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Background: Preeclampsia is one of the main causes of increased maternal and 

infant mortality and morbidity during pregnancy. The aryl hydrocarbon receptor 

(AhR) is a ligand-activated transcription factor ubiquitously found in mammals that 

can directly or indirectly regulate various physiological processes when activated.

Methods: In this case-control study, 74 patients with preeclampsia and 120 

healthy pregnant controls were recruited. SNaPshot technology was used to 

detect genetic polymorphisms in four TagSNPs of the AhR gene. In addition, 

quantitative real-time PCR and western blotting were used to detect the 

expression of AhR in placental tissues from 21 patients with preeclampsia and 

20 healthy controls. Subsequently, siRNA and drug treatment were used in vitro 

studies to knock down and inhibit AhR expression in human umbilical vein 

endothelial cells (HUVECs).

Results: The allele frequency of rs713150G in the preeclampsia group was lower 

than that in the control group (OR = 0.467, 95% CI = 0.286-0.763; P = 0.002). 

Detection of AhR expression levels in placental tissue revealed that individuals 

who did not carry the rs713150G allele had lower expression of AhR in 

placental tissue than did those who carried the rs713150G allele, and lower 

AhR expression and nuclear translocation were positively correlated with the 

occurrence of preeclampsia. In vitro studies revealed that low expression of 

AhR in HUVECs suppressed the AhR signalling pathway, inhibited the 

expression of vascular endothelial growth factor A (VEGF-A), and inhibited the 

tube formation of HUVECs. And inhibition of AhR activity had a similar effect.

Conclusion: The AhR gene polymorphism is associated with susceptibility of 

preeclampsia in the Chinese population and share in its pathogenesis as 

noncarriage of rs713150G leads to low expression of AhR in placental tissue that 

subsequently might participate in the development of preeclampsia by inhibiting 

placental angiogenesis.
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Introduction

Preeclampsia (PE) is a pregnancy-related condition characterized by hypertension and 

proteinuria, manifesting as hypertension, proteinuria, oedema, foetal growth restriction, 

etc., after 20 weeks of gestation (1). It is a common obstetric complication, with an 

incidence rate of 5%–8% (2). Worldwide, each year, it is responsible for over 500,000 fetal 
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and neonatal deaths and over 70,000 maternal deaths (3), severely 

affects the health of mothers and infants, and is a major cause of 

increased maternal and perinatal foetal morbidity and mortality.

The pathogenesis of preeclampsia is still uncertain. The 

symptoms of preeclampsia can be relieved with the delivery of 

the placenta, so many scholars believe that the placenta 

plays a role in the development of preeclampsia. In normal 

pregnancy, placental angiogenesis and spiral artery remodeling 

provide sufficient blood perfusion to the placenta (4), and 

vascular endothelial growth factor (VEGF) plays a central role in 

angiogenesis (5). In preeclampsia, placental ischaemia and 

hypoxia are caused by “shallow placental implantation” and the 

extremely insufficient recasting of the uterine spiral artery, 

resulting in a series of symptoms due to the inability to 

exchange materials between the mother and foetus and the 

obstruction of foetal development (5). Research has shown that 

patients with preeclampsia have less blood 6ow in the placenta 

than do normal pregnant women (6) and a significantly smaller 

spiral artery diameter (4). In addition, the onset of preeclampsia 

tends to be familial, with a heritability of approximately 55% 

(7). Studies on the familial aggregation of pregnant women with 

preeclampsia and the concordance of preeclampsia occurring in 

monozygotic twins have also shown that there is genetic 

susceptibility to the development of the disease (8).

