictors, RAVI influences cardiac risk (24, 25) and

ranked as the top predictive feature in our discovery cohort.

LAVI—a physiologically related variable with known cardiac

significance (26–28)—also ranked highly. The predictive value of

RAVI and LAVI were externally validated on a mixed cohort of

NSCLC and breast cancer patients, suggesting that both may

offer distinct predictive value for MACE following chest

radiotherapy. Deploying RAVI and LAVI estimation alongside

existing cardiovascular risk assessments could provide a powerful

tool during early point-of-care interventions and long-term

surveillance of cancer survivors.

To our knowledge, this is the first study to demonstrate the

association of indexed CT-derived cardiac chamber volumes with

MACE following thoracic RT. In a recent study, Walls et al. (29)

reported the association of left atrial volume with atrial

arrhythmias utilizing the Northern Ireland Cardiovascular Health

Events After Radiation Therapy (NI-HEART) study. However,

their study did not index cardiac volumes to body habitus—an

important distinction—since cardiac geometric dimensions vary

by sex, body habitus, fitness, age, and ethnicity (30). Indeed,

standard echocardiography practice involves indexing chamber

volumes to body habitus (commonly BSA) and adjusting for sex

and age (31). Furthermore, we utilized a single composite

endpoint, the American Heart Association/American College of

Cardiology-defined standard five-point MACE (19), which does

not include atrial arrhythmias, whereas Walls et al. defined

MACE as arrhythmias, acute HF, and myocardial infarction.

These methodological differences and our larger cohort may

TABLE 2 Fine–Gray regression model to predict MACE in the discovery cohort (n = 701).

Covariable Univariable Multivariable

HR (95% CI) p-value sHR (95% CI) p-value

Age 1.03 (1.01–1.05) 0.014 1.00 (0.97–1.03) 0.99

Sex, M (vs. F) 1.11 (0.70–1.77) 0.67 –

Smoking, pack-years 1.01 (1.00–1.01) 0.09 –

Hypertension 3.61 (2.05–6.36) <0.001 2.84 (1.54–5.23) 0.001

Hyperlipidemia 1.19 (0.75–1.90) 0.46 –

Diabetes 2.09 (1.21–3.59) 0.008 1.20 (0.66–2.16) 0.55

Arrhythmia 2.09 (1.20–3.64) 0.009 1.17 (0.61–2.26) 0.63

CHF 4.04 (2.33–6.99) <0.001 ^

CHD 3.68 (2.26–6.02) <0.001 5.98 (2.99–11.94) <0.001

Surgery 0.95 (0.58–1.55) 0.83 –

Chemotherapy 1.01 (0.37–2.78) 0.98 –

3D-CRT (vs. IMRT) 2.63 (1.20–5.88) 0.015 3.22 (1.42–7.14) 0.005

RAVI 1.02 (1.01–1.04) 0.001 1.02 (1.00–1.04) 0.027

Lung V55Gy 0.99 (0.95–1.04) 0.80 –

Heart volume 1.01 (1.00–1.01) <0.001 #

LAVI 1.02 (1.01–1.03) 0.001 1.00 (0.98–1.02) 0.94

LCx V15Gy 1.01 (1.00–1.01) 0.008 #

Lung Dmax 1.01 (0.98–1.04) 0.54 –

Lung volume 1.00 (1.00–1.00) 0.47 –

LM volume 3.63 (1.75–7.54) 0.001 #

LAD V15Gy 1.01 (1.00–1.02) 0.003 1.03 (1.02–1.04) <0.001

LM Dmin 1.01 (1.00–1.02) 0.10 –

Esophagus V45Gy 1.01 (1.00–1.02) 0.20 –

Interaction termsa

CHD × RAVI 1.02 (0.99–1.06) 0.22 –

CHD × heart volume 1.00 (0.99–1.01) 0.74 –

CHD × LAVI 1.00 (0.95–1.04) 0.93 –

CHD × LCx V15Gy 0.98 (0.97–0.99) 0.003 #

CHD × LM volume 0.59 (0.13–2.80) 0.51 –

CHD × LAD V15Gy 0.97 (0.96–0.99) <0.001 0.97 (0.96–0.98) <0.001

M, male; F, female; CHF, congestive heart failure; CHD, coronary heart disease; 3D-CRT, three-dimensional conformal radiation therapy; IMRT, intensity-modulated radiation therapy; RAVI,

right atrial volume index; Gy, Gray; V55Gy, volume receiving 55 Gray; LAVI, left atrial volume index; Dmax, dose maximum; V15Gy, volume receiving 15 Gray; Dmin, dose minimum; V45Gy,

volume receiving 45 Gray; LCx, left circumflex artery.

