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Introduction: The heart-brain axis hypothesis suggests a bidirectional

connection between the brain and the heart with relevant implications in

health and disease. Cardiovascular diseases have been empirically linked to an

increased risk of neurological diseases. However, it remains unclear to what

extent different cardiovascular diseases affect brain health quantitatively across

subjects and if that is associated with the extent the heart is affected by a

disease. Therefore, this study aims to explore how cardiovascular diseases

affect biological ageing of the brain and heart by quantifying the brain age gap

(BAG) and the heart age gap (HAG) and relating the two to each other.

Methods: This study used data from UK Biobank participants with available T1-

weighted brain magnetic resonance imaging (MRI) scans, cardiac MRI-derived

features, as well as pulse wave analysis cardiac measurements. This dataset

included 7,500 healthy females and 6,684 healthy males. The data from

healthy subjects was used to train biological brain age prediction machine

learning models. For BAG computation, a convolutional neural network was

trained based on the MRI data, while a CatBoost model was trained for HAG

analyses based on the tabulated cardiac features. Individuals with

cardiovascular diseases (F = 2,304, M = 2,925) in the UK Biobank were

categorized using Phecodes and split based on sex and used to calculate the

HAG and BAG for further analyses.

Results: In 36 sex-specific cardiovascular disease groups, 24 showed significant

differences from healthy subjects in the BAG and HAG distributions, whereas no

strong correlations between the BAG and HAG distributions within disease

groups were found. However, some diseases, such as hypotension and cardiac

conduction disorders, showed sex-specific differences.

Discussion: This study demonstrates that the combined use of HAG and BAG

biomarkers provides a more comprehensive understanding of the interplay

between cardiovascular and neurological ageing. The significant differences

observed in disease groups, while lacking a strong correlation between the

BAG and HAG, questions the generalizability of the heart-brain axis theory

with respect to age gap biomarkers, suggesting potentially heterogeneous

aging processes of the two systems that warrant further investigation in

future work.
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1 Introduction

A growing body of recent research supports the theory of the

so-called heart-brain axis (1), which posits that there is a

bidirectional connection between the brain and the heart so that

diseases in one organ may also manifest as dysfunctions in the

other. For example, reciprocal links between Alzheimer’s disease

and heart failure have been reported in the literature, with the

diagnosis of one leading to an increased risk of development of

the other (2, 3). Other studies have suggested a bidirectional

relationship between cardiac disease and brain volume changes

(4). This bidirectional link may be related to the close

physiological and pathological connections between the heart

and brain.

For many diseases, including cardiac and neurological diseases,

the chronological age of a person is an important risk factor (5).

However, the chronological age of a person may not be an

optimal risk assessment tool due to considerable inter-individual

differences in biological ageing, which can be related to

environmental, lifestyle, genetic, and many other factors. Within

this context, the biological age refers to how the body or organ

system appears from an anatomical or functional perspective

when compared to a healthy/typical ageing trajectory. From a

technical point of view, the biological age of an organ can be

estimated using a machine learning model that was trained using

imaging or other clinical data from healthy subjects for whom it

is assumed that the biological age is equal to their chronological

age. Particularly, when applied to data from presumed non-

healthy subjects, it can be used to calculate the organ-specific age

gap biomarker, which is defined by the difference between the

biological age and chronological age. Various age gap biomarkers

have been proposed in the literature so far, including the brain

age gap (BAG), which has been shown to be a sensitive

biomarker for many neurological diseases (6), the retinal age gap

(7), which has shown promise for the detection of ocular and

some non-ocular diseases (8), and the heart age gap (HAG),

which has been used to quantify deviations from healthy ageing

in subjects with cardiac diseases (9, 10).

The brain age gap was one of the first imaging biomarkers that

was suggested in this realm and is typically computed using 3D

anatomical magnetic resonance imaging (MRI) of the brain using

convolutional neural networks (11–13). With relevance to the

heart-brain axis assumption, recent research has, for example,

shown that subjects with an increased risk of cardiovascular

diseases (14–16) or those diagnosed with cardiovascular diseases

(12) exhibit significant deviations in brain age gaps compared to

healthy controls. However, none of these previous studies took

into account that subjects with cardiac diseases differ with

respect to how various cardiac diseases manifest clinically, and it

remains unclear whether there is a clear link between biological

heart and brain ageing in subjects with specific cardiac diseases.