The aryl hydrocarbon receptor (AhR) is a ligand-activated 

transcription factor belonging to the basic helix-loop-helix (bHLH) 

Per–Arnt–Sim (PAS) transcription factor family. It is 

approximately 50 kb long and contains 11 exons located on 

chromosome 7p21.1. The AhR gene has multiple SNPs and is 

associated with the occurrence of various diseases. In the resting 

state, AhR is a cytoplasmic receptor protein that is activated by 

ligands and transferred to the nucleus to act as a transcription 

factor, directly or indirectly regulating various physiological 

processes. AhR is expressed in most tissues except skeletal muscle, 

with the highest expression levels in the liver, lungs, and placenta 

(9). AhR is expressed in the endothelial cells of villous large-blood 

vessels, the endothelial cells of umbilical cord veins/arteries and the 

decidua, with individual differences in expression (10). The human 

cytochrome P450 1A1 (CYP1A1) gene is one of the main target 

genes of AhR (11). CH223191, a specific antagonist of AhR, can 

effectively inhibit the nuclear translocation of AhR and the 

expression of the target gene CYP1A1 (12). In this study, we 

investigated the correlation between AhR gene polymorphisms and 

preeclampsia, as well as the role of AhR in angiogenesis, to identify 

preeclampsia susceptibility genes conducive to the early diagnosis 

and prediction of this disease and to provide a valuable research 

basis for an in-depth exploration of the mechanisms of preeclampsia.

Materials and methods

Subjects

In this case‒control study, 194 pregnant women were 

recruited, including 74 patients with preeclampsia and 120 

normal pregnant women. The samples collected for the study 

included the peripheral blood of pregnant women 

(preeclampsia: control = 74:120) and placental tissue after 

delivery (preeclampsia: control = 21:20). All samples were 

collected from pregnant women who gave birth at Yan’an 

Hospital affiliated to Kunming Medical University from June 

2022 to October 2023. Preeclampsia was diagnosed using the 

criteria of the International Society for the Study of 

Hypertension in Pregnancy (ISSHP), as follows: gestational 

hypertension (clinic sBP 140 mmHg and/or dBP ≥90 mmHg) 

accompanied by one or more of the following new-onset 

conditions at ≥20 weeks’ gestation: 1. Proteinuria; 2. Other 

maternal end-organ dysfunction, including neurological 

complications, pulmonary oedema, haematological complications, 

AKI and liver involvement; 3. Uteroplacental dysfunction (3). 

Subjects in the control group came from the same hospital and 

consisted of pregnant volunteer women with normal blood 

pressure, at least one prior pregnancy and no history of 

preeclampsia. Blood samples were collected by drawing 1 ml of 

venous blood from the pregnant woman and storing it in an 

EDTA-K2 anticoagulation tube at −80 °C. Tissue samples were 

collected within 5 min of delivery by cutting the placenta 

maternal surface into small pieces of approximately 

1.0 cm × 1.0 cm × 1.0 cm under sterile conditions, avoiding 

necrotic, hemorrhagic and calcified areas. The tissue samples 

were rinsed thoroughly with PBS and stored at −80 °C. All 

participants signed an informed consent form for the collection 

of peripheral blood and placental tissue samples. The study was 

approved by the Medical Ethics Committee of Kunming Medical 

University (Approval No. KMMU2022MEC049).

Genotyping of AhR SNPs

Genomic DNA was extracted from blood samples using the 

DNeasy Blood & Tissue KitTM (69506, QIAGEN) according to 

the manufacturer’s instructions. The obtained DNA was stored 

at −20 °C until analysis.

The required data were downloaded from the 1,000 

Genomes Browser (13) (https://www.ncbi.nlm.nih.gov/variation/ 

tools/1000genomes/). TagSNPs were selected using HaploView4. 

2 software (14) (the upstream and downstream range settings 

were 2K, MAF ≥ 0.05, R2 
≥ 0.8). Five TagSNPs for the AhR gene 

were obtained (Supplementary Table S1). The SNaPshot method 

was used to analyse the polymorphisms of the SNP sites. The 

primers used in our study are shown in Supplementary 

Table S2. For genotype frequency analysis, dominant and 

recessive models were specified a priori.

