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There exists a complex relationship between gut microbiota and cardiovascular

diseases (CVD). On one hand, the plasma levels of various metabolites produced

by gut microbiota, such as trimethylamine n-oxide (TMAO), short-chain fatty

acid (SFCA), bile acid (BA), are closely related to the occurrence and

development of CVD. On the other hand, CVD can affect gut microbiota,

leading to gut microbiota dysbiosis or metabolic changes. Cardiovascular

drugs are the cornerstone of treating CVD, especially oral medications that

play an indispensable role in the long-term treatment of chronic CVD.

Increasing research suggests that drugs entering the gastrointestinal

environment interact with gut microbiota. Due to the individual differences in

gut microbiota, the exploration of its mechanisms is insufficient. Therefore,

the purpose of this review is to summarize the interactions between various

common cardiovascular drugs and gut microbiota, and to highlight the impact

of the gut microbiota on the therapeutical effects and side effects of

cardiovascular drugs.
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Introduction

There exists a complex bidirectional interaction between the gut microbiota and drugs,

a mechanism that profoundly impacts the efficacy of drug therapies and host health. The

gut microbiota can influence drug metabolism and absorption (1–3). The gut microbiota

influences drug metabolism through several mechanisms, including the production of

enzymes that degrade or activate drugs, altering the pH of the drug absorption

environment, and performing biotransformation of drugs (such as demethylation,

deamination, dehydroxylation, deacylation, decarboxylation, or oxidation) (4). These

processes can significantly impact the efficacy, bioavailability, and pharmacokinetics of

various medications. Drugs characterized by low solubility and/or permeability or

sustained release are particularly susceptible to these effects, as they tend to have a

longer residence time in the gastrointestinal tract. Additionally, the gut microbiota-bile

acid axis appears to enhance the solubility of certain low-solubility drugs (5). The

influence of the gut microbiota is not confined to the gastrointestinal tract, as certain
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metabolites derived from it may affect liver function. This occurs

by mimicking and competing with intermediates generated

during drug metabolism in liver or by influencing the expression

of hepatic drug metabolism genes (6, 7).

Conversely, drugs can alter the composition and metabolism of

the gut microbiota (8–10). The mechanisms involved include direct

or indirect disruption of the gut microbiota, modulation of

metabolite production, and changes in the gastrointestinal

environment, among others. A few typical examples are worth

mentioning. Antibiotics directly disrupt the gut microbiota

through their bacteriostatic or bactericidal activities, altering the

metabolic capabilities of the microbiota. For instance, ampicillin

alters the characteristics of the gut microbiota, reducing its

metabolic activity and enhancing the antithrombotic effect of

aspirin (11). Aspirin affects the composition of the gut

microbiota, reducing the production of mucosal protective

metabolites in the intestine, thereby promoting aspirin-induced

intestinal injury (12). Proton pump inhibitors (PPI) increase the

pH of the gastrointestinal tract, leading to a significant reduction

in the α-diversity of the intestinal microbiota (13). This

promotes the abundance of opportunistic pathogens such as

Enterococcaceae and Streptococcaceae, thereby increasing the risk

of infections and inflammation. Additionally, PPIs enhance

patients’ susceptibility to the pathogenic bacterium Clostridioides

difficile (14), which is closely associated with numerous

cardiovascular diseases (CVD) (15–18). Furthermore, drugs may

induce modifications in genes or enzymes involved in their own

metabolism or transport, accelerating their own transport and

metabolism (19), a phenomenon known as autoinduction. This

can have implications for other drugs that share the same

metabolic or transport pathways. In summary,these interactions

highlight the role of the gut microbiota in drug efficacy and side

effects, while also offering potential targets for optimizing

therapeutic strategies.

