
EDITED BY  

Matteo Cameli,  

University of Siena, Italy

REVIEWED BY  

Giuseppe Verolino,  

IRCCS Istituto Auxologico Italiano, Italy  

Jin Chen,  

Sichuan University, China

*CORRESPONDENCE  

Qiang Liu  

hlb33288602@163.com

RECEIVED 04 August 2025 

ACCEPTED 11 September 2025 

PUBLISHED 25 September 2025

CITATION 

Mao Y, Liu Q, Fan H, He W, Ouyang X, Wang X, 

Li E, Qiu L and Dong H (2025) Risk prediction 

models for permanent pacemaker 

implantation following transcatheter aortic 

valve replacement: a systematic review and 

meta-analysis.  

Front. Cardiovasc. Med. 12:1563597. 

doi: 10.3389/fcvm.2025.1563597

COPYRIGHT 

© 2025 Mao, Liu, Fan, He, Ouyang, Wang, Li, 

Qiu and Dong. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Risk prediction models for 
permanent pacemaker 
implantation following 
transcatheter aortic valve 
replacement: a systematic review 
and meta-analysis

Yijun Mao
1
, Qiang Liu

2*, Hui Fan
1
, Wenjing He

1
, Xueqian Ouyang

1
,  

Xiaojuan Wang
1
, Erqing Li

3
, Li Qiu

1 
and Huanni Dong

1

1Department of Nursing, Xianyang Central Hospital, Xianyang, China, 2Department of Orthopedic 

Surgery, Xianyang Central Hospital, Xianyang, China, 3Interventional Operating Room, Xianyang 

Central Hospital, Xianyang, China

Objective: To systematically evaluate the methodological quality and predictive 

performance of risk prediction models for permanent pacemaker implantation 

(PPMI) following transcatheter aortic valve replacement (TAVR), identify key 

predictive factors, and assess the risk of bias and clinical applicability of 

these models.

Methods: A comprehensive search was conducted across multiple databases, 

including PubMed, Web of Science, The Cochrane Library, Embase, 

Cumulative Index to Nursing and Allied Health Literature (CINAHL), China 

National Knowledge Infrastructure (CNKI), Wanfang Database, China Science 

and Technology Journal Database (VIP), and SinoMed. The search included 

all records from database inception to January 1, 2025. Two independent 

researchers screened studies and extracted relevant data.

Results: A total of 11 studies were included, covering 11 risk prediction models 

with sample sizes ranging from 184–35,410. The incidence of PPMI after TAVR 

varied between 7.3% and 31.0%. Frequently identified predictors (present in at 

least two studies) included right bundle branch block (RBBB), self-expandable 

valves, PR interval, QRS interval, and atrioventricular block (AVB). All models 

reported the area under the receiver operating characteristic curve (AUROC), 

ranging from 0.660–0.916, with seven studies providing calibration metrics. 

Internal validation was performed in three studies, while one study included 

both internal and external validation. Ten studies were assessed as having a 

high risk of bias, primarily due to deficiencies in data analysis. The pooled 

AUROC for the nine validated models was 0.76 (95% confidence interval: 

0.72–0.80), indicating moderate discriminatory ability.

Conclusion: Existing risk prediction models for PPMI after TAVR demonstrate 

moderate predictive performance but are limited by a high risk of bias, as 

assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). 

Future research should focus on developing more robust models 

through larger sample sizes, rigorous methodologies, and multi-center 

external validation.
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Systematic Review Registration: The protocol for this study is registered with 

https://www.crd.york.ac.uk/PROSPERO/view/CRD42025629869, PROSPERO 

CRD42025629869.
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1 Introduction

Aortic valve stenosis is a prevalent valvular heart disease 

among the older adult, with its incidence increasing with age 

(1). Transcatheter aortic valve replacement (TAVR) has 

become the primary treatment for this condition (2). 

Advances in transcatheter intervention technology, 

continuous updates in prosthetic valve products, and the 

growing emphasis on lifelong patient management have 

expanded the indications for TAVR. Initially limited to very 

high-risk and high-risk patients, TAVR is now performed on 

intermediate- and low-risk populations, re%ecting a trend 

toward younger candidates (3). However, long-term 

postoperative outcomes in TAVR patients have garnered 

significant attention (4). Despite improvements in technology, 

devices, and patient care, factors such as advanced age, frailty, 

and multimorbidity contribute to a high incidence of 

complications, including cardiac conduction abnormalities 

and paravalvular leakage (4). Notably, the 1-year readmission 

and all-cause mortality rates remain high, at 44.2% and 

23.7%, respectively (5, 6).