Quantitative real-time PCR

Total RNA was extracted from placental samples utilizing the 

TRIzol method. The RNA from each sample was reverse 

transcribed to cDNA using reverse transcription kit (RR047A, 

Takara). qRT‒PCR was performed with a BlastTaqTM 2×qpcr 

MasterMix Kit (Applied Biological Materials Inc., Canada) and a 
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QuantStudio 6 real-time PCR system under the following thermal 

cycle conditions: 42 °C for 20 min and 95 °C for 3 min, 40 cycles 

of 15 s at 95 °C and 1 min at 60 °C, 15 s at 95 °C, 1 min at 60 °C 

and 15 s at 95 °C. Relative fold changes in mRNA expression were 

calculated via the 2-ΔΔCt method. GraphPad Prism 6 was used to 

create graphs. The primer sequences are shown in Supplementary 

Table S3.

Western blotting

Total protein was extracted with protein lysis buffer, and 

nuclear protein was extracted with a nuclear protein extraction 

kit (BB-3166, BestBio). The antibodies used for WB were anti- 

Ah receptor antibody (sc-133088, Santa Cruz Biotechnology), 

anti- Lamin B1 monoclonal antibody (66095-1-Ig, Proteintech), 

anti-CYP1A1 polyclonal antibody (13241-1-AP, Proteintech), 

anti-VEGF-A monoclonal antibody (66828-1-Ig, Proteintech), β- 

actin monoclonal antibody (AF0003, Beyotime Biotechnology) 

and HRP-conjugated Affinipure goat anti-mouse IgG (H + L) 

(SA00001-1, Proteintech).

HUVEC culture

Human umbilical vein endothelial cells (HUVECs, GNHu39) 

were purchased from the cell bank of the Chinese Academy of 

Sciences. HUVECs were cultured in RPMI-1640 medium 

supplemented with 10% FBS (CO4001, VivaCell) and 1% 

penicillin‒streptomycin (C3421‒0100, VivaCell). The cells were 

incubated at 37 °C in a 5% CO2 atmosphere. HUVECs from the 

third to sixth passages were used in the experiments. The cells 

were seeded in 6-well plates, and subsequent experiments were 

conducted when they reached 50%–70% con6uency.

Knockdown of AhR using small interfering 
RNA

The siRNA sequence was designed on the basis of the 

sequence provided by NCBI GenBank (15) (Supplementary 

Table S4). Cells were transfected with siRNA at a concentration 

of 40 nmol/well in DMEM (C3113, VivaCell) via PEI 

transfection reagent (24765-1, Polysciences) according to the 

manufacturer’s instructions. After 4 h, the medium was replaced 

with normal HUVEC medium, and the cells were incubated for 

24 h in a suitable environment. The mRNA and protein 

expression levels of AhR and its target gene CYP1A1 were 

detected via the methods described in Sections 2.3 and 2.4 to 

evaluate the efficiency of siRNA interference.

Inhibition of AhR activity using CH223191

An appropriate amount of DMSO solution was added to 

CH223191 powder (HY-12684, MedChemExpress) to 

formulate a 10 mM CH223191 stock solution. The optimal 

time and concentration of CH223191 were detected via a 

CCK8 assay (PF00004, Proteintech) according to the 

manufacturer’s instructions. The protein expression levels of 

nuclear AhR, total AhR and CYP1A1 were detected via the 

methods described in Section 2.4 to evaluate the efficiency of 

inhibiting AhR activity.

Tube formation assay

A 96-well plate was placed on ice, and 50 μl of Matrigel 

(356234, BD) was coated on each well. After incubation at 

37 °C for 30 min, 5 × 104 HUVECs in 100 μl of the 

logarithmic growth phase were seeded in each well and 

cultured at 37 °C and 5% CO2. Photos of capillary-like tubes 

were captured by an inverted microscope (Axio Observer.Z1, 

ZEISS, Germany) 4 h after seeding. The junctions, total 

length and total branching length of the tubes were quantified 

using ImageJ.

Scratch assay

HUVECs (1 × 105) in 1 ml of extract were seeded in 12-well 

plates. After attachment, the cells were transfected or dosed 

according to the experimental requirements and cultured at 

37 °C and 5% CO2. When the cells reached 90% con6uence, a 

scratch was made in the centre of the well using a 10 μl tip. 