The gut microbiota plays a pivotal role in the pathogenesis and

progression of CVD. Key metabolites derived from gut microbiota,

such as trimethylamine n-oxide (TMAO), short-chain fatty acids

(SCFA), and bile acids (BA), have been extensively studied for

their roles in CVD. For instance, TMAO, a metabolite produced

by gut bacteria from dietary choline and carnitine, is closely

associated with adverse cardiovascular outcomes when its plasma

levels are elevated (20). Similarly, SCFA, generated from the

fermentation of dietary fibers, exhibit anti-inflammatory and

vasoprotective effects (21), while BA are involved in regulating

lipid metabolism and energy homeostasis through various

signaling pathways (22, 23). Additionally, certain pathogenic

bacteria in the gut microbiota, such as Shigella, can promote

systemic inflammation, thereby increasing the risk of CVD (18,

24–27). Consequently, gut microbiota dysbiosis contributes to the

development and exacerbation of CVD. Furthermore, CVD can

induce changes in the composition and function of the gut

microbiota (28–31), creating a vicious cycle that perpetuates

disease progression.

Given the complex interactions between the gut microbiota and

drugs, as well as the influence of the gut microbiota on CVD, the

gut microbiota also plays a crucial role in shaping the therapeutic

effects and side effects of cardiovascular drugs. The gut

microbiota exhibits metabolic activity toward many

cardiovascular drugs (2, 11, 32, 33) and can influence the

transport and absorption of drugs such as aspirin (1), ultimately

altering their bioavailability and pharmacokinetics and affecting

their therapeutic efficacy. Conversely, cardiovascular drugs can

modulate the composition and function of the gut microbiota,

thereby influencing their own therapeutic effects and side effects.

For example, aspirin alters the composition of the gut

microbiota, reducing the production of mucosal protective

metabolites and promoting aspirin-induced intestinal injury (12).

Nifedipine, with its potential antibacterial activity, inhibits

specific gut bacteria, thereby reducing the production of blood

pressure-elevating metabolites by the gut microbiota (34).

Additionally, different pathological conditions can influence the

interactions between the gut microbiota and cardiovascular

drugs. For instance, amlodipine increases the proportion of pro-

inflammatory bacteria in the gut microbiota of healthy

individuals, leading to intestinal inflammation and increased

intestinal permeability (35), whereas in individuals with

hypertension and non-alcoholic fatty liver disease (NAFLD), it

promotes the restoration of intestinal integrity (36). Therefore,

exploring the interactions between CVD, cardiovascular drugs

and the gut microbiota holds significant implications for

individualized drug therapy.

In this review, we will first summarize the associations between

the gut microbiota and CVD, aiming to understand the role of gut

microbiota and their metabolites in cardiovascular health. We will

then explore the mechanisms underlying the interactions between

common cardiovascular drugs and the gut microbiota,

highlighting the impact of the microbiota on drug efficacy and

adverse effects, propose potential therapeutic targets for

microbiota-based interventions in cardiovascular medicine.

Cardiovascular diseases and gut
microbiota

The gut microbiota refers to the complex microbial community

colonizing the human gastrointestinal tract, comprising bacteria,

fungi, viruses, and archaea, with bacteria being the predominant

component. The metagenome (collective genetic material) of the

gut microbiota far exceeds the human genome in size and

establishes a symbiotic relationship with the host, participating in

diverse physiological functions such as digestion, immune

regulation, metabolic synthesis, and disease defense. Notably, it

plays a critical role in maintaining cardiovascular health.

Approximately 98% of human gut bacteria belong to the phyla

Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria.

Among these, the ratio of Bacteroidetes to Firmicutes (F/B ratio)

is relatively stable under normal conditions, and its dysregulation

is associated with metabolic syndromes such as obesity and

diabetes. The gut microbiota harbors numerous commensal

bacteria, such as Lactobacillus species, which produce SCFA that

confer cardiovascular benefits, including anti-inflammatory

effects, prevention of atrial fibrillation, and reduction of insulin
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resistance (37–40). Blautia, Ruminococcaceae, and Akkermansia

muciniphila are associated with lower triglyceride levels and

exhibit cardioprotective properties (41). Bacteroides fragilis has

been shown to mitigate high-salt diet-induced hypertension and

prevent aging-related atrial fibrillation (42, 43). However, the gut

microbiota also includes pathogenic bacteria, such as

Clostridioides difficile, which significantly increases the risk of

myocardial infarction, heart failure, and stroke in infected

individuals (15–18). Pathogens like Shigella, Campylobacter, and

Salmonella are linked to systemic inflammation and elevated

CVD risk (18, 24–27). Certain bacteria exhibit dual roles in

cardiovascular health. For example, Prevotella produces

trimethylamine (TMA, a precursor of TMAO) and is associated

with hypertension (44, 45). Conversely, Prevotella has also been

shown to ameliorate diabetes-induced glucose dysmetabolism and

produce SCFA (46–48), suggesting that dietary and other

environmental factors may modulate its metabolic activity and

impact on host health.

