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Orthotopic heart transplantation remains the gold standard for managing
selected patients with end-stage heart failure (HF) who are unresponsive to
conventional therapies. Mechanical circulatory support (MCS), encompassing
durable (dMCS) and temporary (tMCS) devices, has become a cornerstone in
bridging patients to transplant (BTT) and also addressing the increasing
burden of advanced HF with dMCS destination therapy. Each type of MCS
offers distinct advantages tailored to specific patient needs and clinical
scenarios. This review summarizes the features of MCS devices, their
implications in clinical practice, and their impact on patient outcomes.
Evidence demonstrates that dMCS, including the widely used durable left
ventricular assist device HeartMate 3, significantly improves the prognosis of
waitlisted patients and is associated with better post-transplant outcomes
compared to tMCS when used as a BTT strategy. However, recent trends in
allocation systems favor prioritizing tMCS-supported patients to improve
outcomes for sicker individuals, underscoring the complexity of resource
allocation. In this context, recent tMCs devices such as the Impella 5.5 have
demonstrated promising early results as BTT, and ongoing larger studies with
long-term follow-up will be crucial to better define their optimal indications
and patient selection. Additional research is required to ascertain whether
urgency-based models provide the most equitable distribution of resources
while optimizing both pre- and post-transplant outcomes. Continued
innovation in MCS technology, alongside the development of personalized
treatment strategies, is vital to address the evolving needs of the growing
advanced HF population. Future advancements should prioritize creating
devices that are easier to implant, feature wireless power sources, and
provide more physiological support, ultimately enhancing the care and
outcomes of patients with advanced HF.
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1 Introduction

Orthotopic heart transplantation (HT) is the standard of
care for selected patients with end-stage heart failure (HF)
refractory to medical management. HT enhances survival
rates, quality of life, and the likelihood of returning to work,
as long as patients are selected appropriately (1). The
availability of donor hearts is the main challenge in HT,
varying significantly across the world and influencing local
transplant allocation criteria. Advances in selecting recipients
and donors, as well as post-transplant management have led
to a survival improvement of transplant recipients over time.
Data from the International Society for Heart and Lung
Transplantation (ISHLT) Registry indicate that the median
survival after adult HT is 12.5 years, increasing to 14.8 years
among patients who survive the first post-transplant year (2).
Survival outcomes are influenced by primary diagnosis,
recipient age, and donor characteristics. Patients transplanted
for non-ischemic cardiomyopathy exhibit the highest 1-year
survival rates. Individuals with congenital heart disease
demonstrate superior long-term survival, conditional on
surviving the period. Conversely,
with those
undergoing retransplantation tend to have the poorest long-

early post-transplant

recipients ischemic cardiomyopathy and
term survival (2). The clinical stability of a patient before a
HT is also a strong predictor of early post-transplant success
(1). Critically ill patients often require mechanical circulatory
support (MCS) to stabilize their condition, reassess their
eligibility for transplantation, and await a suitable donor
heart. In recent years, there has been an increase in the use of
MCS devices in these patients, both

long-term, acting as a direct bridge to transplant (BTT), as a

short-term and

bridge to candidacy (BTC) or even as bridge to bridge
(BTB).
transplant candidates, highlighting their clinical indications,

In this article, we review the role of MCS in
decision making process, and the impact on post-transplant
outcomes and survival rates. Additionally, we explore the
implications of MCS on HT allocation systems worldwide and
investigate existing gaps and future directions in this
evolving field.

Abbreviations

AMI, acute myocardial infarction; AMI-CS, cardiogenic shock related to acute
myocardial infarction; BiVAD, biventricular assist device; BTB, bridge to
bridge; BTC, bridge to candidacy; BTT, bridge to transplant; BTR, bridge to
recovery; CI, confidence interval; CS, cardiogenic shock; dMCS- durable
mechanical circulatory support; HF, heart failure; HF-CS, heart failure related
to cardiogenic shock; HR, hazard ratio; HT, heart transplantation; IABP,
pump; INTERMACS, Interagency Registry for
Mechanically Assisted Circulatory Support; ISHLT, International Society for
Heart and Lung Transplantation; LVAD, left ventricular assist device; MCS,
mechanical circulatory support; PAC, pulmonary artery catheter; RVAD,
right ventricular assist device; SCAI, Society for Cardiovascular Angiography
and Interventions; TAH, total artificial heart; tMCS, temporary mechanical
circulatory support; UK, United Kingdom; UNOS, United Network for
Organ Sharing; USA, United States of America; VA-ECMO, venous-arterial
extracorporeal membrane oxygenation.
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2 Methods
2.1 Search strategy

The literature search was conducted in three electronic
databases: MEDLINE (through PubMed), ClinicalTrials.gov and
Cochrane Library. Published research was collected using
combinations of terms, including “bridge to heart transplant”,
“advanced heart failure”, “heart failure”, “cardiogenic shock”,
“heart
“temporary

transplantation”, “mechanical circulatory support”,

“durable
mechanical circulatory support”, “intra-aortic balloon pump”,

mechanical  circulatory  support”,

“extracorporeal  membrane  oxygenation”,  “percutaneous
ventricular assist devices”, “surgical ventricular assist devices”,
“total artificial heart” and related terms, as well as synonyms
and variant spellings to broaden the search scope. MeSH terms
and keywords were combined accordingly on the respective
databases previously mentioned. Titles and abstracts of articles
published from 1999 to May 2025 available in English were
evaluated. Following this initial search, further articles were
identified by manually examining the references of the

retrieved studies.

2.2 Eligibility

Studies were included when the following general criteria were

met: (1) observational studies, controlled trials, editorials,
international reports, reviews, meta-analysis and systematic review
articles describing outcomes of left, right and biventricular assist
devices and/or HT, (2) reported data in adult patients, (3) studies
published in English. Duplicate publications were identified and
excluded. All

communications and individual case reports were excluded.

non-human studies, abstracts, conference

2.3 Study selection and data collection

Abstracts were screened for study eligibility and manuscripts
were reviewed for data extraction by two reviewers. After the
primary screening and data extraction, both authors performed
quality control, which included verification of reasons for study
inclusion and exclusion and verification of all extracted data.
Discordant decisions were managed by discussion and
additional

A comprehensive literature review was conducted on MCS

consensus  among authors as  necessary.
strategies in cardiogenic shock (CS) and chronic advanced HF,
including ventricular assist device implantation for specific

etiologies, with a focus on bridging to transplantation.

3 Overview of MCS devices

MCS devices are advanced technologies designed to assist or
replace heart function in patients with severe cardiac conditions.
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These devices vary in design, functionality, and duration use.
Several types of MCS devices are currently used in clinical
practice (Figure 1), each tailored to specific patient needs and
clinical scenarios.

Temporary MCS (tMCS) provides short-term hemodynamic
support, lasting from hours to weeks, and can act as a bridge to
recovery (BTR), decision-making, or transition to long-term
options such as durable MCS (dMCS) or HT. tMCS offers
multiple configurations for right, left, or biventricular support
(Table 1). These options include fully percutaneous systems that
access peripheral vessels via catheters or cannulas (intra-aortic
balloon pump—IABP; Impella CP/RP, Abiomed, Johnson &
]ohnson®, Massachusetts, United States of America [USA]J;
TandemHeart, LivaNova®, London, United Kingdom [UK];
Venous-arterial extracorporeal membrane oxygenation—VA-
ECMO), surgically implanted systems with centrally placed
cannulas or grafts connected to external tMCS devices (Impella
5.5, Abiomed, Johnson & Johnson®, Massachusetts, USA;
Centrimag, Abbott”, Illinois, USA) and hybrid models combining
elements from both approaches. tMCS systems deliver both
partial and full circulatory support, influencing factors such as
myocardial oxygen demand, left ventricular unloading, and
coronary artery perfusion. One of the distinguishing features of
the latest Impella device, the Impella 5.5, is its ability to provide
full left-sided cardiac support via axillar artery or ascending aorta
access, enabling patient ambulation and supporting early
rehabilitation, with implications on frailty reversal (3-5). tMCS
devices can be combined to adapt the support to the specific
requirements of the patient. For instance, ECPELLA pairs VA-
ECMO with Impella to achieve left ventricular unloading (6).
Similarly, VA-ECMO can be combined with an IABP. Other
setups include BiPella for biventricular support (7), or the
ProtekDuo (LivaNova®, London, UK) cannula combined with a
centrifugal pump for right-sided support (8) along with Impella
for left-sided support.