More recently, biological cardiovascular ageing has started to

be investigated using similar approaches as commonly used in

biological brain age research, whereas deviations in structural and

functional features of the heart are now used to compute the

biological heart age biomarker. In the heart, the general/typical

ageing process manifests through alterations in tissue structure,

such as fibrosis, arterial stiffening, and changes in myocardial

function (17, 18). Therefore, the HAG has been investigated

using electrocardiograms (ECG) (19–23), echocardiograms (24),

and cardiac MRI (25–27). Within this context, it has been found

that the ECG-derived heart age gap is correlated with heart age

gaps computed using cardiac MRI data (28, 29), and that the

combination of ECG data and MRI does not improve age

prediction performance (25). From a technical point of view, the

HAG can be used as a surrogate measure to quantify the severity

of the effect of a cardiovascular disease on the heart and its

ageing process. However, to the best of our knowledge, the HAG

and BAG have not been investigated in combination for a wide

range of specific cardiac diseases so far as a means to explore a

potential heart-brain axis in these diseases.

Thus, this work aimed to build on previous HAG and BAG

investigations but now with a focus on analyzing to what extent

cardiovascular diseases are associated with changes in the HAG

and BAG and if there is any relevant correlation between the two

biomarkers that provides additional experimental support for the

heart-brain axis hypothesis.

2 Materials and methods

2.1 Data

This research has been conducted using the UK Biobank

Resource (30) under Application Number 77508. This data was

used for this work as it provides detailed data for a large number

of healthy participants and individuals with various diseases.

This data includes T1-weighted MRI of the brain, as well as

derived cardiac MRI (31) and measured pulse wave

analysis features.

The study population available was divided into two primary

groups, healthy individuals (n = 14,184) and those with

cardiovascular diseases (n = 5,229). This was done by following

the procedures and exclusion criteria outlined in McAvoy et al.

(32), whereas patients with diseases not under investigation that

have previously been shown to be associated with deviations in

BAG were excluded. This included neurological and mental

diseases, as well as diseases such as diabetes, chronic kidney

disease, and human immunodeficiency virus. Additionally,

patients with diseases that could greatly affect the morphology of

the brain or heart were excluded, such as cancers of the heart

and brain, stroke, and traumatic injuries of the heart and brain.

The final healthy cohort available and used for this work

consisted of 7,500 female and 6,684 male participants. All data

groups were split based on sex for all analyses, as both the brain

and the heart have been shown to exhibit sex-specific ageing

trajectories (25, 33). Thus, this step allows for a better

understanding of variability between the sexes (34). The healthy

group was further split into 80% training (F = 6,000, M = 5,346),

10% validation (F = 750, M = 669), and 10% test sets (F = 750,

M = 669). For this split, the groups of healthy subjects were

stratified by age to ensure representative coverage across the
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ageing spectrum available in the UK Biobank. The training data

from the healthy subjects were then used to train the machine

learning models needed to estimate the BAG and HAG in the

cardiovascular disease groups (see below). The validation set

was utilized in machine model training for early stopping as

well as for the age gap bias correction procedure carried out

(see section Bias Correction). All data groups remained the

same throughout this work for ease of comparability between

BAG and HAG.

For further splitting of the subjects with diagnosed

cardiovascular diseases (F = 2,304, M = 2,925) “Phecodes” (35),

which group International Classification of Diseases Revision

10 (ICD10) codes into interpretable disease classifications,

were used. Disease subgroups with fewer than 30 participants

were excluded to ensure statistical robustness of the results.

This resulted in 36 sex-specific cardiovascular disease test

groups (e.g., hypertension, heart valve disorders, congestive

heart failure, etc.). The full list of disease subgroups, along

with their associated Phecodes and ICD-10 codes, is presented

in Table 1.

2.2 Brain age prediction

To calculate the brain age gap (BAG), T1-weighted MRI scans

(resolution = 1 × 1 × 1 mm3, field of view = 208 × 256 × 256 mm3)

were used. All T1-weighted MRI scans underwent preprocessing

using an in-house developed pipeline (12). This preprocessing

included non-local means filtering (36), skull stripping using

HDBET (37), N4 bias field correction (38), and affine registration

using ANTs (39) to the MNI atlas (40). These steps ensured that

the input images were consistent and suitable for the subsequent

machine learning analyses. The full T1-weighted images were

selected for this purpose, as it has been shown that this is the

best and most readily available single imaging modality for brain

age prediction (41). Moreover, the whole images were used

without any explicit feature extraction to enable a fully data-

driven pipeline that overcomes potential biases introduced by the

selection of a specific parcellation scheme used for

feature extraction.