Cardiac conduction block is a serious complication of TAVR, 

typically occurring within 72 h postoperatively (7). It is closely 

associated with intraoperative injury to the cardiac conduction 

system. Procedural factors such as guidewire transvalvular passage, 

balloon dilation, and valve placement can cause in%ammation, 

edema, or mechanical damage to the conduction system, leading to 

temporary or permanent conduction block (8). Postoperative 

conduction block is linked to poor patient outcomes, and its 

significance is growing as TAVR indications expand to younger 

and lower-risk populations. A meta-analysis revealed that new- 

onset conduction block after TAVR increases the risk of 

cardiovascular events and long-term mortality (9). In cases of heart 

block, immediate permanent pacemaker implantation (PPMI) is 

required, with an average PPMI rate of 13% (10–12).

The impact of PPMI on the long-term prognosis of TAVR 

remains a subject of debate. On one hand, PPMI prevents 

sudden cardiac death caused by high-grade atrioventricular block 

(AVB), complete AVB, and bradyarrhythmias. On the other hand, 

prolonged right ventricular pacing can result in 

electromechanical dyssynchrony, leading to left ventricular 

systolic dysfunction (13, 14). While some studies have found 

no association between PPMI and all-cause mortality or 

cardiovascular event rates, reporting no significant differences 

in long-term survival between patients with or without PPMI 

(15, 16), others have linked PPMI after TAVR to increased 

risks of 1-year mortality and hospitalization for heart failure 

(17). Additionally, patients with PPMI, particularly those who 

were pacemaker-dependent, demonstrated reduced survival 

rates at 6-year follow-up compared to those without PPMI 

(18). These con%icting findings may be attributed to inter- 

study heterogeneity, with variations in baseline population 

characteristics and surgical risk stratification potentially 

biasing results.

Risk prediction models estimate the probability of PPMI after 

TAVR by integrating multiple predictors, including baseline 

characteristics, computed tomography angiography (CTA) data, 

electrocardiographic data, echocardiographic data, and 

procedural factors. Predicting PPMI occurrence allows timely 

medical intervention, reducing the risk of further complications. 

Currently, tools such as the European System for Cardiac 

Operative Risk Evaluation II (EuroSCORE II) (19, 20) and the 

Society of Thoracic Surgeons Predicted Risk of Mortality (STS- 

PROM) (21–23) are widely used in clinical practice to evaluate 

mortality and surgical risk in cardiac surgery patients. However, 

these traditional surgical risk scores were developed for surgical 

populations and show limited accuracy in predicting outcomes 

for TAVR patients (24). Therefore, there is a need for specific 

risk assessment tools tailored to the characteristics of TAVR 

patients, particularly for postoperative PPMI. Although the 

number of risk prediction models for PPMI after TAVR has 

been increasing, their quality and applicability have not been 

systematically evaluated. This study aims to identify and 

critically evaluate published and developed risk prediction 

models for PPMI in TAVR patients. The findings will provide 

valuable insights for clinical practice and future research.

2 Methods

We applied the PICOTS framework to organize the clinical 

inquiry (see Supplementary Table S1). The study is registered in 

the PROSPERO database under the registration number 

CRD42025629869.

Abbreviations  

AUC, area under the curve; AVB, atrioventricular block; BSA, body surface 
area; CBM, China biology medicine disc; CI, confidence interval; CNKI, 
China national knowledge infrastructure; EPV, events per variable; 
EuroSCORE II, European system for cardiac operative risk evaluation II; 
GBM, gradient boosting machine; HV, his-ventricle; LBB, left bundle branch; 
LVOT, left ventricular out%ow tract; PPMI, permanent pacemaker 
implantation; PROBAST, prediction model risk of bias assessment tool; 
RBBB, right bundle branch block; RF, random forest; ROB, risk of bias; STS- 
PROM, society of thoracic surgeons predicted risk of mortality; TA, 
transapical; TAVR, transcatheter aortic valve replacement; TF, transfemoral.
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2.1 Search strategy

We conducted a comprehensive search across multiple 

databases from their inception until November 1, 2024, 

including PubMed, Web of Science, The Cochrane Library, 

Embase, Cumulative Index to Nursing and Allied Health 

Literature (CINAHL), China National Knowledge Infrastructure 

(CNKI), Wanfang Database, China Science and Technology 

Journal Database (VIP), and SinoMed. The search strategy 

centered on three key concepts: Transcatheter Aortic Valve 

Replacement (TAVR), permanent pacemaker implantation 

(PPMI), and prediction. Detailed search strategies are outlined 

in Supplementary Table S2.