Images were captured at 0 and 24 h using an inverted 

microscope (Axio Observer.Z1, ZEISS, Germany). The migration 

area was quantified using ImageJ.

Statistical analysis

For each SNP, SHEsis software (16) was used to evaluate the 

Hardy‒Weinberg equilibrium, the chi-square test or Fisher’s 

exact test was used to compare gene distributions among 

groups, and multivariate logistic regression was employed to 

calculate odds ratios (ORs) and 95% confidence intervals 

(CIs). The allelic associations between the preeclampsia group 

and the control group were evaluated. For continuous 

variables, the Shapiro‒Wilk test was used to test normality. 

Normally distributed continuous variables are expressed as 

the mean ± standard deviation, and nonnormally distributed 

variables are expressed as the median and interquartile range 

(IQR). A t test was used to compare measured data between 

the groups. The X2 test was used to compare count data 

between groups. The GPower3.1.9.7 was used to calculate 

post-hoc power for SNP. ImageJ (17) was used to analyse 

the greyscale values of the images. SPSS 23.0 was used to 

perform one-way ANOVA. GraphPad Prism 6 was used 

to create figures. P < 0.05 was considered to indicate 

statistical significance.
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Results

Clinical characteristics of pregnant women 
in the preeclampsia and control groups

As shown in Table 1, no significant differences in age and BMI 

were detected between the two groups (p > 0.05). However, there 

were significant differences in gestational age, primiparity, 

previous miscarriages and caesarean section between the two 

groups (p < 0.05).

Correlation between AhR TagSNPs and 
preeclampsia

Hardy–Weinberg equilibrium test for AhR gene 

TagSNPs
In this study, we tested 5 TagSNPs for the AhR gene in all 

blood samples. The HWE-P of rs7796976 was less than 0.05, 

and the remaining 4 loci passed the test for Hardy–Weinberg 

equilibrium (Supplementary Table S5). The rs7796976 locus was 

not included in the subsequent studies.

Allele frequencies in the preeclampsia and 

control groups
Among the 4 TagSNPs in the AHR gene passed the HWE test, 

the frequency of rs713150G in the preeclampsia group was lower 

than that in the control group (OR = 0.467, 95% CI = 0.286–0.763; 

P = 0.002). No significant differences in allele frequency for the 

other loci in the AhR gene were observed between the two 

groups (Table 2). With the actual sample size (total alleles) 

N = 388, α = 0.05, and the observed effect size Phi φ = 0.16, post- 

hoc power for rs713150 was 0.87.

Genotype frequencies in the preeclampsia and 

control groups
For rs713150, the alleles are C and G, and the G allele is the 

minor allele. The CC, GC and GG genotype frequencies of the 

preeclampsia group were 64.86%, 32.43%, and 2.7%, respectively, 

and those of the control group were 44.17%, 45.0%, and 10.83%, 

respectively (P = 0.008). The G allele, which has a lower frequency 

in the population, is considered a mutant gene. In the dominant 

model, those carrying this mutation were less likely to develop 

preeclampsia (GG + GC vs. CC, OR = 0.428, 95% CI = 0.236– 

0.779; P = 0.018). In the recessive model, this difference was not 

significant (GG vs. GC + CC). A significant association was 

observed only under the dominant model. Therefore, we suggest 

that if the rs713150G is associated with the development of 

preeclampsia, it likely follows a dominant model. No significant 

differences in genotype frequencies for the remaining detected 

TagSNPs were observed between the two groups (Table 3).

Correlation between placental AhR 
expression levels and preeclampsia

The mRNA and protein expression levels of AhR were 

examined in all placental tissues. Compared with those from 

normal pregnant women, placental tissues from women with 

preeclampsia presented significant decreases in AhR mRNA 

expression (0.68, Figure 1a), total AhR protein expression (0.44, 

Figure 1b) and nuclear AhR protein expression (0.66, 

Figure 1b). We also compared the ratio of nuclear AhR protein 

to total AhR protein in placental tissues between the two 

groups, and the ratio was significantly lower in the preeclampsia 

group (control vs. preeclampsia: 0.680 ± 0.085 vs. 0.251 ± 0.034, 

t = 4.681, P = 0.003; Figure 1c). The inefficiency of nuclear 

transfer was associated with the inhibition of AhR.