For biological brain age prediction, a 3D convolutional neural

network (CNN) was employed, as illustrated in Figure 1 (12, 14).

This deep learning model is based on the widely validated SFCN

model (42), which achieved competitive results predicting brain

age using UK Biobank data in the past. The CNN model, trained

using the data from healthy subjects, outputs a predicted

biological brain age for each individual based on the learned

patterns in brain structure associated with healthy age-related

changes. Two models, one for females and one for males, were

trained using the T1-weighted MRIs from the healthy datasets in

this work. The trained CNN models were used for prediction

and BAG calculation of the holdout test sets of healthy subjects,

as well as for the subjects with cardiovascular diseases, whereas

the difference between the predicted brain age and the

individual’s chronological age provides the BAG.

2.3 Heart age prediction

The heart age gap (HAG) model used in this work was

developed using tabulated structural and functional cardiac

features derived from 4D cardiac MRI (31) and pulse wave

analysis (PWA) (43). Briefly described, the cardiac MRI features

were previously automatically extracted using machine learning

algorithms from cine MRI scans in the short-axis, long-axis, and

aortic views (31) with manual quality control performed before

uploading the data to the UK Biobank repository. These cardiac

MRI features included chamber-specific volumes, areas,

distensibility, strain, ejection fractions, as well as PWA features,

including cardiac index, blood pressures, and cardiac output. The

PWA data also included a flag for plausibility of the recorded

output as determined by a medical professional, which was used

for quality control in this work, wherein only data from subjects

TABLE 1 Demographic information of the subgroups under examination.

Subgroup Sex N Mean
age

Healthy holdout test F 728 62.62

M 630 62.67

Abnormal heart sounds F 33 63.18

Cardiac conduction disorders F 71 66.31

M 179 68.38

Cardiomegaly M 72 65.83

Carditis M 33 62.94

Congestive heart failure F 30 66.93

M 80 69.15

Elevated blood pressure reading without diagnosis of

hypertension

M 44 65.43

Heart valve disorders F 70 69.49

M 116 67.76

Hemorrhoids F 341 62.74

M 382 63.58

Hypertension F 1,160 66.78

M 1,733 66.98

Hypotension F 109 65.55

M 86 67.78

Nonspecific chest pain F 95 65.00

M 87 63.44

Non-cerebral aneurysms M 38 67.29

Other disorders of circulatory system F 190 65.64

M 241 67.03

Other forms of chronic heart disease F 30 67.93

M 84 66.27

Paroxysmal tachycardia, unspecified F 356 65.51

M 512 66.12

Phlebitis and thrombophlebitis M 31 63.00

Pulmonary heart disease F 52 66.67

M 93 65.45

Raynaud’s syndrome F 58 64.43

M 49 66.92

Rheumatic disease of the heart valves F 42 69.12

M 54 67.87

Unstable angina intermediate coronary syndrome F 291 67.24

M 737 67.81

Varicose veins F 313 64.51

M 206 65.17
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with plausible recordings were included. All features used were

readily available from the UK biobank as part of “PWA” and

“Cardiac and aortic function #1” data categories. Only features

directly related to heart function were retained, resulting in a

final set of 103 features that can be found in the

supplementary material.

To predict the HAG from these tabulated features, a CatBoost

tree model (44) with the hyperparameters tuned using Optuna (45)

was implemented following the HAG work by Shah et al. (25) The

pipeline for this is illustrated in Figure 2. CatBoost is a tree-based

gradient boosting algorithm that performs well on tabular data and

has shown strong performance in cardiac age prediction using

cardiac MRI features and the same hyperparameter tuning

framework as used in this work (25). The input groups for

training, validation, testing, and cardiac disease subgroup subjects

are the same as those used for the BAG prediction model. The

model outputs the predicted biological heart age for each

individual, wherein the difference between this predicted

biological age and chronological age constitutes the HAG. Sex-

based differences were observed in some cardiac metrics, and to

account for this, separate models for males and females were

trained, in the same fashion and using the same patient data

splits as done for the brain age prediction task to enable full

comparability. The trained CatBoost models were used for

biological heart age prediction and HAG calculation of the

holdout test sets of healthy subjects, as well as for the subjects

with various cardiovascular diseases.