2.2 Inclusion and exclusion criteria

The inclusion criteria were: (1) studies involving patients who 

underwent TAVR; (2) observational study designs; (3) PPMI after 

TAVR as the reported outcome; and (4) studies including a 

predictive model. The exclusion criteria were: (1) studies focusing 

solely on risk factors for PPMI without developing predictive 

models; (2) studies without accessible full texts; (3) grey literature, 

such as conference abstracts and agency reports; (4) duplicate 

publications; and (5) studies not published in English or Chinese.

2.3 Study selection and data extraction

Two reviewers (MY and FH) independently screened the 

articles according to the inclusion criteria, with a third reviewer 

(LQ) resolving any disagreements.

Data extracted from the selected studies were classified into four 

categories: (1) Basic study information, including the first author, 

publication year, study design, data source, study period, and 

outcome; (2) Basic model information, such as sample size, 

outcome event rate, events per variable (EPV), model development 

method, variable selection approach, handling of missing data, and 

processing of continuous variables; (3) Model performance, 

including discrimination, calibration, type of model validation, and 

formats for presenting prediction models; and (4) Predictors, 

detailing the number of candidate variables and final predictors.

2.4 Quality assessment

The risk of bias and applicability of the included studies were 

assessed using the Prediction model Risk Of Bias ASsessment Tool 

(PROBAST) (25).

2.5 Data synthesis and statistic analysis

A meta-analysis was performed to assess the area under the 

curve (AUC) of the PPMI prediction model. Review Manager 

5.4 software was used to calculate the pooled AUC and its 

corresponding 95% confidence interval (CI). Heterogeneity 

among studies was evaluated using the Q-test and the I2 

statistic. Substantial heterogeneity was indicated by an I2 value 

greater than 50% and a Q-test p-value ≤ 0.1, prompting the use 

of a random-effects model. In contrast, low heterogeneity, 

defined as an I2 value ≤ 50% and a Q-test p-value > 0.1, justified 

the use of a fixed-effects model.

3 Results

3.1 Study selection

A total of 753 records were identified through database searches, 

with 223 duplicates removed. After screening the remaining 530 

articles, 494 irrelevant records were excluded. An additional 25 

articles were excluded for the following reasons: conference 

abstracts (n = 7), absence of a risk prediction model (n = 11), fewer 

than two predictors (n = 1), abstract-only publications (n = 4), and 

none-primary literature (n = 2). Ultimately, 11 studies were 

included in the final analysis, collectively reporting 11 prediction 

models for PPMI following TAVR (Figure 1).

3.2 Study characteristics

The basic characteristics of the included studies are 

summarized in Table 1 and Supplementary Table S3. The 

studies were published between 2016 and 2024, with nine 

conducted in the United States and two in China. Of these, nine 

were retrospective cohort studies, and two were prospective 

cohort studies. Sample sizes ranged from 184–35,410 

participants. The outcomes of interest primarily included 

pacemaker implantation (n = 10), with one study focusing on 

new-onset conduction disturbances (n = 1). Reported PPMI rates 

ranged from 7.3%–31.0%.

The model information is presented in Table 2 and 

Supplementary Table S4. Logistic regression was the primary 

method used for model development. Additionally, machine 

learning techniques, such as gradient boosting machine (GBM) 

and random forest (RF), were applied in some studies. 

Supplementary Table S5 and Figure 2 summarizes the predictors 

included in the final models. Right bundle branch block (RBBB) 

was the most frequently used predictor, appearing in eight 

models. Other common predictors included self-expandable 

valve, PR interval, QRS interval, and atrioventricular block (AVB).

Model discrimination was reported in all studies, with 

C-statistic values ranging from 0.660–0.916. Calibration was 

assessed in seven studies, most commonly using the Hosmer- 

Lemeshow test.

3.3 Surgical characteristics

We conducted a comprehensive analysis of procedural and 

technical factors in%uencing the risk of PPM following TAVR. 
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This included surgical technique parameters, baseline anatomical 

features, procedural specifics, and other potential confounding 

variables (detailed in Supplementary Table S6). We also 

examined sources of heterogeneity across studies.