Regarding dMCS (Table 2), which provides support lasting from
months to years, the approval of continuous flow devices for use as a
BTT led to the rapid replacement of pulsatile technology by
continuous flow pumps. This transition resulted in a threefold
increase in the number of implants recorded in Interagency
Registry ~for Mechanically — Assisted  Circulatory — Support
(INTERMACS) (9). Since the positive results of MOMENTUM 3
trial (10, 11), HeartMate 3 (Abbott®, Illinois, USA), a fully
magnetically centrifugally levitated pump, has replaced previous
devices and is currently the only approved dMCS for adult
patients in most countries. This pump was specifically developed
to minimize mechanical wear, blood shear stress, and stasis. By
intermittently modulating pump to mimic natural
pulsatility, it
adverse events such as strokes, bleeding, and thrombosis, when
compared to Heartmate II (Abbott®, Illinois, USA) (10) and
HVAD (Medtronic®, Minneapolis, USA) (12). All these dMCS, as
well as the Jarvik 2000 (Jarvik Heart® Inc., NY, USA) (13), were
specifically designed to provide support to the left ventricle (left

speed

significantly reduces hemocompatibility-related

ventricular assistance device—LVAD). However, these systems
have been also used clinically, off-label, in right ventricular (right
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device—RVAD) or biventricular failure
device—BiVAD) setting (8).

Modifications for placement in the right chambers require

ventricular  assist

(biventricular assistance
adjustments to the standard implantation techniques used for
durable LVAD. The outflow grafts are attached to the main
pulmonary artery, and to avoid excessive flow to the lungs,
durable RVAD flows must be limited (8, 14).

Implanting two durable LVADs is a complex procedure and
adds significant cost. Another option for dMCS is the Berlin
Heart EXCOR® system (Berlin Heart GmbH, Berlin Germany),
which is a pneumatically driven paracorporeal system that can
The
EXCOR® device is now mainly used in pediatric patients due to

provide univentricular or biventricular support (15).

its suitability for implantation in infants and children with small
body sizes and its availability in multiple pump sizes. In adults,
its use is limited because of the high risk of thromboembolic
complications, pump dysfunction, and infections, requiring high
surveillance and intensive clinical monitoring (16). The
SynCardia® (SynCardia Systems, LLC, Tucson, USA) total
artificial heart (TAH), the first Food and Drug Administration
approved TAH (17), is designed for both in-hospital and out-of-
hospital use as a BTT. However, its global adoption remains
limited due to complexity of implantation and management
(18). The Aeson®, Carmat TAH (Vélizy-Villacoublay, France),
available only in Europe, is an electro-hydraulically powered
biventricular pump made of bioprosthetic materials, engineered
for patients with end-stage biventricular HF as a BTT and is
presently undergoing clinical trials (19).

4 Clinical indications for MCS

MCS is essential for improving end-organ perfusion and
reducing congestion in patients with severe HF who do not
respond to standard treatments. The primary indications for tMCS
implantation are CS due to acute myocardial infarction (AMI-CS)
or acutely decompensated chronic HF of ischemic or non-ischemic
etiology (HF-CS). Additional acute scenarios for tMCS use include
fulminant myocarditis, stress-induced cardiomyopathy, peripartum
cardiomyopathy, refractory arrhythmias and post-cardiotomy
complications. In recent years, VA-ECMO has been employed
following cardiac arrest for resuscitation purposes (20).

For long-term support, the 2023 updated ISHLT guidelines (9)
recommend considering dMCS for patients with advanced HF
symptoms (New York Heart Association functional class IIIB-
IV) refractory to maximal medical management, inotrope
dependent or on temporary support. In such cases, dMCS may
serve as a direct BTT. When immediate transplantation is not
possible, dMCS can improve transplant eligibility (BTC) or be
used as a permanent solution for patients who are ineligible for
transplant (destination therapy—DT). Guidelines also highlight
recent onset nonischemic dilated cardiomyopathy unresponsive
to optimal medical therapy as an indication for dMCS as a BTR,
focusing on neurohormonal modulation and monitoring
recovery of left ventricular function to evaluate candidacy for
dMCS explant or decommission before considering HT (21).
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FIGURE 1

Examples of mechanical circulatory support (MCS) devices and configurations. Upper panel: Impella devices (Abiomed, Johnson & Johnson®,
Massachusetts, USA) (A) Impella console, (B) Impella RP, (C) Impella CP, and (D) Impella 5.5. Middle upper panel: (E) Cannulation of the great
vessels with Centrimag (Abbott®, Illinois, USA), (F) Cannulation of the left ventricle with Centrimag, (G) ProtekDuo (LivaNova®, London, UK), and
(H) Centrimag console. Middle lower panel: (I) VA-ECMO with central cannulation, (J) VA-ECMO with peripheral cannulation, and (K) ECMO
console and oxygenator. Lower panel: Durable mechanical circulatory support devices (L) Overview of the left ventricular assist device (LVAD)
system, HeartMate 3 (Abbott®, Illinois, USA), (M) HeartMate 3 LVAD cannula, (N) Berlin Heart EXCOR®™ (Berlin Heart GmbH, Berlin Germany), and
(O) Total Artificial Heart (SynCardia®, Tucson, USA). Ao, aorta; LA, left atrium; PA, pulmonary artery; RA, right atrium. Images provided by: A-D:
Johnson and Johnson; E, F, H, L, M: Abbott; G: Palex; I, J: Hospital Universitari de Bellvitge; K: Gettinge; N: BerlinHeart; O: Mercé.
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TABLE 1 Types and main characteristics of temporary mechanical circulatory support (3, 4, 8, 38, 54, 131, 150, 151).

Device Temporary mechanical circulatory support
charactenistics Impella (Abiomed, TandemHeart Centrimag VA-ECMO
Johnson & Johnson®, (Abbott™,
Massachusetts, USA) London, UK) Ilinois, USA)
5.5
Percutaneous Yes Yes No Yes Yes No Yes®
Ventricular support | LV v v RV LV (but possible RV® and | LV, RV or BiV BiV
BiV)

Placement Descending Ao via FA© | LV LV via AA | RA to PA via | Inflow: LA via FV. Inflow: LV or RA Inflow: RA via IJV or FV

via or directly | FV Outflow: Abdominal Ao | Outflow: Ascending Ao | Outflow: Abdominal Ao

FAor | into via FA or pulmonary artery via FA?

AA | ascending

Ao
Hemodynamic 0.5-1.0 4.0 Up to 6.2 4.0 4.0 Up to 10 Up to 10
support (L/min)
Mechanism of action | Counterpulsation Axial flow pump Centrifugal Centrifugal Centrifugal extracorporeal
balloon pump extracorporeal pump extracorporeal pump pump + external
membrane oxygenation
LV unloading Yes Yes N/A Yes Yes LV overloading
Myocardial oxygen | | 1 <l 1 <orf
demand
Systemic Recommended Yes Yes Yes Yes
anticoagulation
Durability of support | Days Days | Weeks to a | Days to weeks | Days to weeks Weeks Days to weeks
month?