2.4 Bias correction

Age gap calculation using machine learning has been shown

to typically be incorrectly correlated with chronological age in

many cases due to regression-to-the-mean effects, where

younger individuals tend to be predicted older and vice versa,

independent of the model and data used (46, 47). To correct

for this potential bias, a widely used bias correction step (46)

was applied. To this end, ordinary least squares linear

models were trained using the validation sets of healthy

participants and used to “regress out” the influence of

chronological age. This correction was independently

optimized and applied to both models for HAG and BAG

computation, respectively.

FIGURE 1

CNNmodel used in this work for biological brain age prediction using T1-weighted MRI. BatchNorm, batch normalization; Conv3D, 3D convolutional layer;

MaxPool, max pooling; ReLU, rectified linear unit. Reproduced with permission from “CNNmodel used in this work for biological brain age prediction using

T1w MRI” by Elizabeth Mcavoy, Emma A. M. Stanley, Anthony J. Winder, Matthias Wilms and Nils D. Forkert, licensed under CC BY-NC-ND.

FIGURE 2

Pipeline for heart age prediction using a CatBoost model based on cardiac MRI-derived features and pulse wave analysis features as the input. Training

and hyperparameter tuning of the CatBoost model were performed using Optuna utilizing the training and validation sets, respectively.
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2.5 Statistical analysis

Statistical comparisons were performed to examine how the

age gaps of the cardiovascular disease groups differ from the age

gap distributions of the healthy cohort, as well as how BAG and

HAG differ within each cardiovascular disease group. In the

healthy test set, it is expected that the mean BAG and HAG

will be approximately 0 and that any deviations will be

randomly distributed. Moreover, it is expected that the

cardiovascular disease groups will differ from healthy ageing

with respect to the HAG, while significant differences in the

BAG suggest that the cardiovascular disease investigated also

affects brain ageing. Cardiovascular diseases where the BAG

and HAG distributions are not or only weakly correlated and

significantly different from each other may suggest that the

cardiovascular disease can cause non-uniformity in ageing

along the heart-brain-axis. Therefore, Mann–Whitney U-tests

were used to compare group means to the healthy holdout test

set. To explore how HAG and BAG aligned within individuals,

paired Wilcoxon signed-rank tests were conducted for each of

the cardiovascular disease groups. Additionally, to investigate

if the directions of potential BAG and HAG differences in the

disease groups were correlated, Spearman correlation

coefficients were calculated, with values less than 0.3

indicating poor, 0.3–0.5 fair, 0.6–0.8 moderately strong, and

above 0.8 very strong correlations (48). All statistical tests

were bootstrapped with 10,000 samples to improve reliability

and to account for variability. The mean p-values from these

resampling tests were reported. In the determination of

significance while correcting for multiple comparisons,

Benjamini-Hochberg (49) corrections for false discovery were

applied, with a p-value and q-value of 0.05.

3 Results

For the sex-specific healthy cohorts before bias correction, both

BAG and HAG showed moderately strong correlations (r) with

chronological age [BAG: Female (F) r =−0.525, Male (M)

r =−0.597, HAG: F r =−0.693 M r =−0.692], which diminished

after bias correction (BAG: F r = 0.052, M r = 0.079, HAG:

F r = 0.001, M r = 0.058), as expected. Thus, this correction

ensured that the measures reflect biological ageing rather than

simply chronological age. Scatter plots of the BAG vs. HAG for

the healthy test groups can be seen in Figure 3.

Spearman correlation between BAG and HAG for the healthy

test sets was very poor (F: r = 0.13, M: r = 0.08). The resulting mean

age gaps and mean absolute errors (MAE) are provided in Table 2.

It can be seen that the mean age gaps for males and females in both

HAG and BAG are (as expected) approximately 0.

Next, the following comparisons were conducted for each of

the 36 disease groups:

(1) BAG for healthy subjects (BAGHealthy) vs. BAG values for each

disease group (BAGDisease)

(2) HAG for healthy subjects (HAGHealthy) vs. HAG values for

each disease group (HAGDisease)

FIGURE 3

Scatter plots of the healthy test sets for males and females showing their brain age gap vs. their heart age gap, with a line of best fit showing the overall

trend present.