The metabolites of gut microbiota has a complex relationship

with CVD. For instance, TMAO is a harmful metabolite

associated with adverse cardiovascular outcomes. Meta-analyses

have shown a positive dose-dependent association between

plasma TMAO concentration and CVD risk (20). TMAO

promotes the accumulation of cholesterol in macrophages,

leading to their transformation into foam cells, one of the earliest

cellular markers of atherosclerosis (49, 50). It also enhances the

expression of the nuclear factor-kappa B (NF-κB) pathway and

the production of reactive oxygen species (ROS) (51, 52),

triggering inflammation and endothelial dysfunction, which

contribute to the development of atherosclerosis. Elevated levels

of TMAO further promote cardiac hypertrophy and fibrosis

through the transforming growth factor-β-mothers against

decapentaplegic homolog 2/3 (TGF-β-Smad2/3) signaling

pathway, thereby inducing heart failure (53). Additionally,

TMAO prolongs the activity of angiotensin II (AngII) by altering

its structure, exacerbating hypertension. The gut microbiota also

produces metabolites beneficial to cardiovascular health. SCFA,

key metabolites derived from the microbial fermentation of

dietary fibers, include acetate, propionate, and butyrate. These

SCFA exert multiple cardioprotective effects. For instance, acetate

and propionate bind to the G protein-coupled receptor 41

(GPR41,specific SCFA receptors) on vascular endothelium,

regulating vasodilation and reducing blood pressure (54). Acetate

downregulates the expression of early growth response-1(Egr-1, a

kind of transcription factor) in the heart and kidneys, a critical

factor involved in cardiac hypertrophy, cardiorenal fibrosis, and

inflammation (21). Butyrate suppresses cholesterol absorption by

downregulating Niemann-Pick C1-Like 1 (NPC1L1, key protein

for dietary cholesterol absorption) expression (55). Furthermore,

BA in the gut are closely linked to metabolism, and their

composition and levels are modulated by the gut microbiota

(56). BA exert their effects by binding to BA receptors in various

tissues. For example, activation of the farnesoid X receptor (FXR)

in the liver reduces the expression of lipogenic genes such as

sterol regulatory element-binding protein 1c (SREBP-1c),

significantly lowering serum and hepatic triglyceride levels (22).

Activation of intestinal FXR also reduces lipid levels by decreasing

BA reabsorption (23). Takeda G protein-coupled receptor 5

(TGR5), another BA receptor, improves insulin sensitivity, reduces

inflammation, and ameliorates ventricular remodeling through

multiple mechanisms, including modulating DHHC-type

palmitoyltransferase 4 (DHHC4), the cyclic GMP-AMP synthase-

stimulator of interferon genes (cGAS-STING) pathway, and the

cyclic adenosine monophosphate/protein kinase A (cAMP/PKA)

pathway (57–59). Activation of TGR5 can also mitigate obesity by

stimulating the sympathetic nervous system (60).

On the other hand, CVD can also affect the gut microbiota,

leading to gut dysbiosis, which may, in turn, exacerbate

cardiovascular conditions. For example, in patients with heart

failure, reduced blood flow to the intestinal arteries increases the

number of gut bacteria in the mucus layer near the apical surface

of the colonic mucosa. This leads to increased permeability of

the small and large intestines, allowing higher levels of

inflammatory cytokines and endotoxins to enter the bloodstream

(61). In addition, the composition of the gut microbiota in

patients with heart failure undergoes significant alterations,

characterized by a reduction in Coriobacteriaceae,

Erysipelotrichaceae, and Ruminococcaceae (62, 34), and an

increase in pathogenic bacteria including Shigella, Campylobacter,

Salmonella, and Candida species (63). A national study in the

United States also reported an increase in the number of

pathogenic bacteria (such as Clostridium difficile) in fecal samples

from patients with chronic heart failure, and this pathogenic

bacterial infection was significantly associated with increased

hospital mortality among heart failure patients (28).