3.3.1 Vascular access approach

The transfemoral (TF) approach was the most frequently used 

in both PPM and non-PPM groups, although it was slightly more 

common in the PPM cohort, potentially due to its preferential use 

in high-risk patients with compromised vascular conditions. The 

transapical (TA) approach was more frequently employed in the 

PPM group, likely due to its anatomical proximity to the 

conduction system, particularly the left bundle branch (LBB). 

Alternative access routes (e.g., transaortic, subclavian) may 

in%uence PPM risk differently due to varying degrees of 

mechanical stress on the conduction pathways. Overall, the TF 

approach is generally associated with a lower risk of PPM, while 

the TA approach may increase the likelihood of conduction 

FIGURE 1 

Flowchart depicting a systematic review process. A total of 753 records were identified through database searching. After removing 223 duplicates, 

530 records remained for screening. Following screening, 494 records were excluded as irrelevant, and 36 full-text articles were assessed for 

eligibility. After excluding 25 additional articles (due to reasons such as conference abstracts, non-risk prediction models, fewer than 2 

predictors, abstract-only publications, and non-primary literature), 11 studies were ultimately included.
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system injury due to direct ventricular manipulation. Substantial 

variability in access strategies across studies may contribute to 

the observed differences in PPM incidence.

3.3.2 Valve type

Self-expanding valves were associated with a significantly 

higher incidence of PPM compared to balloon-expandable 

valves. This may be attributed to their greater radial force and 

deeper implantation depth, both of which can increase 

compression on the LBB. Differences in the distribution of valve 

types across studies (e.g., 87.4% self-expanding in Liu J vs. 

17.3% in Agasthi P) likely contributed to inter-study 

heterogeneity in PPM rates.

3.3.3 Implantation depth
Greater implantation depth was correlated with an increased 

risk of PPM, possibly due to enhanced mechanical stress on the 

His bundle and LBB. Variability in how implantation depth was 

defined (e.g., from the valve’s lower edge to the aortic annulus 

vs. ventricular extension length) may further explain 

heterogeneity in reported outcomes.

3.3.4 Oversizing

Significant valve oversizing (≥16%) was linked to a higher risk 

of PPM (41.7% vs. 24.1%), likely due to increased mechanical 

pressure on the conduction system. Inconsistencies in oversizing 

calculation methods (diameter-based vs. area-based) across 

studies represent an additional source of heterogeneity.

3.3.5 Balloon dilation

Pre-dilation may increase the risk of conduction system 

damage, although the evidence remains inconclusive. Post- 

dilation was slightly more common in the PPM group (8.6% vs. 

7.3%), though the sample size was limited.

3.3.6 Anesthesia method
The choice between general anesthesia and conscious sedation 

had minimal impact on the risk of PPM.

3.3.7 Baseline conduction abnormalities

RBBB was significantly more prevalent in the PPM group 

(29%–60% vs. 2.7%–12.2%). First-degree AVB was also more 

frequent in this cohort (27.6%–44.2% vs. 3.8%–27.9%).

3.3.8 Calcification burden

Patients in the PPM group exhibited higher calcium scores 

(2,389.97 vs. 2,142.8), suggesting a possible association between 

calcification burden and increased PPM risk.

3.3.9 Key heterogeneity sources
Valve prosthesis type was the primary contributor to 

heterogeneity, with additional factors including implantation 

depth, vascular access route, oversizing practices, and pre- 

existing conduction abnormalities.

TABLE 1 Basic characteristics of the included studies.

Author (year) Type Paper 
validated

Source 
data

Region Patient 
recruitment years

Main 
outcome

PPMI cases/ 
sample size (%)

EPV

Agasthi P et al. (26) D - RC United States of 

America

2014–2017 PPMI 189/964 (19.6%)a 1.29a

176/657 (26.8%)b 1.08b

Barrett CD et al. 

(27)

D/V - RC United States of 

America

2013–2019 PPMI 98/606 (16.2%) 2.72

Black GB 2023 V Kiani S 2019 PC United States of 

America

2019–2020 PPMI 48/661 (7.3%) NA

Kiani S et al. (28) D/V - RC United States of 

America

2013–2018 PMI 87/1,145 (7.6%) 1.98

Liu J et al. (32) D - RC China 2016–2022 NOCD 57/184 (31.0%) 1.58

Maeno Y et al. (33) D/V - PC United States of 

America

2013–2016 PPMI 35/240 (14.6%) 1.13

Qi Y et al. (29) D/V - RC China 2015–2022 PPMI 54/384 (14.0%) 1.35

Shivamurthy 

P et al. (30)

V Vejpongsa P 2018 RC United States of 

America

2011–2017 PPMI 90/917 (9.8%) NA

Truong VT et al. 