TABLE 2 Age gaps for healthy test sets showing the means and mean
absolute error (MAE).

Healthy sets Female Male

Mean MAE Mean MAE

HAG −0.048 2.747 −0.159 3.035

BAG −0.114 2.266 −0.218 2.404
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(3) BAG values for each disease group (BAGDisease) vs. HAG

values for the same disease group (HAGDisease)

These comparisons of BAG and HAG distributions revealed some

significant differences. Specifically, out of the 36 sex-specific disease

groups under investigation, 24/36 showed a significant difference in

at least one of the three test categories (BAGHealthy vs. BAGDisease),

(HAGHealthy vs. HAGDisease), or (BAGDisease vs. HAGDisease) after

correction for multiple testing. Box plots showing the results of

these comparisons for congestive heart failure and heart valve

disorder groups are provided in Figures 4,5, respectively. Box

plots for all other disease groups can be found in the

Supplementary Material.

21/36 sex-specific disease groups showed significantly different

(BAGHealthy vs. BAGDisease) distributions, 13/36 showed

significantly different (HAGHealthy vs. HAGDisease) distributions,

FIGURE 4

Plots of age gaps for patients with congestive heart failure, female (top), male (bottom), (left) box plots comparing distributions to healthy test groups

with p values from tests (left to right): (HAGHealthy vs. HAGDisease), (BAGDisease vs. HAGDisease) and, (BAGHealthy vs. BAGDisease) (right) scatter plot of the

patient-specific BAG and HAG with a line of best fit.
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and 11/36 showed that (BAGDisease vs. HAGDisease) distributions

were significantly different. Table 3 shows all disease groups

examined with detailed results of the comparison tests,

(BAGHealthy vs. BAGDisease), (HAGHealthy vs. HAGDisease), and

(BAGDisease vs. HAGDisease). The only sex-specific disease groups

that showed no differences in all comparisons were for females

with hemorrhoids, unstable angina intermediate coronary

syndrome, and varicose veins and for males with cardiomegaly,

congestive heart failure, heart valve disorders, hemorrhoids,

hypotension, other forms of chronic heart disease, nonspecific

chest pain, and rheumatic disease of the heart valves.

Spearman correlation was used to evaluate the relationship

between BAG and HAG, exploring whether differences are

correlated in a more general way than the (BAGDisease vs.

FIGURE 5

Plots of age gaps for patients with heart valve disorder, female (top), male (bottom), (left) box plots comparing distributions to healthy test groups with

p values from tests (left to right): (HAGHealthy vs. HAGDisease), (BAGDisease vs. HAGDisease) and, (BAGHealthy vs. BAGDisease) (right) scatter plot of the patient-

specific BAG and HAG with a line of best fit.
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HAGDisease) test. In this analysis, only 3/36 groups showed

marginally fair (|0.3–0.5|) correlations between BAG and HAG,

with the majority of cardiovascular diseases showing only poor

correlations (<|0.3|).

4 Discussion

Overall, the results of this study show that the heart age gap

and the brain age gap are two distinct biomarkers that do not

appear to be correlated in the presence of cardiovascular diseases.

Instead, in combination, they provide insight into how the heart

and brain age differently in the presence of different

cardiovascular diseases.

The heart and brain age prediction models implemented in this

work performed on par or better than the results described in the

original contributions presenting the model architectures used

(25, 50). More precisely, the models developed in this work

led to an improvement in the previously described mean

absolute error (MAE) from 4.21 years (25) compared to an

MAE = 2.75 years for females and MAE = 3.04 years for males

for the heart age prediction models in our work, and a

previously described MAE = 2.47 years (50) compared to an

MAE = 2.27 years for females and MAE = 2.40 years for males

for the brain age prediction models in our work. Thus, the

models performed slightly differently between the sexes. In

both cases, the mean absolute error was lower for the

biological age prediction in the female cohort. This presents

an opportunity for further investigation into any additional

confounding variables that may explain the sex-specific

differences found for the healthy brain age prediction as well

as the heart age prediction.

TABLE 3 Cardiovascular diseases group comparisons significant results in (BAGHealthy vs. BAGDisease), (HAGHealthy vs. HAGDisease), and (BAGDisease vs.
HAGDisease), Spearman correlation coefficient BAG and HAG.