Furthermore, in patients with chronic heart failure,

downregulation of microbial genes involved in the production of

protective metabolites such as butyrate and significant

upregulation of intestinal microbes metabolizing harmful

metabolites like TMAO and lipopolysaccharide (LPS) have been

observed (29). In patients with carotid atherosclerosis, there is an

increase in infection-associated gut microbiota, such as Klebsiella

and Streptococcus (30, 31). Patients with hypertension exhibit

gene loss in their intestinal microbiome related to amino acid

(particularly lysine, histidine, leucine, and serine) biosynthesis

and transport, as well as a decrease in fatty acid utilization and

carbohydrate transport modules, indicating impaired nutrient

synthesis, absorption, and energy production capabilities. In

contrast, LPS biosynthesis and export modules are enriched, and

LPS has been shown to contribute to inflammation (45). It can

be seen that there is an interaction between the gut microbiota

and CVD, and this interaction forms a cycle that impacts the

health of the organism.

Interaction between cardiovascular
drugs and gut microbiota

Aspirin

Aspirin, also known as acetylsalicylic acid, is an antiplatelet

agent that exerts its therapeutic effects by irreversibly acetylating
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cyclooxygenase-1 (COX-1), thereby inhibiting the synthesis of

thromboxane A2 (TxA2) and suppressing platelet aggregation.

This mechanism prevents thrombus formation (64). Compared

to its primary metabolite, salicylic acid, the addition of the acetyl

group enhances aspirin’s water solubility and facilitates its rapid

absorption into the bloodstream. Aspirin serves as a cornerstone

medication for the treatment and prevention of atherosclerosis.

As an antiplatelet agent, enteric-coated tablets are the main form

of aspirin, which means it stays in the gut longer and interacts

with the gut flora for a longer time.

Aspirin is closely associated with the characteristics of the gut

microbiota. Studies have shown that aspirin and its metabolite,

salicylate, possess antimicrobial activity. They can reduce

cholesterol levels in the cell membranes of certain gut bacteria in

a dose-dependent manner, thereby decreasing membrane fluidity.

Additionally, aspirin inhibits the activity of dehydrogenase

(DHA), a core energy metabolism enzyme that drives redox

reactions and ATP production, as well as esterase (EA), a

hydrolase involved in lipid metabolism, detoxification, and signal

regulation (65). Furthermore, aspirin can induce the lysis of

Helicobacter pylori (66). The effects of aspirin on gut bacteria are

not uniform; they are more pronounced in suppressing the

growth of pro-inflammatory and other harmful bacteria, thereby

creating a favorable environment for the proliferation of

beneficial bacteria. Research has demonstrated that individuals

who take oral aspirin exhibit more prominent features of

Prevotella, Bacteroides, Ruminococcaceae, and Barnesiella in their

gut microbiota compared to control groups. These bacteria are

closely linked to cardiovascular health (9). Animal studies have

also revealed that aspirin can modulate the composition of the

gut microbiota by balancing the ratio of Tregs to Th17 cells and

enhancing the cluster of differentiation 39-cluster of differentiation

73 (CD39-CD73) adenosine signaling pathway, which is involved

in purinergic signaling. This modulation leads to an increase in

the levels of SCFA (67). A comprehensive analysis of the gut

metagenomics, host clinical data, and metabolomics of 2,173

European residents found that aspirin improves cardiometabolic

health by influencing the gut microbiota. This includes reductions

in Ruminococcus, Clostridium citroniae, and Parvimonas micra,

lower concentrations of plasma inflammatory markers such as

C-reactive protein (CRP) and interleukin-6 (IL-6), and decreased

levels of pyruvate (9). These studies collectively suggest that the

cardiovascular therapeutic effects of aspirin may be partially

mediated by the gut microbiota.