Correlation between the rs713150 
polymorphism and AhR protein expression

The protein expression levels of AhR corresponding to 

different genotypes of the AhR gene rs713150 were 

TABLE 1 Clinical characteristics of pregnant women in the preeclampsia 
and control groups.

Variable Preeclampsia  
(n = 74)

Control  
(n = 120)

t/χ2
P

Age (years) 35.176 ± 4.492 33.783 ± 5.567 1.911 0.058

BMI (kg/m2) 23.704 ± 3.614 24.491 ± 2.854 1.593 0.114

Gestational age (weeks) 38.365 ± 2.079 37.788 ± 1.621 2.039 0.044

Primiparity (%) 43.243 15.000 19.086 <0.001

Previous miscarriages (%) 70.270 50.833 7.111 0.008

Caesarean section (%) 56.757 37.500 6.862 0.009

Bold values indicate statistical significance (P < 0.05).

TABLE 2 Distributions of allele frequencies in the preeclampsia and control groups.

SNPs Alleles Preeclampsia Control OR (95%CI) X
2

P

n % n %

rs2066853 G 99 66.89% 170 70.83% 0.832 (0.535–1.293) 0.413 0.669

A 49 33.11% 70 29.17%

rs2158041 T 20 13.51% 49 20.42% 0.609 (0.346–1.073) 2.984 0.084

C 128 86.49% 191 79.58%

rs713150 G 28 18.92% 80 33.33% 0.467 (0.286–0.763) 9.469 0.002

C 120 81.08% 160 66.67%

rs10249788 C 105 70.95% 179 74.58% 0.832 (0.526–1.316) 0.617 0.479

T 43 29.05% 61 25.42%
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analysed in all placental tissues. Based on the results of the 

genetic model study, analyses were conducted under the 

dominant model. The expression level of AhR with CC 

genotype was significantly lower than that with CG + GG 

genotype (CC vs. CG + GG: 0.152 ± 0.083 vs. 0.332 ± 0.297, 

t = −2.594, P = 0.016), suggesting that individuals who do 

not carry rs713150G have lower AhR protein expression. 

This corresponds with the results obtained in our 

aforementioned study: Compared with control group, the 

frequency of rs713150G was lower in the preeclampsia 

group, and the expression level of AhR in the placenta was 

also significantly reduced.

Correlation between AhR and the 
angiogenic capacity of HUVECs

Previous studies have reported that AhR may be important in 

the regulation of vascular development (18–21). Our previous 

study revealed decreased AhR expression and nuclear 

translocation in the placentas of women with preeclampsia. This 

part of the study focused on the impact of inhibiting the AhR 

signalling pathway on angiogenesis.

Knockdown of AhR expression and its effect on 
angiogenesis in HUVECs

HUVECs were transfected with siRNA specific for AhR (siAhR). 

The expression levels of AhR and its target gene CYP1A1 were 

detected by WB and RT‒qPCR to evaluate the efficiency of siRNA 

interference. Both AhR expression (Figures 2a,b) and CYP1A1 

expression (Figure 2c) were significantly lower in the si-AhR 

group than in the si-NC group. These results suggest that the 

AhR-specific siRNA sequence effectively inhibited the expression 

of AhR in HUVECs, thereby suppressing AhR signalling.

Following the transfection of HUVECs with siAhR for 24 h, tube 

formation, migration and the expression of the angiogenic factor 

VEGF-A were used as important indicators of the angiogenic 

capacity of HUVECs in vitro. in vitro HUVEC tube formation 

assays revealed that fewer tubes formed in the si-AhR group than 

in the si-NC group (Figure 2d), indicating that vascularization 

inhibited by reduced level of AhR protein expression. Further 

analysis via ImageJ revealed that all three core indicators of 

tubular formation parameters were significantly reduced in the si- 

AhR group, with fewer intersections and shorter total tubular and 

branch lengths (Figure 2e–g, Supplementary Table S6). in vitro 

scratch assays revealed that there was no statistically significant 

difference in the relative migration area of HUVECs in the si-AhR 

TABLE 3 Distributions of genotype frequencies in the preeclampsia and control groups.