Disease group Sex BAGHealthy vs.
BAGDisease

HAGHealthy vs.
HAGDisease

BAGDisease vs.
HAGDisease

Absolute Spearman
Correlation

Abnormal heart sounds F 0.015 0.575 0.240 0.15

Cardiac conduction disorders F 0.002 1.35E-07 0.114 0.08

M 6.16E-05 0.008 8.17E-11 0.06

Cardiomegaly M 0.557 0.547 0.908 0.16

Carditis M 3.69E-04 0.824 0.029 0.13

Congestive heart failure F 2.71E-06 1.66E-04 0.846 0.29

M 0.079 0.180 0.026 0.30

Elevated blood pressure reading without

diagnosis of hypertension

M 0.003 2.50E-04 0.598 0.08

Heart valve disorders F 1.11E-05 0.805 1.07E-04 0.26

M 0.148 0.150 0.357 0.04

Hemorrhoids F 0.229 0.840 0.225 0.09

M 0.043 0.932 0.078 0.09

Hypertension F 4.90E-06 6.16E-07 0.572 0.10

M 1.12E-09 5.79E-05 0.638 0.04

Hypotension F 0.039 1.84E-06 6.10E-13 0.12

M 0.063 0.503 0.774 0.06

Non-cerebral aneurysms M 5.28E-08 5.52E-06 0.577 0.14

Nonspecific chest pain F 0.003 4.79E-04 0.128 0.07

M 0.472 0.232 0.088 0.34

Other disorders of circulatory system F 0.933 0.004 0.002 0.08

M 5.65E-05 0.682 0.006 0.02

Other forms of chronic heart disease F 0.597 1.87E-05 5.45E-10 0.10

M 0.053 0.585 0.034 0.07

Paroxysmal tachycardia, unspecified F 0.530 0.016 0.162 0.07

M 0.016 0.070 0.629 0.04

Phlebitis and thrombophlebitis M 1.37E-13 0.280 0.010 0.33

Pulmonary heart disease F 0.002 0.442 0.434 0.05

M 1.27E-06 0.163 0.003 0.07

Raynaud’s syndrome F 0.021 0.184 0.553 0.01

M 0.008 0.496 0.006 0.01

Rheumatic disease of the heart valves F 1.13E-04 0.550 0.007 0.02

M 0.928 0.240 0.168 0.09

Unstable angina intermediate coronary

syndrome

F 0.815 0.711 0.931 0.07

M 3.08E-04 0.026 0.566 0.09

Varicose veins F 0.479 0.105 0.176 0.12

M 0.004 0.012 1.06E-07 0.17

Bold indicates significant results after multiple testing correction.
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Previous studies investigating healthy subjects found

correlations between heart and brain age gaps (9, 51). However,

when investigating patients with diseases, it gets more

complicated. For example, it has been reported that there is a

divergence of heart and brain ages in patients with chronic

diseases (9), while an investigation into the underlying genetic

architecture of heart and brain ages also revealed a very weak

correlation between the heart and brain ages (10). Similarly to

those results from the literature, our work shows a divergence

between the heart and brain age gaps in the presence of the

specific cardiovascular diseases investigated in this work. This

finding suggests that a heterogeneity in the ageing biomarkers

and the trajectories they measure exists, and that the heart and

brain are not always ageing in sync in the presence of

cardiovascular diseases. Thus, the combination of these two

biomarkers allows for a quantitative analysis of how a

cardiovascular disease affects both the heart and brain in

individual patients. The fact that 24 out of 36 disease groups

showed significant differences in at least one of the comparisons

of BAG and HAG emphasizes the value of this dual biomarker

approach. Age gaps can be used for the analysis of the interplay

and patterns between two or more organs of the human body,

whereas the combination of BAG and HAG allows for a better

understanding of how different cardiovascular diseases affect the

heart and the brain from a biological ageing perspective.