Bold indicates p < 0.05.
aInteraction term between CHD as a dichotomous variable and ML-identified dose/volume or volume continuous variables (significant on univariable analysis).

^Variable omitted due to being included within CHD variable.

#Variable omitted due to collinearity and overfitting.
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explain our observed association between RAVI and LAVI with

“MACE” compared with Walls et al.

Our findings are supported by several studies demonstrating

the prognostic utility of atrial volume indices across the

cardiovascular risk spectrum. Left atrial enlargement typically

represents sequelae of chronic exposure to elevated cardiac filling

pressures and is a well-established cardiac risk factor (23, 32).

While classically evaluated from echocardiography, CT-derived

LAVI is similarly associated with the risk of acute coronary

syndrome (33). AI-based LAVI from lung cancer screening and

coronary artery calcium CTs are associated with the risk of atrial

fibrillation and MACE (34, 35). Fewer studies focus on RA

enlargement, but a pathophysiological explanation for RAVI’s

pertinence in lung cancer could be the increased prevalence of

comorbid cardiopulmonary diseases—obstructive and interstitial

lung diseases—that drive increased right heart pressures (36–38).

Growing research associates elevated RAVI with cardiac events,

as RA remodeling is linked to arrhythmias and diastolic

dysfunction (22, 39). RAVI may model risk conveyed by

underlying cardiopulmonary disease given the potential for

increased right heart pathology in these patients.

Given that multiple thoracic cancers demonstrate an increased

risk of MACE after chest RT (3, 40–42), we evaluated the

generalizability of RAVI and LAVI for MACE prediction by

including both NSCLC and breast cancer patients during external

validation. Among primary chest malignancies, posttreatment

MACE rates are generally highest for lung cancer and lowest for

breast cancer (6). Including both extremes suggests our results

may generalize across broad baseline risks and cardiac radiation

dose exposures. Moreover, patient populations and treatment

paradigms for lung and breast cancer vary greatly, and our

results may inform cardiovascular risk prediction across cancer

histology and cardiovascular risk spectrums. Notably, new-onset

HF and arrhythmias are increased within the first decade

following breast RT (43, 44), possibly partially reflecting

anthracycline exposure (45). Elevated RAVI/LAVI are plausible

TABLE 3 Multivariable Fine–Gray regression to predict MACE in external
lung and breast cancer validation cohorts.

Covariable Lung cancerc Breast cancerc

sHR
(95% CI)

p-value sHR (95% CI) p-value

Age 1.00 (0.94–1.06) 0.98 1.06 (0.97–1.15) 0.20

Sex (M vs. F) 1.90 (0.45–8.05) 0.38 Omitted

Baseline CHD 6.56 (0.08–

536.76)

0.40 402.90 (5.06–

32,083.61)

0.007

RAVIa 1.05 (1.00–1.11) 0.044 1.06 (1.01–1.11) 0.025

CHD × RAVIb 0.98 (0.90–1.06) 0.63 0.91 (0.84–0.99) 0.041

sHR, subdistribution hazard ratio; CHD, coronary heart disease; RAVI, right atrial

volume index.
aContinuous variable (ml/m2).
bInteraction term between CHD as a dichotomous variable and RAVI as a

continuous variable.
cOf n = 94 (lung) and n = 178 (breast) with BSA available for volume normalization.

FIGURE 3

Cumulative incidence of major adverse cardiac events (MACE). Panels stratified by quartiles of right atrial volume indexed to body surface area (RAVI)

and left atrial volume indexed to body surface area (LAVI) in the total (n= 701) discovery dataset (A,B) and the validation dataset (n= 283) (C,D).
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predictors for cardiac events in breast cancer given the mechanisms

of treatment-related cardiotoxicity. Additional thoracic primaries

demonstrate elevated MACE rates and share features with

patients in this study. Lymphoma patients often receive multiple

cycles of anthracyclines and consolidative thoracic RT (46). Risk

factors for esophageal cancer overlap with patients with NSCLC

and CHD, and these patients have elevated rates of concomitant

cardiovascular disease and RT-related cardiac events (47). While

our validation did not include all thoracic primaries, the shared

risk and treatment factors suggest RAVI/LAVI could be

applicable for risk stratification independent of cancer histology

and is worthy of further investigation.