On the other hand, the gut microbiota can also influence the

metabolism and absorption of aspirin. Kim et al. found that the

gut microbiota metabolizes aspirin into salicylate through

esterases produced by certain bacteria. Salicylate, compared to

aspirin, is less readily absorbed, thereby reducing aspirin’s plasma

concentration and weakening its antiplatelet effects. When

treated with ampicillin, the abundance of Enterococci,

Enterobacteria, and Lactobacilli in the gut microbiota

significantly decreased, enhancing the antiplatelet effects of

aspirin. This suggests that these bacteria may possess or secrete

esterases capable of metabolizing aspirin (11). Additionally, the

gut microbiota can influence the absorption of aspirin in the

small intestine. Multidrug Resistance Protein 4 (MRP4), an efflux

transporter, pumps a variety of structurally diverse endogenous

and exogenous organic anions out of cells, and aspirin is also a

substrate of MRP4 (68). Studies have shown that the gut

microbiota can regulate the expression of MRP4 in intestinal

epithelial cells. Jeon et al. demonstrated that treating Caco-2 cells

(which structurally and functionally resemble differentiated small

intestinal epithelial cells) with coffee bean extract(CBE)-treated fecal

microbiota suppressed MRP4 expression, whereas CBE alone did

not have this effect. Furthermore, the CBE-treated gut microbiota

showed an increase in Muribaculaceae and Lactobacillaceae and a

decrease in Proteobacteria, Helicobacteriaceae, and Bacteroidaceae,

indicating that these bacteria may play a role in regulating MRP4

expression in intestinal epithelial cells (1).

Gastrointestinal injury is a common side effect of aspirin, which

is traditionally attributed to the inhibition of COX-1 and COX-2.

However, recent studies suggest that the gut microbiota may also

play a role in gastrointestinal injury caused by aspirin. WU et al.

identified Parabacteroides goldsteinii, an intestinal microbe

inhibited by aspirin. Supplementing with Parabacteroides

goldsteinii or the BA metabolite 7-keto-lithocholic acid (7-keto-

LCA) can promote intestinal epithelial repair by inhibiting FXR

receptor signaling, alleviating aspirin-mediated intestinal

microenvironment and intestinal barrier damage (12). Through

the use of figures, we have provided a more intuitive summary of

the interactions between aspirin and the gut microbiota, as

detailed in Figure 1.

Statins

Statins are the most commonly used lipid-lowering drugs in

clinical practice, achieving cardiovascular protection by reducing

blood lipid levels. Along with aspirin, they are cornerstone

medications for the treatment and prevention of atherosclerosis.

It is traditionally believed that the antilipidemic effect of statins

is mainly achieved by inhibiting 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase. Additionally, statins are

associated with an increased risk of type 2 diabetes mellitus

(T2DM), although the mechanism underlying this side effect

remains unclear. Recent studies have revealed that the gut

microbiota plays a role in both the lipid-lowering effects and the

blood glucose-elevating effects of statins. Kari’s cross-sectional

analysis of cohort studies revealed that the gut microbiota has an

additive effect on the risk of statin-associated new-onset type 2

diabetes mellitus (T2DM). Specifically, the abundance of

Ruminococcus torques, Blautia obeum, and Blautia sp. KLE 1732

was positively correlated with the risk of statin-associated new-

onset diabetes (69). Jose et al. discovered that statins activate the

liver pregnane x receptor (PXR), which suppresses the expression

of cytochrome P450 family 7 subfamily A member 1(CyP7A1, a

key rate-limiting enzyme in BA synthesis). This expands the BA

pool and alters the proportion of BA, ultimately leading to a

deficiency in butyrate-producing bacterial communities and

increasing the risk of T2DM (10). Additionally, BA play a

significant role in the relationship between statins and the gut
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microbiota. She et al. found that statins reduce the abundance of

Clostridium in the gut microbiota, leading to a decrease in the

proportion of ursodeoxycholic acid (UDCA) in total BA. UDCA

is a ligand for the TGR5 receptor, which stimulates glucagon-like

peptide-1(GLP-1) secretion and enhances insulin sensitivity (70).

This partially explains the mechanism behind statin-induced

elevated blood glucose. In the same study, an increase in the

proportion of chenodeoxycholic acid (CDCA) was also observed.