SNPs Preeclampsia (n = 74) Control (n = 120) P AB + BB vs. AA BB vs. AA + AB

AA AB BB AA AB BB OR (95% CI) P OR (95% CI) P

rs2066853 29 (0.392) 41 (0.554) 4 (0.054) 59 (0.492) 52 (0.433) 9 (0.075) 0.259 1.501 (0.834–2.702) 0.185 0.705 (0.209–2.376) 0.769

rs2158041 54 (0.730) 20 (0.270) 0.000 75 (0.625) 41 (0.342) 4 (0.033) 0.233 0.617 (0.328–1.162) 0.133 1.034 (1.001–1.069) 0.144

rs713150 48 (0.649) 24 (0.324) 2 (0.027) 53 (0.442) 54 (0.45) 13 (0.108) 0.008 0.428 (0.236–0.779) 0.005 0.229 (0.050–1.044) 0.052

rs10249788 37 (0.5) 31 (0.419) 6 (0.081) 72 (0.6) 35 (0.292) 13 (0.108) 0.188 1.500 (0.837–2.690) 0.183 0.726(0.263–2.002) 0.625

A, major allele; B, minor allele.

Bold values indicate statistical significance (P < 0.05).

FIGURE 1 

Placental AhR mRNA and protein expression in the control and preeclampsia groups. (a) Placental AhR mRNA expression; β-actin was used as an 

internal control. (b) Total and nuclear placental AhR protein expression; β-actin was used as the internal control for total protein, and LaminB 

was used as the internal control for nuclear protein. (c) Ratio of nuclear to total placental AhR protein. PE, preeclampsia; AhR, aryl hydrocarbon 

receptor. *P < 0.05, **P < 0.01.
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FIGURE 2 

Influence of downregulation of AhR expression on angiogenesis in vitro. (a) Significant knockdown of AhR mRNA expression via siAhR. (b) Significant 

knockdown of AhR protein expression via siAhR. (c) CYP1A1 protein expression levels were significantly reduced in HUVECs that were transfected 

with siAhR for 24 h. (d) Images of HUVEC tube formation on Matrigel at 4 h. (e) Quantification of junctions (n = 3). (f) Quantification of total 

length (n = 3). (g) Quantification of total branching length (n = 3). (h) Images of HUVEC migration at 0 and 24 h; the red lines indicate cell 

migration fronts. (i) Quantification of the relative migration area. (j) Levels of VEGF-A mRNA expression after transfection with siRNA. (k) Levels of 

VEGF-A protein expression after transfection with siRNA. AhR, aryl hydrocarbon receptor; CYP1A1, cytochrome P450 1A1. *P < 0.05, **P < 0.01, 

***P < 0.001.
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group compared with the si-NC group (Figures 2h,i). The RT‒qPCR 

results revealed lower levels of VEGF-A mRNA transcripts (0.52) in 

the si-AhR group than in the control group (Figure 2j). In 

accordance with the RT‒qPCR results, downregulated levels of 

VEGF-A protein expression (0.43) were detected via western 

blotting in the si-AhR group (Figure 2k). Therefore, these findings 

indicate that reducing the expression of AhR caused a significant 

reduction in the tube-forming ability and a significant decrease in 

the expression of VEGF-A in HUVECs but had no significant 

effect on their migration ability.

Inhibition of AhR activity and its effect on 

angiogenesis in HUVECs
CH223191 is an effective and specific antagonist of AhR that 

can inhibit the nuclear transfer of AhR and its binding to DNA. 

HUVECs were treated with 4 μM CH223191 for 24 h. The 

protein expression levels of CYP1A1, nuclear AhR and total 

AhR were detected via WB to evaluate the inhibitory efficiency 

of CH223191. Compared with those in the DMSO group, the 

CYP1A1 protein expression levels in the CH223191 group 

decreased (Figure 3a), the nuclear AhR protein expression levels 

decreased significantly, and the total AhR protein expression 

level was unchanged (Figures 3b,c). These results suggest that 

the CH223191 concentration and duration of treatment 

effectively inhibited the nuclear translocation of AhR in 

HUVECs, thereby suppressing AhR signalling.