Major
contraindications

Severe aortic
insufficiency, aortic
dissection, peripheral
vascular disease

Severe aortic
stenosis, prosthetic
aortic valve, LV
thrombus,
peripheral vascular
disease, aortic
dissection

Severe right
valvular
disease or
prosthetic
valves, PA
disorders

Atrial thrombus, severe
aortic insufficiency, aortic
dissection, peripheral
vascular disease

Unable to tolerate
anticoagulation

Peripheral vascular
disease, severe aortic
insufficiency, aortic
dissection

Major complications

Vascular injury,
bleeding, hemolysis,
thrombocytopenia,
aortic dissection

Hemolysis, access complications
(vascular and nerve injury), bleeding,
valve injury, ventricular arrhythmia,
device dislodgement, thrombosis

Vascular injury,
thromboembolism,
cardiac perforation,
hemolysis

Thromboembolism or
air embolism, bleeding,
hemolysis, arrhythmias

Vascular injury,
hemolysis,
thromboembolism,
Harlequin syndrome,
increase in LV pressure.

Additional
considerations

ECG/pulse-dependent,
easy to insert and adjust,
cath lab not mandatory,
increases coronary flow

Impella CP proved to decrease all-
cause mortality in STEMI-related
cardiogenic shock. Impella 5.5
features Smart Assist technology for
remote monitoring and real-time
hemodynamic parameter calculation.
Its tip lacks a pigtail shape, reducing
thrombus accumulation risk and
enabling longer implant duration.

Enables ambulation.

Transseptal puncture
required

Allows for patient
mobility, possible
minimally invasive
insertion technique

Bedside insertion, full
circulatory support even in
resuscitation situations,
may require strategies to
decompress the LV

“It can also be implanted centrally, with surgical approach: right atrium and aorta.
PRV support uses an extracorporeal centrifugal-flow pump to deliver blood from the RA (inflow) to the main PA (outflow) via the ProtekDuo (LivaNova®, London, UK) cannula or using 2
cannulas via the FV and IJV.

€It can be placed into the axillary or subclavian artery.

9The Impella 5.5 was approved for up to 30 days of support in Europe and up to 14 days of support in the United States of America. However, single centre reports have documented
successful use for up to 70 days.
AA, axillary artery; Ao, Aorta; BiV, biventricular; FA, femoral artery; FV, femoral vein; IABP, intra-aortic balloon pump; IJV, internal jugular vein; LA, left atrium; LV, left ventricle; N/A, not
applicable; PA, pulmonary artery; RA, right atrium; RV, right ventricle; STEMI, ST elevation myocardial infarction; VA-ECMO, venous-arterial extracorporeal membrane oxygenation.

5 Management of CS and chronic

advanced HF and MCS decision-

making

In recent years, there have been significant advancements in
the understanding and management of CS. However, in-hospital
mortality remains at approximately 50% for CS patients despite
improved pharmacological and device-based strategies, timely

Frontiers in Cardiovascular Medicine

revascularization, and advances in intensive care (22-28). The

decision to initiate MCS therapy often depends on multiple

factors

including

the

severity of

symptoms,

underlying

comorbidities, potential for cardiac and end-organ function

05

recovery, eligibility and availability of HT/dMCS, clinical profile
(acute vs. decompensated chronic disease, univentricular vs.
biventricular failure) and local resources. The process should be
guided promptly by a multidisciplinary CS team, comprising an
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TABLE 2 Types and main characteristics of durable mechanical circulatory support (8, 38, 54, 131, 150, 151).

Device
characteristics

HeartMate 3

(Abbott®,
Illinois, USA)

Durable Mechanical Circulatory Support

HeartWare
HVAD
(Medtronic”,
Minneapolis,
USA)

Jarvik 2000
(Jarvik
Heart® Inc.,

NY, USA)

EXCOR®™
(Berlin Heart
GmbH, Berlin,
Germany)

TAH
(SynCardia®
Systems, LLC,
Tucson, USA)

Aeson® (Carmat
TAH, Vélizy-
Villacoublay,

France)

Ventricular support | LV* Lv* LV BiV, LV or RV* BiV BiV
Placement Inflow: LV apex Inflow: LV apex; Inflow: LV apex; Inflow: LV apex or | Replaces both Replaces both ventricles
Outflow: ascending | Outflow: ascending Ao | Outflow: RA Outflow: ventricles
Ao descending Ao ascending Ao or
pulmonary artery
Hemodynamic Up to 10 Up to 10 Upto7 Up to 6.5 Up to 9.5 Up to 9.5
support (L/min)
Mechanism of action | Intracorporeal fully | Intracorporeal magnetic | Intracorporeal Paracorporeal, Intracorporeal Intracorporeal

non-correctable
anatomical issues

magnetically and hydrodynamic continuous flow pneumatic pulsatile | pneumatic pulsatile | biocompatible, sensor-based
levitated continuous | levitated continuous axial pump flow pump flow pump autoregulated pulsatile flow
flow centrifugal flow centrifugal pump pump
pump

LV unloading Yes Yes Yes Yes N/A N/A

Systemic Yes Yes + Aspirin 100 mg | Yes + Aspirin 100 Yes + Aspirin 100 Yes Low dose

anticoagulation OD mg OD mg OD anticoagulation + Aspirin

100 mg OD

Durability of support | Years Years Years Months Months to years Months to years

Major specific Inability to tolerate anticoagulation, right heart failure Inability to tolerate | Inability to tolerate Body size incompatibility

contraindications anticoagulation, anticoagulation, body

size incompatibility

Main complications

RV failure, device
failure, stroke,
driveline infection,
gastrointestinal
bleeding

Ischemic and

hemorrhagic stroke, RV

failure, device failure,
pump thrombosis,
driveline infection,

Pump failure,
thrombosis,
bleeding,
endocarditis,
driveline infection,

Thrombosis, stroke,
infection, bleeding,
device malfunction,
limited mobility

Neurologic events,
thrombosis, bleeding,
driveline infection,
device malfunction,
renal or liver failure

Driveline infection,
atelectasis left lower lobe,
device-related
complications, renal/liver
failure

hemolytic
complications
compared to earlier
devices

region reducing the
risk of driveline
infection

pediatric population
in the USA, Europe,
and Canada.

gastrointestinal neurological events,
bleeding gastrointestinal
bleeding
Additional Current standard of | Recently discontinued | The power cable for | Currently, the only | The only TAH to Bioprosthetic materials.
considerations care for advanced but still in use in many | the pump exits VAD specifically receive full FDA Commercially available in
HF; reduced patients through the designed and approval; 2 sizes Europe only.
thrombotic and retroauricular approved for the according to body

surface area (50cc and
70 cc).

“Currently, there are no continuous flow centrifugal pump ventricular assist devices designed for right-sided use. However, commercially available left ventricular assist devices are being used

in the RV position to support isolated RV or biventricular failure, even though they are designed for the systemic circulation.
Ao, aorta; BiV, biventricular; FDA, food and drug administration; HF, heart failure; LV, left ventricle; N/A, Not Applicable; OD, once daily; RA, right atrium; RV, right ventricle; TAH, total

artificial heart; USA, United States of America; VAD, ventricular assist device.

intensivist, interventional cardiologist, HF cardiologist, and
cardiac surgeon, as this collaborative approach has been shown
to significantly improve CS patients’ outcomes (29, 30).