CDCA is an endogenous ligand for FXR, and its activation can

reduce lipid absorption in intestinal cells and control lipid

synthesis in liver cells (23). However, upregulation of liver FXR

may attenuate the lipid-lowering effects of statins. He et al. found

that FXR upregulation can reverse the inhibition of CyP7A1

induced by a high-fat diet, reducing BA synthesis. Since

cholesterol is the precursor for BA synthesis, this may counteract

the lipid-lowering effects of statins (3). Furthermore, the gut

microbiota metabolizes many drugs, and statins are no exception.

in vitro studies have shown that simvastatin undergoes

bioaccumulation in gut bacteria and is biotransformed by

bacterial enzymes (e.g., from Lactobacillus and Bifidobacterium),

leading to delayed absorption and reduced concentration of

simvastatin (2). This may involve the off-target effects of statins

on the gut microbiota (71), ultimately weakening the lipid-

lowering efficacy of simvastatin. Therefore, the regulation of

statins’ lipid-lowering effects by the gut microbiota is

comprehensive. The individual variability of the gut microbiota

may influence its modulation of statins’ effects, which aligns with

the observed individual differences in statins’ lipid-lowering

efficacy. Future research is needed to further explore the

relationship between statins and the gut microbiota, providing

more comprehensive strategies for the personalized treatment

of statins.

With further research into statins, it has been discovered that

statins may protect the cardiovascular system through

mechanisms independent of lipid-lowering, referred to as

pleiotropic effects (72). The pleiotropic effects of statins on the

cardiovascular system may be related to the gut microbiota.

Several studies support the potential of statins to improve gut

microbial dysbiosis caused by hyperlipidemia. Bacteroides2

(Bact2) enterotype is a gut microbiota structure associated with

FIGURE 1

Interaction between gut microbiota and aspirin.Gut microbiota inhibits MRP4 expression, reducing the efflux of aspirin from intestinal cells. Aspirin

inhibits P. goldsteinii, leading to decreased production of 7-keto-LCA. This weakens its inhibitory effect on FXR, thereby impairing the self-repair

ability of intestinal cells. Aspirin increases the abundance of anti-inflammatory bacteria while reducing the levels of pro-inflammatory bacteria in

the gut. Gut microbiota metabolic enzymes convert aspirin into salicylic acid, which is less readily absorbed compared to aspirin. MRP4, multidrug

resistance protein 4; P. goldsteinii, Parabacteroides goldsteinii; 7-keto-LCA, 7-keto-lithocholic acid; FXR, farnesoid X receptor.
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systemic inflammation, and its prevalence is related to body mass

index. However, statins can reduce its prevalence (8).

Administration of atorvastatin increases the abundance of anti-

inflammatory bacteria (Faecalibacterium prausnitzii, Akkermansia

muciniphila, and Oscillospira) in the gut microbiota of

hyperlipidemia patients, while reducing the abundance of

proinflammatory species Desulfovibrio sp. and bile-related species

(Bifidobacterium bifidum) (73). Statins significantly increase the

abundance of Bifidobacteria, which are generally considered

beneficial, and reduce the abundance of bacteria related to

cardiovascular outcomes, such as Ruminococcus and

Parabacteroides (74). Atorvastatin and rosuvastatin significantly

increase the abundance of Bacteroides, Butyricimonas, and

Mucispirillum species, whose abundances are associated with

inflammation (75). Statins are also associated with reduced plasma

levels of TMAO (76). Through the use of figures and tables, we

have provided a more intuitive summary of the interactions

between statins and the gut microbiota, as detailed in Figure 2.

We have summarized clinical trials examining the interactions

between aspirin or statins and the gut microbiota (Tables 1, 2), as

these two drugs are the most widely used in the treatment of CVD

and have been the subject of extensive research.