(31)

D - RC United States of 

America

2011–2019 PPMI 95/557 (17.1%) 2.64

Tsushima T et al. 

(10)

D/V - RC United States of 

America

2011–2018 CIED 184/888 (20.7%) NI

Vejpongsa P et al. 

(34)

D/V - RC United States of 

America

2012–2014 PPMI 3,955/35,410 (11.2%) 172.0

CIED, cardiac implantable electronic devices; D, development study; NA, not assessed; NI, no information; NOCD, new-onset conduction disturbance; PC, prospect cohort; PMI, pacemaker 

implantation; PPMI, permanent pacemaker implantation; RC, retrospective cohort; V, validation study.
aThe patients were included for a 30-d analysis.
bThe Patients were included for a 1-year analysis.
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FIGURE 2 

Bar chart illustrating four categories: Electrocardiographic data (19, with RBBB having 8), TAVR procedural characteristics (10, with self-expanding 

valves having 3), Echocardiogram data (7), Baseline characteristics (3), and CTA data (3). Each category and subcategory is aligned with its 

respective count.
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3.4 Models validation

Three studies conducted internal validation: two used 

bootstrapping, and one applied cross-validation. Furthermore, 

one study performed both internal and external validation.

3.5 Results of quality assessment

Supplementary Table S7 and Figure 3 provide a summary of the 

risk of bias and applicability assessments for the included studies. All 

nine model development studies were judged to have a high risk of 

bias (Figure 3A) but were considered to have low concerns regarding 

applicability (Figure 3B). Of the two model validation studies, one 

was assessed as having a high risk of bias, while the other was 

rated as having an unclear risk (Figure 3C); both were deemed to 

have low concerns regarding applicability (Figure 3D).

In the “participants” domain, nine studies were assessed as 

having a high risk of bias, primarily due to the use of 

inappropriate data sources (10, 26–33). In the “predictors” 

domain, five studies exhibited an unclear risk of bias, as they 

did not report quality control measures for predictor 

assessment, likely due to their retrospective design (26, 28, 29, 

31, 32). In the “outcome” domain, five studies were classified as 

having an unclear risk of bias because they failed to report 

whether outcomes and predictors were assessed independently 

(i.e., blinded assessment) (26, 28, 29, 31, 32).

In the “analysis” domain, ten studies were judged to have a 

high risk of bias due to the following issues: 

- Seven studies had insufficient sample sizes, failing to meet the 

criterion of more than 20 events per variable (EPV) (26–29, 

31–33).

- Three studies relied solely on univariate analysis for variable 

selection (10, 32, 33).

- Seven studies did not comprehensively evaluate the predictive 

performance of their models (10, 26, 27, 29, 30, 32, 33).

- Six study failed to address model overfitting, underfitting, and 

optimism in model performance (10, 27, 28, 31, 33, 34).

- Four studies did not report the coefficients of predictors in the 

multivariate regression model (10, 31–34).

- None of the studies provided details about complexities in 

the data.

Despite the risks of bias, all eleven studies were assessed as having 

a low risk of applicability.

3.6 Meta-analysis of validation models 
included in the review

This study conducted a meta-analysis to quantitatively 

synthesized relevant factors from 11 studies. The meta-analysis 

identified the following factors as significantly in%uencing PPMI 

FIGURE 3 

Four bar charts labeled A to D compare risk of bias (ROB) and applicability in development and validation studies. A and C assess ROB, showing 

varying levels of risk with red, yellow, and green bars. B and D assess applicability, showing predominantly low risk with green bars.
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after TAVR: right bundle branch block (RBBB), self-expandable 

valve and atrioventricular block (AVB) (Table 3).

Sensitivity analyses were performed using both fixed-effects 

and random-effects models. The combined effect sizes of the 

three predictors, along with their corresponding 95% CI, were 

calculated under both models, revealing no significant 

differences. These findings indicate that the combined outcomes 

are highly stable (Table 4).