The
Intervention

updated Society for Cardiac Angiography and
(SCAI) (Table 3)
framework for guiding clinical management of CS and

classification provides a
determining the optimal timing for tMCS initiation based on
shock severity (26, 31-33). Early intervention is recommended
for patients in advanced CS (SCAI stage C or worse),
emphasizing circulatory stabilization and consideration of
available tMCS devices (22, 25). Retrospective data indicates that
utilizing complete pulmonary artery catheter (PAC)-derived
hemodynamic information before initiating MCS is associated
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with improved survival in CS patients (34). Randomized trials
may provide contemporary data regarding the role of PACs in
CS (ClinicalTrials.gov: NCT05485376).

CS results from various cardiovascular conditions, most
commonly AMI-CS and HF-CS. Currently, HF-CS accounts for
over 50% of all CS cases (22, 25, 27, 33, 35).

5.1 The role of MCS in AMI-CS

AMI-CS typically presents abruptly in patients without
previous history of HF (36) and early revascularization is the
most evidence-supported intervention (37). Routine tMCS use is
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TABLE 3 Representation of interagency registry for mechanically assisted circulatory support (INTERMACS) and society for cardiovascular angiography
and interventions (SCAI) classifications.

Description SCAI Shock | Description Comments
Stage

At risk for cardiogenic | SCAI A generally corresponds to less severe INTERMACS profiles

INTERMACS

Profile
7 Advanced New York Heart A

Association class IIT shock (4-7), representing patients at risk of shock.
6 Exertion limited
5 Exertion intolerant,
housebound
4 Resting symptoms on oral
therapy
3 Stable but inotrope dependent B Beginning shock SCAI B could align with INTERMACS 3, where patients require
inotropic support but are relatively stable.
2 Progressive decline on C Classic cardiogenic SCAI C to E correlate with the most severe INTERMACS profiles
inotropes shock (1-2), representing declining patients and those in extreme shock.
1 Critical cardiogenic shock Deteriorating
E Extremis

Both classifications help stratify patients for risk assessment and guide treatment decisions in advanced heart failure and cardiogenic shock. SCAI Shock Classification: Stages A to E represent
increasing severity of cardiogenic shock. Stage C and above indicate the presence of hypoperfusion. INTERMACS Classification: Profiles 7 to 1 represent decreasing stability in advanced
heart failure. Lower profiles are associated with higher risk of adverse outcomes. It’s important to note that these classifications were developed for different purposes and don’t perfectly align,
but there are some general correlations we attempted to draw, as shown in the table. These correlations are approximate, as individual patient presentations can vary and may not fit neatly

into these categories.

not currently recommended unless shock severity warrants it. In
cases where shock is present at the time of revascularization,
tMCS devices may be deployed before percutaneous coronary
intervention to stabilize the patient and enable coronary
revascularization (38). Although widely used, IABP did not show
clear clinical benefits in AMI-CS patients in randomized trials (39,
40). Similarly, routine use of VA-ECMO in these patients failed to
demonstrate clinical benefit in the ECLS-SHOCK trial and led to
higher rates of bleeding and vascular complications (41, 42).
Despite these limitations, VA-ECMO is still used in many cases of
SCAI stages D and E CS due to its ease of deployment and ability
to provide full biventricular hemodynamic support (36). In
contrast, recent findings from the DanGer Shock trial (43) showed
that routine use of Impella CP microaxial flow pump, when
combined with standard care, significantly reduced 180-day
mortality in established ST elevation AMI-CS. Impella CP was
placed before revascularization in about half of patients in the
device arm. Its use was also associated with increased adverse
events, such as severe bleeding, limb ischemia, renal replacement
therapy and hemolysis. Impella 5.5 has been increasingly utilized as
a salvage therapy for AMI-CS patients with refractory shock due to
left ventricular failure, owing to the higher level of cardiac support
it provides compared to its device predecessors (3). Given the need
for surgical implantation, in the acute setting, Impella 5.5 can be
implanted after initial clinical stabilization or reserved as an option
to escalate left-sided support or even used in conjunction with VA-
ECMO to unload the left ventricle (ECPELLA) and subsequently
facilitate VA-ECMO weaning (44). The absence of controlled trials
limits definitive conclusions about its role, and a properly designed
prospective study is warranted to clarify its efficacy and optimal
timing in this population.

Improved outcomes have been reported in cardiology-led
coronary care units, likely reflecting higher rates of timely
revascularization (45). However, in cases of large myocardial
infarction, patients may not achieve sufficient early post-
infarction remodeling and may deteriorate before later-phase
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recovery can occur. tMCS may facilitate myocardial recovery,
particularly with devices capable of unloading the left ventricle
while providing full left-sided support—such as the Impella 5.5.
By supporting the heart through the early remodeling phase,
these devices may help the native myocardium better tolerate
increased wall stress, potentially enabling successful device
weaning (5, 46). While additional studies have demonstrated left
ventricular recovery with other tMCS devices, including VA-
ECMO alone (47), left ventricular unloading appears to play a
key role in promoting myocardial recovery (48).

Based on current evidence, Impella CP appears to be the most
appropriate first-line option for patients with AMI-CS refractory
to medical treatment (SCAI stage C or higher) and left
ventricular dysfunction, provided there are no contraindications
(43). For patients with advanced CS stage and critically low
cardiac output, VA-ECMO should be considered. Impella 5.5
can be an option in patients who fail initial support with
percutaneous devices—particularly when myocardial recovery is
anticipated—or in those who are candidates to HT/dMCS, in
whom maintaining ambulation is crucial.

In cases of isolated primary right ventricular failure associated
with AMI-CS, percutaneous options such as the Impella RP or a
centrifugal pump with the ProtekDuo cannula are potential
first-line tMCS strategies (8, 38, 49-51). If these are unavailable,
a surgically implanted RVAD Centrimag or percutaneous VA-
ECMO in case of biventricular dysfunction may also be a viable
alternative (8, 52, 53).

When myocardial recovery fails to occur, definitive therapies
such as HT or dMCS, as a BTC or as DT, should be considered.

5.2 The role of MCS in HF-CS and chronic
advanced HF

Regarding HF-CS, it is often considered part of a continuum
of chronic advanced HF rather than a clearly distinct clinical
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entity. Reversible and transient factors of decompensation (e.g.,
arrhythmia) that may contribute to the development of shock
should be rapidly assessed and corrected (22, 35, 54). The
chronically dysfunctional, and often enlarged, left ventricle in
advanced HF is under elevated filling pressures, which rise even
further with the onset of shock. These patients require rapid
volume assessment, with management aimed at reducing
congestion through diuresis or ultrafiltration and improving
cardiac output using inotropes. Neurohormonal antagonists and
beta-blockers should be avoided, while short-acting intravenous
vasodilators such as nitroprusside may be considered in patients
without severe hypotension (22, 54). As patient’s clinical status
deteriorates, intravenous vasopressors should be initiated. If
pharmacological interventions fail, afterload reduction and
ventricular decongestion can be achieved with tMCS (54), and
early tMCS use should be considered either as bridge to
BTR, BTT or dMCS. Given the lack of robust
comparative data, available institutional resources and operator

decision,

expertise remain pivotal in selecting the appropriate tMCS
device in HF-CS. Temporary percutaneous LVAD should be the
preferred initial choice for left ventricular dysfunction in HF-CS,
guided by the SCAI stage and the level of hemodynamic support
provided by the device, especially as a BTT or bridge to dMCS.
Similarly to its use in AMI-CS, VA-ECMO should be reserved
for those patients with advanced CS and/or in case of
biventricular dysfunction, particularly when combined with a
temporary LVAD capable of unloading left ventricle (36). As
previously mentioned, these devices have also been employed as
a BTR, with encouraging outcomes in patients with HE-CS, as
documented in other studies (46-48, 55).