Ezetimibe

Ezetimibe is a cholesterol absorption inhibitor that reduces

blood cholesterol levels by inhibiting the absorption of

cholesterol in the small intestine. It has been established that the

molecular target of ezetimibe is the sterol carrier NPC1L1, a

cholesterol transport protein primarily expressed in the epithelial

cells of the small intestine. The gut microbiota is closely linked

to NPC1L1, as studies have shown that NPC1L1 gene knockout

mice exhibit a decrease in Proteobacteria and an increase in

Bacteroides when fed a high-fat diet (77). Ezetimibe can similarly

induce these changes, along with a reduction in Desulfovibrio

(78). Notably, an increase in Proteobacteria and a decrease in

Bacteroides are associated with obesity (79), while a higher

abundance of Desulfovibrio has been observed in individuals with

diabetes (80). Therefore, ezetimibe may regulate the composition

FIGURE 2

Interaction between gut microbiota and statin. Statins reduce the proportion of pro-inflammatory bacteria in the gut while increasing the proportion

of anti-inflammatory bacteria. Statins decrease the proportion of UDCAwhich binds to the TGR5 on intestinal cells to stimulate the secretion of GLP-1.

Statins increase the proportion of CDCA which binds to the FXR in the intestine to inhibit lipid absorption and the FXR in the liver to suppress the

expression of Cyp7A1.The gut microbiota metabolizes statins, leading to a decrease in their bioavailability. UDCA, ursodeoxycholic acid; CDCA,

chenodeoxycholic acid; TGR5, takeda G protein-coupled receptor 5; FXR, farnesoid X receptor; CyP7A1, cholesterol 7α-Hydroxylase; Bas, bile acids.
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of the gut microbiota by inhibiting NPC1L1, ultimately influencing

glucose and lipid metabolism. On the other hand, metabolites

produced by gut bacteria are also related to NPC1L1 expression.

For instance, propionate can increase the number of regulatory

T cells and the level of interleukin-10 (IL-10) in the intestinal

microenvironment, thereby suppressing NPC1L1 expression in an

immune-dependent manner (81). Similarly, inhibiting the

production of TMAO can also suppress NPC1L1 expression (82).

Thus, dietary interventions, supplementation with SCFA, or the

use of TMAO production inhibitors may synergistically enhance

the inhibitory effect of ezetimibe on NPC1L1, further

strengthening its ability to inhibit cholesterol absorption.

However, more research is needed to validate these findings.

Calcium channel blockers

Calcium channel blockers (CCB) are commonly used

antihypertensive drugs in clinical practice, known for their rapid

onset of action. They achieve vasodilation by inhibiting calcium

channels, thereby reducing the harm of hypertension to the

cardiovascular system. The gut microbiota plays a role in the

metabolism of CCB. Yoo et al. incubated amlodipine with

human and rat feces and observed a gradual decrease in residual

amlodipine with increasing incubation time (83). Zimmermann

et al. found that diltiazem can be metabolized by Bacteroides

thetaiotaomicron (32). Zhou et al. found that Bacteroides dorei in

the gut microbiota of spontaneously hypertensive rat (SHR) was

negatively correlated with the maximum concentration

and elimination half-life of nifedipine, suggesting that

Bacteroides dorei may possess enzyme activity capable of

directly metabolizing nifedipine. Additionally, serum

glycoursodeoxycholic acid (GUDCA) was significantly elevated in

SHR, which can upregulate the expression of PXR, leading to a

significant increase in the expression of target genes cytochrome

P450 family 3 subfamily A member 1 (CyP3A1) and multidrug

resistance gene 1a (Mdr1a). CyP3A1 is a key enzyme in drug

metabolism, and the P-glycoprotein (P-gp) encoded by Mdr1a

limits drug absorption (7). Therefore, the gut microbiota may

indirectly reduce the bioavailability of nifedipine by either

directly metabolizing it or upregulating hepatic drug-

metabolizing enzymes. The question arises: Could improving gut

TABLE 1 Clinical trials of cardiovascular drugs affecting gut microbiota.

Drugs Number of
patients

People characteristics Changes of gut microbiota Results

Aspirin (109) 18 Healthy people ↓:TMAO in blood

Aspirin (110) 50 Healthy people ↑:Akkermansia, Prevotella,

Ruminococcaceae.

↓:Parabacteroides, Bacteroides,Dorea.

Aspirin (111) 2,173 Healthy people and cardiovascular

disease Patients

↓:Neococcus, Clostridium

glycyrrhizinilyticum, Micromonas.

Statin (8) 888 Obese patients ↑:Faecalis.