While typically quantified with echocardiograms in

cardiovascular studies, atrial volumes estimated by CT are

validated against echocardiograms (48–50). In the discovery

cohort, median values for RAVI and LAVI were 51 ml/m2 and

48 ml/m2, respectively, compared with respective echocardiogram

median estimates of 21 ml/m2 and 25 ml/m2 in healthy

individuals (51, 52). Echocardiogram-based cutoffs of 35 ml/m2

for RAVI and 33–36 ml/m2 for LAVI show discriminatory power

for cardiac dysfunction (53, 54). Standard-of-care chest or RT

planning CTs lack cardiac gating and cannot fully account for

dynamic changes in cardiac chamber volume when compared

with ECG-gated CTs or echocardiograms. Measurement

differences between these modalities may not translate to

clinically meaningful discrepancies (50, 55), and cardiac chamber

estimation via diagnostic CT appears feasible and relatively

reproducible (56). Without established reference values for CT-

based cardiac volume assessments, direct comparison of

individual measurements is limited, and further investigation of

specific cutoff values reflecting diverse cohorts would assist in

translating these findings into clinical practice.

Studies consistently demonstrate underutilization of cardiac

screening and medical optimization for cancer patients. For the

NSCLC cohort, only half of the statin-eligible patients are on

therapy (57), despite statins potentially decreasing the risk

conveyed by higher heart RT dose and conferring a dose–response

relationship with survival (58). Cardio-oncology guidelines

recommend consideration of echocardiographic screening in

patients with underlying cardiovascular disease before thoracic RT

(59), but only 33% of our discovery cohort received an

echocardiogram before RT. It is unclear if modern practice

patterns are improved. Moreover, given the broad definitions and

gaps in stratification for defining patients at high cardiovascular

risk from RT in consensus guidelines, multiple studies have

explored strategies to enhance upfront cardiovascular risk

stratification. For instance, CT-based coronary artery calcification

quantification shows promise in predicting MACE and mortality

after chest RT (60–63). RAVI and LAVI show potential as

radiologic markers to further inform CT-based risk stratification

approaches. Our results support consensus guidelines that consider

baseline echocardiographic screening. Advances in artificial

intelligence-based approaches for automated segmentation of

cardiac substructures (64–66) will provide opportunities for

automation of RAVI and LAVI measurements on CT scans

obtained at multiple time points during cancer care.

This study has limitations. Its retrospective nature is subject to

sampling bias, misclassification, and follow-up bias. We recognize

that systematic sampling bias cannot be fully accounted for. We

believe the effect of follow-up bias on differences in observed

rates of MACE to be low given the overall shorter time to MACE

and relatively longer median follow-up within our cohort of

patients entering longitudinal, routine cancer surveillance. Low

MACE numbers within our validation cohort may increase the

overfitting of our validation models. The concordance between

estimates for RAVI/LAVI between discovery and validation

modeling suggests that overfitting and bias were limited. Without

established reference values for CT-based volumetric cardiac

measurements and a lack of dynamic heart imaging, we were

unable to assess atrial remodeling severity. Future work correlating

CT-based atrial volume estimates with echocardiogram data and

heart function, including analysis of atrial volume changes over

time, is of interest. Our validation cohort was heterogenous

compared with the discovery cohort, particularly with respect to

treatment years and cancer type (inclusion of breast cancer in

addition to NSCLC), but this could be considered a strength, since

RAVI and LAVI remain significant predictors across time, primary

tumor, and changes in cancer-directed therapies. Lastly, while the

use of statins was included as a predictor, it was not ranked

highly, and further studies should explore the impact of additional

cardioprotective medications, such as beta-blockers, angiotensin-

converting enzyme (ACE) inhibitors, and angiotensin receptor

blockers (ARBs).

Our study utilized ML to analyze high-dimensionality clinical,

anatomical, and dosimetric data, identifying novel predictors of

MACE and externally validating on a mixed cohort of NSCLC

and breast cancer patients. Elevated RAVI and LAVI may convey

a higher risk for MACE following chest radiotherapy. Overall,

deploying RAVI and LAVI estimation alongside existing

cardiovascular risk assessments could provide a powerful tool

during early point-of-care interventions and long-term

surveillance of cancer survivors. The utility of RAVI and LAVI

for the identification of high-risk patients warrants further study

in prospective trials.
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