Figure 4 presents a forest plot summarizing the pooled AUC 

estimates for the predictive performance of the model. Each of 

the 11 included studies is represented by a square (AUC 

estimate) and a horizontal line (95% confidence interval), with 

the size of the square indicating the study’s weight in the pooled 

analysis. The overall pooled AUC was 0.76 (95% CI: 0.72–0.80), 

suggesting moderate predictive performance. However, 

substantial heterogeneity was observed (I2 = 80%, p < 0.001), 

prompting subgroup analyses to explore potential sources of 

variability in PPMI following TAVR (see Table 5).

3.6.1 Subgroup analysis by publication year
Among studies published from 2016–2020 (n = 6), heterogeneity 

was high (I2 = 90%, p < 0.001), with a random-effects model yielding 

a pooled odds ratio (OR) of 0.78 (95% CI: 0.71–0.85, Z = 5.27, 

p < 0.001). In contrast, studies published between 2021 and 2024 

(n = 5) showed lower heterogeneity (I2 = 37%, p = 0.18), and a 

fixed-effects model produced a pooled OR of 0.75 (95% CI: 0.72– 

0.79, Z = 11.35, p < 0.001). These results suggest greater consistency 

in model performance in more recent studies.

3.6.2 Subgroup analysis by study region
Studies conducted in the Americas (n = 9) demonstrated 

substantial heterogeneity (I2 = 84%, p < 0.001), with a pooled OR 

of 0.77 (95% CI: 0.75–0.79, Z = 22.22, p < 0.001) using a 

random-effects model. In contrast, studies from Asia (n = 2) 

showed no heterogeneity (I2 = 0%, p = 1.00), and the fixed-effects 

model yielded a pooled OR of 0.71 (95% CI: 0.63–0.80, Z = 5.38, 

p < 0.001). These regional differences may re%ect variations in 

patient populations or clinical practices.

3.6.3 Subgroup analysis by valve type
For studies examining balloon-expandable valves (n = 3), 

moderate heterogeneity was observed (I2 = 74%, p = 0.02), with a 

pooled OR of 0.84 (95% CI: 0.76–0.93, Z = 3.31, p < 0.001) from 

a random-effects model. Studies evaluating self-expanding valves 

(n = 2) exhibited no heterogeneity (I2 = 0%, p = 1.00), and the 

fixed-effects model estimated a pooled OR of 0.71 (95% CI: 

0.63–0.80, Z = 5.38, p < 0.001). These findings suggest that valve 

type may in%uence the predictive performance of PPMI models.

3.6.4 Interpretation

The high heterogeneity among earlier studies may re%ect greater 

variability in methodological approaches or patient selection criteria. 

In contrast, the lower heterogeneity in recent studies likely re%ects 

increased standardization in model development and validation. 

Regional disparities may be attributed to genetic, demographic, or 

healthcare system differences. The lack of heterogeneity in Asian 

studies could result from smaller sample sizes or more 

homogeneous populations. Differences in valve type performance 

suggest that model accuracy may be in%uenced by procedural 

characteristics. Notably, balloon-expandable valves were associated 

with greater variability, potentially due to heterogeneity in 

implantation techniques or patient profiles, whereas self-expanding 

valves showed more consistent outcomes.

These findings highlight the importance of accounting for 

temporal, geographic, and procedural factors in the development 

and application of risk prediction models for PPMI after TAVR. 

Further studies are warranted to better understand sources of 

heterogeneity and enhance the generalizability of predictive models.

4 Discussion

4.1 Model performance and quality analysis 
of study

We evaluated 11 predictive models, all of which demonstrated 

moderate to good predictive performance during internal or 

external validation, except for the study by Shivamurthy et al. 

Reported AUC values ranged from 0.674–0.916. However, based 

on the PROBAST checklist, ten studies were classified as having 

a high risk of bias, which limits the generalizability of these 

TABLE 4 Results of sensitivity analyses on PPMI after TAVR 
predictive factors.

Predictors No 
studies

Fixed effects 
models

Random 
effects models

OR (95% 
CI)

P OR (95% 
CI)

P

RBBB 6 6.89 (5.30, 

8.95)

<0.001 8.40 (4.91, 

14.37)

<0.001

Self-expandable 

valve

2 3.57 (2.32, 

5.50)

<0.001 3.57 (2.32, 

5.50)

<0.001

AVB 2 5.42 (3.52, 

8.32)

<0.001 5.42 (1.44, 

20.38)

0.01

TABLE 3 Results of the meta-analysis on PPMI after TAVR predictive factors.