Management of chronic advanced HF has improved in the last
decades with new therapies and monitoring tools; however, HF
with reduced ejection fraction remains a progressive condition,
and patients who are unresponsive to optimal therapy face
worsening symptoms, decreased quality of life, and higher
mortality. Specialized advanced HF teams are essential in
providing regular follow-up, conducting risk assessments, and
initiating early treatment discussions. Their early involvement
can prevent severe clinical deterioration and facilitate timely
decision-making regarding MCS or urgent transplantation when
patients’ conditions worsen. Risk calculators (Seattle HF Model,
HF Survival Score) and cardiopulmonary stress testing aid in
identifying high-risk patients who should be referred for
advanced HF therapies (9, 20).

The INTERMACS classification system stratifies patients with
advanced HF based on clinical severity, guiding management (56)
and predicting outcomes after MCS implantation (57, 58) (see
Table 3). INTERMACS 1-2 patients, who present with CS (HF-
CS) and severe symptoms, are often considered ideal candidates
for tMCS as a first step (20, 54, 56, 59), as previously discussed.
dMCS should be considered if the patient cannot be weaned
from tMCS but still has the potential for meaningful recovery of
end-organ function and quality of life, and there is no evidence
of irreversible end-organ damage. dMCS should also be
considered for stable but inotrope-dependent (INTERMACS 3),
who face high mortality with continued medical management
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(9). Repetitive doses of levosimendan are commonly used in the
ambulatory setting as BTT, since intravenous administration of
intermittent doses of levosimendan in outpatients with advanced
HF has been shown to be safe and effective in reducing HF-
related hospitalizations (60-62). The optimal duration of this
approach and the ideal timing for dMCS implantation while
awaiting a HT remains uncertain, although dMCS is associated
with better outcomes in patients requiring inotropic support for
more than one year (63). An as-treated analysis of the
ROADMAP study (64, 65) showed that patients in
INTERMACS profile 4 benefited from dMCS therapy with
improved survival, functional status, quality of life, and reduced
depression compared to optimal medical therapy, despite higher
rates of adverse events in the first year. Conversely, profiles 5-7
did not show similar benefits, and current evidence does not
dMCS wuse in these patients (9, 66).
Nevertheless, it may be considered after individual assessment in

support routine
high-risk patients, with recurrent hospitalizations, progressive
end-organ failure, refractory congestion, inability to perform
cardiopulmonary stress test or peak oxygen consumption
<12 ml/min/kg (or <50% of expected value) as BTT or DT (54).
Given the better outcomes provided by HeartMate 3, further
randomized comparative trials are necessary to confirm the role
of dMCS in patients in INTERMACS >4 and potentially
redefine treatment recommendations. In parallel, emerging data
highlight a distinct subgroup of patients in whom durable
LVAD support may facilitate meaningful myocardial recovery,
offering an alternative therapeutic pathway beyond traditional
BTT or DT strategies. Predictive tools such as the INTERMACS
Cardiac Recovery Score help identify candidates for successful
explantation, emphasizing the need for standardized protocols
and optimized medical therapy during support (67, 68).

For patients who experience clinical deterioration and are not
eligible for advanced HF therapies, a multidisciplinary team
should discuss end-of-life options, including comfort measures
and palliative care, while providing support to both patients
and caregivers.

5.3 Support strategies in HT candidates

In cases where recovery from CS or chronic advanced HF is
not achieved, and conventional therapies fail to provide
adequate support, MCS becomes a crucial bridge. As mentioned
before, MCS can serve as a lifeline in several ways: directly
bridging patients to HT, facilitating their progression to
candidacy for transplant, or, in some cases, supporting them
through multiple stages of intervention with further MCS
devices. For certain patients initially bridged, dMCS may
ultimately serve as a DT, providing long-term support in the
absence of ongoing transplant eligibility.

5.3.1 Direct BTT

While urgent HT listing is an option in many countries, their
appropriateness is increasingly being questioned. Data from the
Spanish National Heart Transplant Registry indicate that
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patients listed urgently, particularly those with severe CS or
progressive clinical decline despite treatment, experience the
highest risks of primary graft failure, need for dialysis, and
in-hospital mortality following HT (69). For these critically ill
patients, stabilization with tMCS as a BTT offers a safer
alternative to immediate transplantation, provided that multi-
resolved, as

organ dysfunction has been indicated by

markers such as normalized lactate levels. Studies have
shown that this strategy improves post-transplant outcomes
(70). In this context, some transplant organizations have
developed specific criteria to assess the absence of multi-
organ failure (71).

Durable

periods, which is critical given the growing mismatch

devices can support patients for extended
between donor organ availability and transplant demand.
By offering a stable and sustainable solution, dMCS bridges
the gap for patients who might otherwise decompensate
while on the waiting list (72).

In clinical practice, the choice between tMCS and dMCS for
direct bridging is dictated by the severity of the patient’s
condition, anticipated donor availability, and individual risk
profiles. Integration of advanced decision-making algorithms
teams further enhances the

and multidisciplinary care

effectiveness of these interventions.

5.3.2 BTC

In patients with CS and associated multi-organ dysfunction,
tMCS can play a critical role in reversing acute end-organ
dysfunction. When initiated early, tMCS contributes to pre-
transplant  optimization by promoting renal function
(73-76) and, in

pulmonary hemodynamics, both key determinants of HT

improvement selected cases, improving
candidacy. Left ventricular unloading devices, such as the
Impella 5.5, have been shown to reduce pulmonary capillary
wedge pressure, pulmonary vascular resistance, and estimated
right ventricular afterload (73, 74, 77, 78). These hemodynamic
improvements not only stabilize the patient clinically but also
allow a more accurate and comprehensive evaluation of
transplant eligibility. dMCS devices can prolong this support,
enabling long-term hemodynamic stabilization and functional
rehabilitation. While the majority of recipients receive these
devices as a BTT, only about half are listed for transplantation
at the time of implantation (9). For those not initially listed,
transplantation remains the ultimate goal, though various factors
often render them ineligible at the onset. With dMCS therapy,
some patients may achieve resolution or improvement in
conditions such as pulmonary hypertension, renal dysfunction,
or obesity, thereby enhancing their eligibility for transplantation.
Additionally, for individuals with active drug abuse, uncertain
social status, including insufficient psychosocial support or
unresolved compliance concerns, dMCS also provides a window
to address these factors. Nevertheless, the emergence of new
complications during support or persistence of unresolved
conditions, potentially precludes eligibility for transplantation
and may change the indication of dMCS to DT.
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5.5.3 BTB

Since tMCS devices are not typically intended for long-term
use, many patients require transition to more durable forms of
support after a period of time due to complications or failure to
achieve recovery. Patients who are clinically stabilized on tMCS
but cannot be weaned from support and are not currently
candidates for HT or for whom a donor heart is unavailable, a
transition to dMCS can be an option as a BTC or BTT. On the
other hand, patients who are not candidates for HT can use
tMCS as a bridge to dMCS for DT (9). The selection of the
appropriate  dMCS device—whether durable LVAD, RVAD,
BiVAD, or TAH—depends on several clinical factors, including
the underlying etiology of CS, the type of tMCS used, the
patient’s hemodynamic profile (left, right or biventricular
failure), candidacy for HT and
and availability.

An algorithmic approach, as proposed by the authors in

institutional preferences

Figures 2, 3, can help guide clinical management of CS and
chronic advanced HF, incorporating factors such as the patient’s
hemodynamic status, clinical trajectory and SCAI and/or
INTERMACS classifications. This algorithm can be further
adapted based on the country-specific resources, including HT
waiting times, availability of donor organs, and experience with
device implantation.

6 Post-transplant outcomes in
patients with previous MCS

Survival outcomes for patients on MCS are multilayered,
influenced not only by the type of support employed but also by
the incidence of adverse clinical events while on support and
patient-specific factors such as age, comorbidities, and overall
functional status.