Following the treatment of HUVECs with CH223191 for 24 h, 

tube formation, migration and VEGF-A expression were used as 

important indicators of the angiogenic capacity of HUVECs in 

vitro. in vitro HUVEC tube formation assays revealed that the 

formation of fragmented tubes in the CH223191 group was 

somewhat affected compared with that in the DMSO group 

(Figure 3d). Further analysis via ImageJ revealed that among the 

three core parameters of tubular formation, only the total 

branch length decreased significantly, and there were no 

significant differences in the other parameters (Figures 3e–g, 

Supplementary Table S6). in vitro scratch assays revealed that 

the relative migration area of HUVECs in the CH223191 group 

decreased by approximately 47% compared with that in the 

DMSO group (Figures 3h,i). The RT‒qPCR results revealed 

reduced levels of VEGF-A mRNA transcripts (0.46) in the 

CH223191 group compared with those in the DMSO group 

(Figure 3j). In accordance with the RT‒qPCR results, 

downregulated levels of VEGF-A protein expression (0.32) were 

detected via western blotting in the CH223191 group 

(Figure 3k). Therefore, these findings indicate that inhibiting 

AhR nuclear transfer significantly reduced the migration ability 

of HUVECs, decreased their tube-forming ability to a certain 

extent, and significantly decreased their expression of VEGF-A.

Discussion

The development of preeclampsia is associated with insufficient 

remodeling of uterine spiral arterioles; thus, genes associated with 

angiogenesis or maintenance are likely susceptibility genes for 

preeclampsia. AhR was originally discovered in toxicology research 

as a mediator of toxicity caused by exogenous substances (22). In 

the past decade, researchers have become increasingly aware that 

endogenous activation of AhR has important effects on many 

normal physiological processes, such as mediating the proliferation 

of vascular cells in the body (18). There are many disease-associated 

SNP polymorphisms in the AhR gene. The occurrence of Crohn’s 

disease was found to be associated with a mutation at the AhR gene 

rs2158041 in the Chinese population (23), whereas xeroderma (24), 

rheumatoid arthritis (25), glioma (26), and vitiligo (27) have been 

associated with polymorphisms in the SNPs of the AhR gene.

In this case‒control study, 74 patients with preeclampsia and 120 

normal pregnant women were recruited. We first explored the 

associations of 4 TagSNPs in the AhR gene with preeclampsia. 

These 4 TagSNPs were located in the promoter region 

(rs10249788), exon region (rs2066853), and intron region 

(rs2158041 and rs713150), respectively. Our results showed that 

the genotype frequency and allele frequency of rs713150 were 

significantly different between the two groups and were likely to be 

inherited in a dominant model in the population. Further analysis 

revealed that the rs713150G allele frequency (MAF) in the 

preeclampsia group was significantly lower than that in the control 

group, and the OR was less than 1, indicating that this locus may 

be a protective factor for disease development. Therefore, we 

suggest that AhR gene polymorphism is associated with the 

development of preeclampsia and that rs713150G is a protective 

factor against disease development. By exploiting linkage 

disequilibrium in the genome, we selected tag SNPs that capture 

most variation within each LD block. Still, the issue of incomplete 

coverage remains unavoidable. This consequently introduces the 

possibility of missing other associated variants. The genetic 

mechanism of preeclampsia is extremely complex and remains to 

be fully elucidated. Further studies with larger sample sizes, multi- 

ethnic cohorts, and a greater number of SNP loci are still warranted.