Predictors No studies Heterogeneity 
test

Effects models Meta-analysis

I
2 (%) P OR (95% CI) Z P

RBBB 6 71 0.004 Random effects models 8.40 (4.91, 14.37) 7.77 <0.001

Self-expandable valve 2 0 0.660 Fixed effects models 3.57 (2.32, 5.50) 5.79 <0.001

AVB 2 89 0.002 Random effects models 5.42 (1.44, 20.38) 2.50 0.01
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predictive models. The pooled AUC for the 11 models included in 

the meta-analysis was 0.76 (95% CI: 0.72–0.80). The substantial 

heterogeneity among the studies may be attributed to differences 

in populations, predictors, and methodologies.

Despite variability in performance and quality, these 

predictive models provide valuable insights for future research. 

For example, the study by Barrett et al. utilized randomized 

blinded number generation to divide patients into training and 

validation cohorts, a method that ensures the assessor is 

unaware of predictor information when determining outcomes, 

thereby preventing observer bias caused by subjective judgment. 

In contrast, the study by Qi et al. faced challenges, including a 

sample size yielding an EPV ratio below 20 and data derived 

from a single-center retrospective design in East China, leading 

to risks of bias in the participants, predictors, and outcome 

domains. However, Qi et al. excelled in the analysis domain by 

addressing missing data through multiple imputation and 

conducting both internal and external validation to enhance the 

accuracy and reliability of the model. Many of the included 

studies were retrospective, which limits the ability to establish 

causal relationships and highlights the need for prospective 

validation in external cohorts. Additionally some models relied 

on univariate analysis for predictor screening, a methodological 

limitation that should be addressed in future research to 

improve model robustness and generalizability.

The study by Truong et al. integrated traditional logistic 

regression with machine learning methods for model construction. 

Research indicates that machine learning techniques exhibited 

greater accuracy compared to traditional logistic regression 

analysis. Research indicates that machine learning outperforms 

traditional methods in its ability to model complex nonlinear 

relationships, thereby enhancing predictive accuracy and 

TABLE 5 Results of heterogeneity analyses on PPMI after TAVR.

Predictors Subgroups No studies Heterogeneity  

test

Effects  

models

Meta-analysis

I
2 (%) P OR (95% CI) Z P

Publication data 2016–2020 6 90 <0.001 Random effects models 0.78 (0.71, 0.85) 5.27 <0.001

2021–2024 5 37 0.18 Fixed effects models 0.75 (0.72, 0.79) 11.35 <0.001

Study region Americas 9 84 <0.001 Random effects models 0.77 (0.75, 0.79) 22.22 <0.001

Asian 2 0 1.00 Fixed effects models 0.71 (0.63, 0.80) 5.38 <0.001

Valve type Balloon expandable  
valve

3 74 0.02 Random effects models 0.84 (0.76, 0.93) 3.31 <0.001

Self-expanding valve 2 0 1.00 Fixed effects models 0.71 (0.63, 0.80) 5.38 <0.001

FIGURE 4 

Forest plot showing C-statistics for various studies, each represented by a square with horizontal lines indicating confidence intervals. Studies include 

Shivamurthy et al. (30), Liu et al. (32), and others, with values ranging from 0.67 to 0.92. Summary estimate and prediction interval appear at the 

bottom, both at 0.76.
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robustness. Machine learning is particularly effective in managing 

large-scale, high-dimensional, and incomplete datasets, while also 

enabling continuous updates as new data become available, thereby 

improving adaptability and performance. Nonetheless, traditional 

methods such as logistic regression retain complementary value in 

certain contexts. The choice of model should depend on factors 

such as the problem’s nature, dataset scale, and data quality.

Overall, while the included models demonstrated moderate to 

good performance, the high risk of bias highlights the need for 

significant improvements. Future research should prioritize 

optimizing sample sizes, implementing robust methods for handling 

missing data, refining predictor selection processes, accounting for 

data complexity, and enhancing model fitting techniques.

4.2 The predictors used in prediction model

The frequently identified predictors carry significant 

implications for nursing practice and future research.

Baseline RBBB was identified as the strongest predictor of PPMI 

after TAVR (35, 36). Studies have shown that baseline RBBB 

significantly increases the incidence of PPMI after TAVR (37, 38), 

with patients presenting with preoperative RBBB having nearly a 

five-fold increased risk of requiring PPMI post-TAVR (39).