Another interesting finding of this study is that for the sex-

specific groups, multiple cardiovascular diseases exhibited

differences between the female and male cohorts. Of the 16

female disease groups, 56% showed a BAG distribution that was

different from the healthy group, 50% a HAG distribution that

differed from the healthy group, and 31% showed significant

differences between the BAG and HAG distributions. In contrast

to that, for the 20 cardiovascular disease male groups

investigated, 60% showed a BAG distribution that differs from

the healthy test cohort, 25% showed a HAG distribution different

from the healthy group, and 30% showed significantly different

HAG and BAG distributions. This observation suggests that,

depending on the disease and sex status, cardiovascular diseases

manifest differently in the imaging features related to brain and

heart ageing. This finding aligns with previous research showing

that men and women experience healthy cardiovascular and

neurological ageing differently (25, 27, 33, 52). For example, in

healthy cardiovascular ageing, a feature that differs greatly

depending on sex is the normalized left ventricular mass and

function (53). In brain ageing, there are similar trends, with sex

and menopause, for example, being associated with changes in

grey matter, white matter, and ventricular volumes (33). Another

example of sex-related differences in the ageing process of the

brain and heart is the presence of cardiac plaques. In those

patients, women have been shown to exhibit brain atrophy

equivalent to 8.8 years while men exhibit white matter

hyperintensities equivalent to 6.5 years (54). These sex-specific

differences in the ageing biomarkers warrant further causality-

based investigations (55), which may help to explore if there are

certain biological and sex-specific protective features that may be

useful in the future. This disease- and sex-specific interaction

highlights the importance of personalized medicine and

investigation into how diseases manifest in different sexes.

Previous studies showed an increase in parenchymal brain

matter loss or atrophy in patients with increased cardiovascular

stress blood biomarkers (56). Different heart diseases have also

been associated with structural brain changes, with a majority of

patients with such diseases exhibiting differences in brain atrophy

and white matter hyper- and hypo-intensities compared to healthy

participants (57, 58). While brain atrophy and white matter hyper-

and hypo-intensities can be observed in normal brain ageing, they

are also associated with dementia if occurring earlier in life (33,

59–62). Furthermore, it has been reported that subjects with

hypertension (63) and abnormalities in blood pressure, even

without clinical hypertension, exhibit increased brain atrophy and

are at increased risk for dementia (64). These previous findings

are in line with the results of this work, where subjects with

hypertension (M, F) and elevated blood pressure (M) exhibit both

BAG and HAG differences when compared to the healthy cohort.

Another result in the present study that is in line with previous

research is that females with heart valve disorders exhibit a

difference in the BAG distribution when compared to healthy

subjects. Within this context, it has been previously reported that

87% of patients with heart valve disorders exhibit increased white

matter hyperintensities, a sign often associated with accelerated

brain ageing (58). With respect to the association between

cardiovascular diseases and the brain age gap, previous work has

found that, in particular, the ventricular regions of the brain have

high importance and are used by deep learning models for the

brain age prediction task (32). This previous work also found that

the regions utilized by a deep learning model for brain age

prediction did not significantly differ in patients with

cardiovascular diseases compared to healthy participants, which

suggests that deep learning models trained for brain age prediction

primarily analyze and make use of normal brain aging patterns

(32). Previous work related to the HAG has found that the

features derived from cardiac MRI, specifically aortic and left heart

chamber features, have high importance for the heart age

prediction task when trained on data from healthy subjects (25).

Further analysis into specific feature-wise correlation between the

brain and heart age in future studies would enable a more in-

depth biological interpretation of the heart and brain ages in a

wide range of cardiovascular diseases.

However, despite the fact that some of the results found in this

work are generally in line with previous disease-specific findings, the

low correlation of the BAG and HAG in patients with cardiovascular

diseases, although previously reported for other disease types (9, 10),

may seem surprising given an assumed heart-brain axis. The fact

that the HAG and BAG are only weakly or negligibly correlated in

the cardiovascular disease groups examined raises questions about

the generalizability of the heart-brain axis in reference to age gap

biomarkers. Many theories to explain how the heart and the brain

are anatomically and functionally linked have been proposed in

the past, such as the neuro-endocrine-heart axis and neuro-

immune-heart axis hypotheses (65–67). Particularly, the neuro-

immune-heart axis theory could be a possible explanation for a

link between the three diseases which showed a higher correlation
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between the BAG and HAG. More precisely, phlebitis refers to an

inflammation of the veins (68), while chronic heart failure has

been associated with increased inflammatory biomarkers (69), and

non-specific chest pain is a possible symptom related to

inflammation of the chest wall. Further investigation into the

causality of the BAG and HAG in the future could help to better

explore the relationship between the ageing biomarkers and

cardiovascular diseases. Following this, it may be expected that the

heart-brain axis manifests differently in men and women, likely

because hormonal and immune responses differ between the sexes

(70). Due to the nature of the age distribution within the UK

Biobank (46–82 years), a majority of the female subjects are

possibly menopausal or post-menopausal. Thus, further

investigation of the hormonal balance present in men and women,

as well as possible investigation of inflammatory markers, could

allow for more specific future analyses of correlations and

causation of the BAG and HAG differences in women and men.