In patients supported with temporary devices, determining the
optimal timing for HT constitutes a significant challenge. It
requires balancing sufficient time to allow for recovery from
end-organ dysfunction against avoiding prolonged waiting
periods that increase the risk of adverse events related to
prolonged use of tMCS (79). Although many complications of
tMCS, such as infection, bleeding, thrombosis, and vascular
injury, are treatable, they may imply a temporary
contraindications to HT, increase mortality on the waiting
list (80) and potentially compromise the success of the HT
surgery (81, 82).

A 16-year analysis of the National Inpatient Sample of United
States cohort of 6,892 patients who received an orthotopic heart
transplant found improved outcomes over time of patients
supported by tMCS before HT. Duration of tMCS support did
not independently affect mortality. However, it was noted that
the rate of post-transplant complications such as stroke and
renal failure remained significantly higher in patients who
received tMCS compared to patients without MCS (83).

Among tMCS bridging modalities, VA-ECMO has been linked

to a higher incidence of adverse clinical events and increased early
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mortality post-transplant compared to other tMCS devices (81, 82,
84-87). In a cohort of 1,036 patients listed for emergency HT
while on tMCS from 2010 to 2020, Barge-Caballero and
colleagues found 1-year post-transplant survival of 67.8% in VA-
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ECMO group, lower than other tMCS, including IABP, Impella
devices and LV/RV/BiV Centrimag support (79.4%, 84.9%,
74.4-79.9%, rank p=0.001) (82). After
multivariate adjustment, preoperative bridging with VA-ECMO

respectively, log
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remained an independent predictor for post-transplant mortality
(hazard ratio [HR] 1.71; 95% confidence interval [CI] 1.15-2.53,
p=0.008). In addition to these post-transplant concerns, VA-
ECMO has also been associated to inferior waitlist outcomes. In
a study by Moonsamy et al. (85), bridging with VA-ECMO was
independently associated with a 2.4-fold increased hazard of
death while awaiting transplantation compared to Centrimag
support (HR: 2.40; 95% CI: 1.44-4.01; p =0.001). However, in a
subsequent sensitivity analysis evaluating 5-year survival
conditional on surviving the first-year post-transplant, the
authors found no significant differences between the various
bridging strategies, likely due to the disproportionately higher
mortality occurring within the first year in VA-ECMO group.
These poorer outcomes observed in patients on VA-ECMO can
be partly attributed to their typically lower INTERMACS profile
score prior to tMCS implantation (88). Additionally, this form
of support has been associated with several adverse physiological
effects, including platelet dysfunction, an exaggerated systemic
inflammatory response, increased left ventricular afterload,
hydrostatic pulmonary edema, and direct pulmonary injury,
which may complicate early postoperative extubation (89).
A recent retrospective analysis of patients bridged to HT with
VA-ECMO in 16 Spanish centers has shown that preoperative left
ventricular unloading (using IABP in 84.2% of the cases) was
independently associated with improved 1-year post-transplant
survival (74.4% in the LV unloading group vs. 59.8% in the
control group; adjusted 1-year mortality HR: 0.50; 95% CI: 0.32—
0.78; p=0.003) (90). Furthermore, patients on VA-ECMO often
have limited time for end-organ recovery and are unable to
undergo a comprehensive pre-transplant assessment, including
psychiatric evaluation, informed consent, social assessment,
medical compliance evaluation, and physical rehabilitation, which
are more feasible with longer-term and/or ambulatory devices.
The Impella 5.5 provides full left ventricular support and
achieves active ventricular unloading, reducing filling pressures
and improving myocardial perfusion—physiological effects that
may influence post-transplant outcomes (91). Since its approval,
the Impella 5.5 has been increasingly used as a BTT. Using data
from the United Network for Organ Sharing (UNOS) registry,
Cevasco et al. reported a 1-year post-transplant survival of 89.5%,
indicating favorable outcomes (92). In a separate analysis, Hill
et al. found a comparable 1-year survival rate of 94.6% among
patients supported with the Impella 5.5, reinforcing the
consistency of these results (93). In a single-center retrospective
study involving 43 patients (94), those undergoing HT who were
bridged with the Impella 5.5 device required significantly less
intraoperative transfusion of cryoprecipitate, autologous blood
salvage, and platelets compared to patients bridged with a durable
LVAD; although the

confounding variables such as baseline coagulation profiles and

study did not adjust for potential

preoperative anticoagulation management, and lacked long-term
outcome data, these findings suggest that the temporary and less
invasive nature of the Impella 5.5 may reduce surgical complexity
and bleeding risks during device explantation. As previously
mentioned, the Impella 5.5 facilitates pretransplant rehabilitation
while providing full hemodynamic support for several weeks—an
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approach that is critical for preserving muscle strength,
preventing pressure injuries, and potentially reducing hospital
length of stay, with positive implications for post-transplant
results (5, 73, 95, 96). A retrospective cohort study (n=65)
showed that the use of Impella 5.5 enabled participation in
pretransplant rehabilitation protocols, which were associated with
improved post-transplant outcomes. Patients demonstrated higher
standardized Activity Measure for Post-Acute Care Basic Mobility
scores (adjusted coefficient 0.3, p=0.04), greater improvements
during rehabilitation (adjusted coefficient 0.35, p=0.04), and
more days alive outside the hospital within 30 days post-
transplant (median 15 days). The ability to engage in extended
rehabilitation while stabilized on Impella 5.5 highlights its role in
optimizing functional recovery prior to transplantation (97). Of
note, axillary artery access was associated with insertion site
complications, such as access bleeding, arm ischemia and
transient deficiency of the brachiocephalic plexus (see Table 1) (5).

As experience with the latest temporary devices grows,
accumulating evidence supports that bridging with a durable
LVAD is associated with improved post-transplant survival,
especially when compared to VA-ECMO supported strategy. Data
from ISHLT Registry (86) showed that bridging with tMCS,
including VA-ECMO (HR: 3.79; 95% CI: 2.69-5.34; p <0.001)
and Impella/TandemHeart (HR: 1.83; 95% CIL 1.09-3.08;
p=0.02), was independently associated with a higher risk of
1-year post-transplant mortality compared to patients supported
by durable LVADs. Similarly, in an analysis of the UNOS registry,
Karamlou and colleagues demonstrated that patients supported by
durable LVAD exhibit better post-transplant survival at 5-years
compared to those supported by other forms of MCS, which
included IABP and VA-ECMO (adjusted HR: 0.71; 95% CI: 0.59-
0.84; p<0.001) (98). In a separate analysis of the same registry
including 26,918 recipients, another group found that over the
first 16.7 years post-transplant, the estimated adjusted restricted
mean survival time (defined as the maximum observed time from
transplant to death) was 16.5 months (99% CI: 13.9-19.2), longer
in patients bridged with durable LVADs compared to those
bridged with VA-ECMO (87).