Self-expanding valves were also identified as a predictor of PPMI 

after TAVR (40). The incidence of PPMI was higher in patients 

receiving self-expanding valves compared to those with balloon- 

expandable valves (17.4% vs. 6.5%). This discrepancy may be 

attributed to the unique characteristics of self-expanding valves, 

including their high radial support and self-expanding properties. 

These valves have a taller frame, are positioned deeper in the left 

ventricular out%ow tract, and exert continuous pressure on the 

adjacent conduction system after placement, resulting in a 

significantly higher rate of PPMI compared to balloon-expandable 

valves (8).

Oversized valves are associated with an increased risk of PPMI 

following TAVR (41). Regarding frame morphology, the in%ow tract 

of oversized valves exhibits greater deformation, as the diameter at 

the lower end of the in%ow tract exceeds that at the site of contact 

with the aortic annulus and lea%ets. For instance, the Evolut R 

26 mm valve, with its relatively cylindrical in%ow tract, is more 

prone to developing a cratered in%ow tract, while the Evolut 34 mm 

XL valve provides a more stable anchorage site. However, oversized 

valves are more prone to unpredictable positional self-adjustments 

after deployment due to uneven depth beneath the annulus, 

potentially leading to complications such as displacement (42).

Electrocardiographic changes, including QRS widening and 

PR interval prolongation following TAVR, may indicate damage 

to the conduction system below the atrioventricular (AV) node 

and the His bundle. Notably, 82% of patients with a prolonged 

PR interval after TAVR exhibit a new-onset prolongation of the 

His-ventricle (HV) interval (43). A prolonged HV interval 

(>70 ms) increases the risk of AV block by fourfold (44). Based 

on these findings, electrophysiological testing is recommended 

for high-risk patients following TAVR to identify potential 

delayed-onset AV block (45).

While RBBB and valve type emerged as dominant predictors in 

our analysis, other clinically relevant factors—such as body surface 

area (BSA), sex, and aortic valve calcium scores—were less 

frequently incorporated. This likely re%ects limitations in the 

original studies: 

• Anatomical factors [e.g., left ventricular out%ow tract (LVOT) 

calcium distribution] were infrequently reported, despite their 

established association with conduction disturbances (46, 47).

• BSA and female sex have been associated with a higher 

incidence of conduction abnormalities following TAVR 

(48–50); however, none of the models included in this review 

incorporated these variables in their final predictive algorithms.

• Calcium scoring variability, such as differences between 

Agatston and volume-based methods, may have hindered 

comparability across studies (51).

To enhance model performance and generalizability, future 

predictive models should prioritize the standardized collection 

and reporting of these variables.

5 Limitations

Several limitations of this study should be acknowledged. First, 

some prediction models lacked external validation, thereby limiting 

the assessment of their generalizability. Second, certain predictive 

factors were reported in only a single study and thus could not 

be included in the meta-analysis, potentially in%uencing the 

overall results. Third, due to language restrictions, this review 

included only studies published in English and Chinese, which 

may have excluded relevant research in other major languages. 

Fourth, the validation cohorts were predominantly from U.S. 

populations (9 of 11 studies), with only two based on Chinese 

cohorts. This geographic imbalance may reduce the applicability 

of findings to other ethnic groups, particularly Asian populations, 

where anatomical characteristics of the aortic valve and 

pacemaker implantation thresholds may differ. Additionally, there 

remains a paucity of high-quality prospective studies on PPMI 

prediction models. Given the ongoing evolution of TAVR 

technology, variations in implantation techniques and patient 

selection across time may further compromise study comparability.

6 Conclusion

This systematic review included 11 studies reporting 11 

prediction models for PPMI after TAVR. The results indicated 

that the pooled AUC for the nine validated models was 0.76 

(95% CI: 0.72–0.80), re%ecting a moderate level of 

discriminatory ability. However, most of the included studies 

were assessed as having a high risk of bias according to the 

PROBAST checklist. Current prediction models for PPMI after 

TAVR do not meet PROBAST standards.

To improve the quality of future research, it is essential for 

researchers to familiarize themselves with the PROBAST checklist 

and adhere to the reporting guidelines outlined in the Transparent 
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Reporting of a Multivariable Prediction Model for Individual 

Prognosis or Diagnosis (TRIPOD) statement. Future studies 

should aim to develop robust prediction models using larger, 

multi-ethnic cohorts—particularly those inclusive of Asian and 

African populations—employ rigorous methodological designs, 

and incorporate multi-center external validation to assess potential 

geographic and ethnic variations in PPM implantation risk factors.
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