Both immune and endocrine responses can vary drastically in

duration and severity of the response. This could be an

explanation for why only low correlations between the HAG and

BAG distributions were found in this study. Thus, further work

using longitudinal data is needed to explore how these biomarkers

change over time for individuals with cardiovascular disease to

investigate if the age gaps observed become in sync over time.

Overall, our results suggest that the combination of BAG and

HAG as biomarkers provides a more comprehensive view of

biological ageing compared to using either metric alone. The

BAG captures neuroanatomical changes, while the HAG reflects

cardiovascular function and vascular health. This has the

potential to explain why some cardiovascular diseases can cause

neurological problems and vice versa. Together, these biomarkers

clinically offer the possibility of a holistic assessment of

cardiovascular disease, making them valuable tools for identifying

individuals at high risk for both cardiac and neurological decline

without the assumption that the two systems will always be in sync.

4.1 Limitations

This study has several limitations that should be considered when

interpreting the findings. First, the reliance on data from the UK

Biobank, while providing a well-organized dataset of deeply

phenotyped subjects, may limit the generalizability of results to other

populations due to potential demographic and health-related biases

within the underlying study cohort. Thus, applying and evaluating

the model’s performance in more diverse cohorts that also cover a

larger age range than the participants included in the UK Biobank

would increase its future generalizability to different demographics in

clinical practice. Additionally, exploration of different representative

measures/variables of heart and brain health, such as those

obtained from low-field MRIs, or electrocardiograms and

electroencephalograms, that are more easily obtained clinically

than MRI, would be beneficial in the future to enable affordable

and continuous monitoring of individuals in large populations.

This study specifically utilized physiological measurements and

imaging for the prediction of heart and brain ages. Thus, further

investigation into additional (confounding) variables that could

explain higher or lower age gaps would enable a better

understanding of how these age gaps present clinically in

patients. Particularly, variables such as socioeconomic status,

medications, lifestyles, and other disease-related factors, should

be investigated in the future to better understand their potential

influence on the results.

Sex-specific models were employed to minimize the influence of

sex as a confounding variable. The findings of this study suggest that

the sexes differ in HAG and BAG in cardiovascular disease. Since

healthy ageing differs between sexes and cardiovascular diseases

manifest differently between sexes, further research is needed to

investigate more specific features and how they differ between

sexes. This research would illuminate the nuanced roles that sex

may play in the biological ageing of the heart and brain in the

presence of cardiovascular diseases, potentially uncovering distinct

ageing trajectories and risk factors unique to each sex.

Finally, the study design only captures deviations in brain and

heart ageing at a single time point, as well as defining the disease

information as present or absent at that time point. Given the

possibility of a delay in the response of the heart-brain axis

through the immune or endocrine systems (65–67), duration of

disease should be explored as an additional variable of interest in

the future. Longitudinal studies would provide a more

comprehensive understanding of individual ageing trajectories,

which could help to identify deviations that could indicate early

disease onset or accelerated ageing over time. Such an approach

could reveal early biomarkers for at-risk individuals and provide

insights into the dynamics of heart-brain ageing as diseases progress.

5 Conclusion

This work shows the need for a more holistic approach with

respect to the evaluation of cardiovascular diseases. The lack of

generalizability of the heart-brain axis using the age gap

biomarkers suggests that monitoring both brain and heart health

is essential for understanding the full impact of cardiovascular

disease on individual patients. Significant differences observed

across 24 out of 36 sex-specific cardiovascular disease groups

show that these diseases may affect both organs but at different

rates, as none of the BAG and HAG were highly correlated with

each disease group. Future research could explore whether

interventions or behavioral changes targeting one organ system

can positively affect the other, offering new avenues for

treatment. Additionally, the use of these biomarkers in

longitudinal studies could help track disease progression and

treatment response over time. Overall, this work highlights the

complex and interconnected nature of the heart and brain in

subjects with cardiovascular diseases.
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