Although a survivor bias likely contributed (87), these findings
highlight the advantages of dMCS support as a BTT, particularly
in light of the significant improvements in post-transplant
outcomes for durable LVAD patients over time (72). Earlier-
generation devices, such as the HeartMate II and HVAD, were
associated with higher 90-days post-transplant mortality but
showed comparable long-term survival rates to de novo HT
(82.6% vs. 83.4% at unadjusted 5-year survival; p=0.15).
Additionally, functional status, unadjusted rates of hospital
readmission and graft rejection were similar at 1, 2 and 5 years
(99). A similar finding was reported in another study (100),
92.8%
medically bridged patients compared to 90.5% in patients
supported with durable LVADs (log-rank p <0.001). However,
this difference was no longer evident at 5 years post-transplant,

where 1-year post-transplant survival was among

with survival rates of 78.9% in medically managed patients and
78.0% in those bridged to transplant with LVADs (p =0.659),
indicating no significant difference in long-term risk conditional
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on survival to 1 year. The median duration of LVAD support was
213 days (interquartile range, 121-377 days). Compared with
patients who received <6 months of support, those with longer
durations of support experienced higher mortality within the
first year after HT (100). Early mortality observed in durable
LVAD-supported patients has been associated to factors such as
re-sternotomy, prolonged exposure to non-physiological flow,
postoperative vasoplegia, different listing statuses, extended
waiting times, and complications inherent to durable support
(100). Interestingly, while medically managed patients often
experienced functional decline from listing to transplant, patients
supported by durable LVAD showed improved functionality
during the same period (99). This provides indirect evidence of
superior rehabilitation and conditioning with dMCS use.
Advancements in durable LVAD technology, particularly
with HeartMate 3, have yielded encouraging results. The
MOMENTUM 3 trial (10, 101) and ELEVATE registry (102)
reported 2-year survival rates for HeartMate 3-supported
patients ranging from 79% to 83.4%, nearing post-transplant
survival rates. Furthermore, the 5-year Kaplan-Meier estimate of
survival to transplant, recovery, or LVAD support free of
debilitating stroke or reoperation to replace the pump in the
HeartMate 3 was 54.0% (vs. 29.7% in the HeartMate II group,
P <0.001). Overall Kaplan-Meier survival at 5 years was 58.4%,
compared to 43.7% with the HeartMate II (p=0.003) (11),
reaching 76% in patients under 50 years, with a lower incidence
of serious adverse events compared to previous durable LVADs
(103). Nonetheless, HF and device-related infections remain the
leading causes of adverse events, morbidity, and mortality with
fully magnetically centrifugal flow pump LVADs (11, 102).
Careful patient selection and continuous assessment are crucial
not only for optimizing waitlist outcomes but also for improving
post-transplant success in patients bridged with the HeartMate
3. Factors such as advanced age, ischemic cardiomyopathy, renal
dysfunction, obesity, and pulmonary hypertension have been
associated with higher 1-year post-transplant mortality in
patients supported by HeartMate 3 (104). Further studies
focusing on long-term outcomes in patients bridged with fully
magnetically levitated technology are needed to refine candidate
criteria and enhance both pre- and post-transplant survival.
Finally, dMCS implantation has been associated with
105-108). However,
unlike medically managed patients, allosensitization in dMCS-

allosensitization in HT candidates (99,

supported patients did not predict post-transplant mortality
(106). Indeed, panel reactive antibody levels in these patients
have been observed to rise early during support and decline
over time leading to the hypothesis that the formation of
pseudointima may reduce device-related immune activation
(109). Device explantation may help mitigate inflammation and
further
rendering sensitization a transient phenomenon.

lower panel reactive antibody levels, potentially

The use of MCS in older patients remains an area of
permanent debate. Age correlates with higher in-hospital
mortality (110), with a sharp increase after 72 years in those with
AMI-CS under MCS (111). While age itself should not preclude

MCS, frailty and comorbidities should be carefully assessed to
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better guide clinical management. Moreover, the optimal timing
for the initiation of MCS remains difficult to determine in real-
world practice. After an initial approach that includes optimizing
medical treatment, the choice of further therapies should be
tailored to the degree of hemodynamic support needed and
availability of options. The use of vasoactive agents can
complicate outcomes, and careful monitoring of catecholamine
use and the vasoactive-inotropic score can help predict prognosis
and guide MCS decisions (112). The goals of MCS should be
clearly defined prior to implementation, emphasizing
hemodynamic stabilization, decongestion and the restoration of
systemic perfusion, while minimizing complications.

The controversy surrounding recipient age limits in HT arises
from discrepancies between chronological and physiological age,
variations in organ availability, and differing practices among
transplant centers. Traditionally, older age has been considered
a risk factor due to associations with increased comorbidities
and a higher likelihood of post-transplant complications
compared to younger recipients (113-115). As a result, many
transplant centers establish a relative age cut-off, beyond which
patients may not be considered HT candidates, with alternative
options including LVAD therapy as DT (if eligible), destination
inotrope therapy, or palliative care. However, successful survival
outcomes in older patients at several transplant centers have led
to increased consideration of this population for HT candidacy
(114, 116). Interestingly, recent data indicate a 110% increase in
HT among patients aged 50-64 (95, 116, 117); the increased
listing of older adult candidates has led to a corresponding
increase in the HT rate for these candidates, this trend is most
pronounced in patients over 65 years old who went from a HT
rate of 74.3 per 100 waitlist years in 2015 to 132.2 in 2019 (116).

With the evolving profile of transplant candidates, older
patients are increasingly being considered for tMCS as a BTT.
A small study by Paghdar et al. (95) focused on patients aged 50
or older [median age at HT was 63 (58-68)] with significant
comorbidities who were supported with the Impella 5.5 device
as BTT. The study demonstrated favorable survival outcomes
with minimal complications, suggesting that tMCS may be a
viable option in selected older candidates. However, further
research is needed to better define the role of tMCS in patients
over 65 years, a population that remains underrepresented in
current evidence. Risk stratification in this group should go
beyond chronological age to carefully account for comorbidity
burden, support indication, and anticipated duration of therapy (95).

Despite the growing use of MCS as a BTT, most of the evidence
supporting its effectiveness comes from registry data. To gain more
reliable insights, it would be essential to conduct long-term
randomized controlled trials to strengthen evidence-based clinical

approaches and ultimately improve patient outcomes.

7 Interplay between MCS and HT
allocation systems

Allocation systems are pivotal in the clinical decision process
for HT candidates, carefully balancing the urgent medical needs
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of patients with the limited availability of donor organs. In many
regions, HT allocation systems are based on urgency and
compatibility factors, and designed to prioritize patients who are
at the highest risk of mortality, which generally includes those
supported by tMCS (81, 82, 118-120). Despite a continuous
increase in the number of HT performed in recent years, the
mismatch between organ demand and supply persists due to an
increasing advanced HF population (9, 82, 121).

Previous reports showed that the use of tMCS as a direct BTT
was not common around the world (81, 122), although this trend
has been changing recently as new allocation systems tend to
prioritize patients under tMCS (120, 123, 124). In countries like
Spain (82, 125), with one of the highest rates of HT per capita,
economic restrictions in accessing dMCS and timely donor
availability make tMCS a relatively common method for BTT. In
Spain, the highest level of priority on the waiting list is granted
to patients on biventricular tMCS (VA-ECMO or biventricular
Centrimag), followed by temporary LVAD (Impella 5.5 or
LVAD Centrimag, but not Impella CP or IABP) and patients
with refractory arrhythmic storm. Patients on dMCS are not
prioritized, unless they have device-related complications (82).
The global cumulative rate of HT in patients treated with tMCS
listed for emergent transplant in Spain was 85% and showed an
increasing tendency in the last few years, reflecting changes in
donor allocation policies. Urgent HT represents more than one-
third of the total transplants performed every year (125) and
1-year post-transplant survival was reported at 76% (82), with
excellent transplant efficiency demonstrated by a median waiting
time of six days for the higher urgency candidates.

The Eurotransplant coalition facilitates organ exchange among
eight countries (119), prioritizing high-urgency HT candidates on
inotropes, tMCS, or dMCS with device-related complications (126,
127). The waitlist mortality for HT candidates the
Eurotransplant network has significantly decreased over the past

in

decade, reflecting improved organ utilization combined with the
broadening donor pool and the utilization of durable LVADs as
BTT (128). Alternatively, the French model employs a score-
based allocation system, balancing urgency with donor-recipient
(127), the United Kingdom (UK)
distinguishes “super-urgent” patients under tMCS (excluding

compatibility while
IABP) or those with criteria for urgent transplant not suitable
for durable LVAD (126). French, UK and Eurotransplant
systems also do not prioritize stable durable LVAD patients.