We subsequently detected the mRNA and protein expression 

levels of AhR in the placenta maternal surface from patients with 

preeclampsia and normal pregnant women. The results revealed 

that the relative expression levels of AhR mRNA, total AhR protein, 

and nuclear AhR protein in the placental samples from women 

with preeclampsia were significantly lower than those in placental 

samples from normal pregnant women. Moreover, the ratio of 

nuclear AhR to total AhR in the placental samples from women 

with preeclampsia was significantly lower than that in placental 

samples from normal pregnant women. AhR, as a transcriptional 

activator, when activated upon binding to a ligand, enters the 

nucleus to regulate target gene transcription. That is, AhR only has 

the opportunity to perform its function upon entering the nucleus. 

Our results suggest that the development of preeclampsia is 

associated not only with reduced expression of AhR in the placenta 

but also with reduced efficiency of AhR activation.

Our study on the correlation between the AhR genotype and its 

molecular expression level revealed that the rs713150 polymorphism 

of the AhR gene is associated with the level of AhR protein 

expression. Individuals carrying the rs713150G allele have higher 

expression levels of AhR protein in the placenta. rs713150 is 

located in the intron region of the gene. Although introns are 
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FIGURE 3 

Influence of inhibiting AhR activity on angiogenesis in vitro. (a) CYP1A1 protein levels were significantly reduced in HUVECs after treatment with 

CH223191. (b) Nuclear AhR protein levels were significantly reduced in HUVECs after treatment with CH223191. (c) Total AhR protein levels were 

not significantly changed in HUVECs after treatment with CH223191. (d) Images of HUVEC tube formation on Matrigel at 4 h. (e) Quantification 

of junctions (n = 3). (f) Quantification of total length (n = 3). (g) Quantification of total branching length (n = 3). (h) Images of HUVEC migration at 

0 and 24 h. The red lines indicate cell migration fronts. (i) Quantification of the relative migration area. (j) Levels of VEGF-A mRNA expression 

after CH223191 addition. (k) Levels of VEGF-A protein expression after CH223191 addition. AhR, aryl hydrocarbon receptor; CYP1A1, cytochrome 

P450 1A1. *P < 0.05.
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excised during mRNA processing, introns have been found to 

increase gene expression (28) and regulate selective splicing, 

mRNA transport, chromosome assembly, and other functions (29). 

Recent studies have shown that SNPs polymorphisms in introns 

are associated with various diseases (30, 31). Some studies have 

shown that intron regions also contain genes encoding proteins, 

and at least 158 protein-coding genes have been found in introns 

in humans (32). Mutations in introns may lead to changes in 

protein expression, structure, and stability, and even phenotypes 

(33). Therefore, we speculate that AhR gene polymorphisms may 

play an important regulatory role in gene expression and that 

rs713150 mutations may affect alternative splicing of genes, etc., in 

turn affecting the protein expression level of AhR.

We downregulated the AhR signalling pathway in vitro by 

knocking down AhR expression and inhibiting AhR activation, 

which resulted in inhibit the angiogenesis-related ability of 

HUVECs. Notably, the downregulation of AhR expression by 

siRNA affected mainly the tube formation ability of cells, whereas 

the inhibition of AhR activation by the inhibitor affected mainly 

the migration ability of cells. Knocking down protein expression 

with siRNA can controllably reduce the protein expression level 

by more than 70%, resulting in relatively clear results. For the 

tube-forming ability of HUVECs, AhR content is likely to play a 

major role; thus, downregulating the expression of AhR can 

significantly inhibit tube formation. However, the target of 

inhibitor is often not unique, the final effect of inhibitor depends 

on the co-regulation of multiple pathways. Thus, AhR activity 

may be one of the factors affecting HUVEC migration.

Conclusion

AhR gene polymorphisms are associated with the development 

of preeclampsia in the Chinese population. The AhR gene is a 

susceptibility gene for the disease, and rs713150G is a protective 

factor for the development of the disease. Compared with 

individuals who carried the G allele, individuals who did not 

carry the G allele present lower expression of AhR in the 

placenta, and lower AhR expression is positively correlated with 

the development of preeclampsia. Low expression or inhibition 

of AhR activity inhibits the AhR signalling pathway and may 

participate in the development of preeclampsia by inhibiting 

angiogenesis. These data improve our understanding of the 

pathogenesis of preeclampsia.
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