In the United States of America (USA), policy revisions in the
UNOS system in 2018 shifted the priority towards tMCS patients,
leading to a significant reduction in the use of dMCS as BTT, from
29% to 5% between 2014 and 2021 (124, 129, 130). This change
has shifted focus towards patients supported by tMCS (124,
131), granting them higher priority over those with stable
dMCS, who are now classified as status 4 (out of 6 status levels)
(120, 126). If complications during dMCS support arise they are
upgraded to status 3 or status 2 in case of device malfunction.
Prior to this policy change in the USA, stable durable LVAD
patients were classified as status 1B (2 out of 3 status levels),
with device-related complications allowing an upgrade to status
1A (126).
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These allocation criteria are primarily driven by the
prioritization of sicker patients and reflect the improved
outcomes achieved in the last decade with dMCS, positioning
durable LVADs more as a BTC or DT option rather than as a
direct BTT. These changes in allocation have prompted
transplant programs to adjust their practices in favor of tMCS to
elevate candidate status and reduce waiting times for patients
bridged to HT, which may raise ethical concerns.

The best allocation system remains an ongoing debate
worldwide. To ensure equity, maximize clinical efficacy, and
minimize organ wastage, continuous evaluation and refinement
of allocation protocols are imperative.

8 Current gaps and challenges
in the field

Despite the significant advances in MCS technology, several
gaps in the field remain that warrant further investigation.

One major challenge is the management of patients with small
left ventricles, such as those with restrictive or hypertrophic
cardiomyopathies (132-135). These patients are at high risk for
adverse outcomes but are often not candidates for conventional
therapies that benefit patients with HF, presenting unique
challenges in hemodynamic management and device selection.
The small left ventricle size limits the ability to implant durable
LVADs, which are designed for larger ventricles. Moreover,
patients with these pathologies may exhibit biventricular
dysfunction, which complicates the decision to use MCS devices
as BTT, since biventricular assist devices carry higher risks and
(136). difficulties
managing the growing population of adults with congenital

complications Similar are faced when
heart disease because of the complex anatomic and physiologic
features that characterize this heterogeneous group of patients,
contributing to long waiting times and poor transplant
outcomes (137). To address these gaps, some HT allocation
systems prioritize patients with restrictive cardiomyopathies and
heart (71).  Another

completely met is right ventricular failure (138), difficult to treat

congenital disease related gap not
and with unsatisfactory results with the devices currently
available and an important cause of morbidity and mortality
after implantation of durable LVADs. Emerging approaches,
such as using a dual configuration HeartMate 3 pump for
biventricular support (139, 140) or a redefined total artificial
heart (141), show promising results but require further study.
While there are several publications in the literature that discuss
these

formulate comprehensive recommendations, and these gaps

issues, the available evidence remains insufficient to
continue to represent significant challenges in the field.

Several challenging situations can arise during the care of
patients with MCS. Therefore, the management of these devices
requires a multidisciplinary approach integrated within other
therapeutic interventions, such as pharmacotherapy and lifestyle
modifications. Advancements in device design and automation can
improve management but also introduce new challenges related to

device operation, compatibility and software updates (142).
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9 Future directions and research

There the
management of CS and chronic advanced HF, as well as to
further develop MCS One
underexplored area is the use of ambulatory support devices—

are significant opportunities to enhance

technologies. promising and
such as axillary or subclavian IABPs and dischargeable Impella
(e.g, NCT05291884)—which may physical

rehabilitation for patients awaiting HT (143, 144). These strategies

devices enable
could reduce complications, lower hospital costs, and potentially
support pharmacologically mediated myocardial recovery.
Innovative therapies aimed at reverse remodeling, such as left
ventricular volume reshaping, have shown potential in delaying
the need for MCS in select ambulatory patients with reduced
ejection fraction (145, 146). These interventions may offer a
BTT—or
individuals. In parallel, growing evidence supports the concept

viable even BTR—approach in  well-selected
of myocardial recovery through early implementation of less
invasive MCS devices (147). This highlights the importance of
developing tools to identify HF reversibility prior to MCS
implantation, optimizing unloading strategies with guideline-
directed medical therapy, and implementing robust monitoring
protocols to assess and support recovery.

Despite remarkable advances, the demand for more refined
dMCS systems continues to grow. Future dMCS devices are
expected to be less invasive, easier to implant, and more
physiologically adaptive. Key developments under investigation
include fully implantable pumps with wireless energy transfer
systems to eliminate driveline infections, and improved
biomaterials designed to reduce thrombotic risk and minimize
anticoagulation needs (147-149). Artificial intelligence and
machine learning are poised to transform MCS management by
enabling predictive modeling, optimizing device settings, and
personalizing therapy. Patient-specific computational simulations
and phenotypic profiling are also emerging as tools to improve
preoperative planning and long-term management (147).

Cross-disciplinary collaboration among clinicians, engineers,
stakeholders be

innovation in dMCS. Together, these advances aim to address

and industry will crucial to sustaining
current limitations, improve outcomes, and enhance the quality

of life for patients with advanced HF.

10 Limitations

This review has several important limitations. As a narrative,
non-systematic overview, it does not provide an exhaustive or
comprehensive synthesis of all available evidence on MCS as a
BTT, and some relevant data or studies may not have been
included. The review focuses on the main devices currently
used, their typical indications, and general outcomes. Due to the
heterogeneity of patient populations, device types, and reporting
standards across the literature, it is challenging to conduct
quantitative analyses regarding survival and outcomes. Thus, we
reported major findings but did not perform a comparative
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analysis or include data on MCS use after HT, which was
beyond the scope of our review. Inconsistent reporting of
important variables—such as duration of support while on the
waitlist—hinders interpretation of outcomes. Additionally, recent
changes in organ allocation systems, such as the prioritization of
tMCS stable durable LVADs, further
comparisons between these strategies for bridging, particularly

over complicate
with newer devices. Most of the available data are derived from

observational studies, and reported outcomes are often
conditioned by regional and institutional practices, including the
selection and availability of specific device types. Finally, the
lack of standardized reporting and potential publication bias
further limit the ability to draw robust, generalizable conclusions

from the available data and make specific reccommendations.

11 Conclusions

The use of MCS as a BTT has revolutionized the management
of end-stage HF. This review has examined its expanding role in
HT candidates, focusing on clinical indications for device
selection, the decision-making process, and outcomes associated
with both short- and long-term MCS use. Available evidence
suggests that dMCS improves waitlist survival and post-
transplant outcomes compared to tMCS. Furthermore, patients
bridged with dMCS have comparable post-transplant survival to
those transplanted directly, reinforcing the value of durable
devices in enhancing patient prognosis. However, trends in
organ allocation increasingly prioritize the sickest patients
requiring tMCS over those supported by stable LVADs. In this
regard, recent devices such as the Impella 5.5 have demonstrated
promising early results as BTT, and ongoing larger studies with
long-term follow-up will help to better define their appropriate
clinical indications and patient selection. The optimal allocation
system remains a topic of ongoing debate, requiring a balance
between urgency-based models that aim to reduce waitlist
mortality and outcome-focused strategies that prioritize post-
transplant survival, all within the constraints of national policies
and resource availability. Despite technological advances,
challenges persist in optimizing device selection, managing
complications, and ensuring equitable allocation. Addressing
these gaps through continued innovation and more personalized
treatment approaches will be essential for improving device
efficacy, safety, and quality of life for HT candidates. Future
research should focus on refining allocation systems and
overcoming current limitations to further enhance outcomes in

this promising and dynamic field.
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