↓: Bacteroides.

Atorvastatin

(112)

20 Colon cancer patients ↑:Lactobacillus reuteri. ↑:Tryptophan metabolic derivatives.

Rosuvastatin

(113)

66 Healthy people ↑:Betaine, gamma-butylbetaine in blood.

Statin (69) 5,755 Healthy people ↑:Clostridium salmonellosus.

↓: Ysobacterium cellulorum.

Statin (74) 143 Acute coronary syndrome patients ↑:Actinomycete, blautia, Bifidobacterium,

anaerobic bacteria.

↓:Parabacteroides.

↓:Some metabolites in serum that are

associated with disease in blood.

TABLE 2 Clinical trials of gut microbiota affecting cardiovascular drugs.

Measure of change the gut
microbiota

Drugs The number
of patients

People
characteristics

Effect on the action of drugs

Probiotics (Bifidobacteriumbreve Bif195) (114) Aspirin 66 Healthy people Reduce the risk of small bowel injury.

Probiotics (Lactobacillus gasseri) (115) Aspirin 64 People treated with aspirin Gastrointestinal symptoms were reduced, and the

small intestinal mucosal rupture and turning red

lesions were significantly reduced.

PPI (116) Aspirin 32 People treated with aspirin Serum gastrin levels were increased

Vancomycin (117) Simvastatin 6 Healthy people No change.

Probiotics (Lactobacillus casei Zhang,

Bifidobactetium animalis subsp. lactis V9, and

Lactobacillus plantarum P-8) (118)

Atorvastatin 33 Patients with

hyperlipidemia

The lipid-lowering effect did not change significantly

compared with the control group.

Probiotics (Clostridium butyricum) (119) Rosuvastatin 96 Patients with nonalcoholic

fatty liver disease

The lipid-lowering and anti-inflammatory effect was

enhanced, Reduces the risk of elevated liver

enzymes.
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microbiota dysbiosis induced by hypertension be beneficial for

increasing the bioavailability of CCB? The answer is likely

yes.Studies have shown that under high-altitude hypoxia

conditions, the metabolic activity of the gut microbiota weakens,

significantly reducing the metabolic rate of nifedipine (84). Direct

supplementation with probiotics (85) or antibiotic treatment (83)

to alter the composition of the gut microbiota can also increase

the bioavailability of CCB.

CCB, in turn, affect the gut microbiota. Many representative

drugs of CCB such as amlodipine (86–88), lacidipine (89, 90),

felodipine (91), and verapamil (92), have been demonstrated

have potential antibacterial activity due to their synergistic or

additive effects with many antibiotics.Their chemical structures

often contain two benzene rings, and many compounds with

biphenyl structures exhibit significant antimicrobial activity, such

as quinolone antibiotics. The hydrophobicity of the benzene ring

helps the compound penetrate bacterial cell membranes (93), the

planarity of the biphenyl structure can promote interaction with

bacterial targets (such as enzymes or DNA), inhibiting bacterial

DNA replication (94). Studies have shown that amlodipine

besylate and amlodipine aspartate can increase the abundance of

Akkermansia, Bacteroides, and Lactobacillus in mice with NAFLD

and hypertension (36). Akkermansia muciniphila is considered a

paradigm for the next generation of probiotics, capable of

improving insulin resistance, reducing blood lipids, and exerting

anti-inflammatory effects (95). Bacteroides is generally considered

beneficial for host metabolism and immunity in the gut (96).

Nifedipine significantly increased the abundance of Eubacterium

and induced changes in metabolites related to hypertension, such

as reduced corticosterone. Eubacterium rectale may increase γ-

aminobutyric acid (GABA) production by regulating amino acid

metabolic pathways (97), and GABA can exert antihypertensive

effects through central and peripheral mechanisms, including

inhibiting sympathetic activity, dilating blood vessels, and

promoting sodium excretion (98, 99). Amlodipine can reverse

gut microbiota dysbiosis in SHR, restoring the proportion of

bacteria that produce lactic acid and acetic acid (100).

Additionally, the side effects of CCB may be related to gut

microbiota. Recent studies have proposed that s-amlodipine can

cause liver inflammation and dysfunction in rats by affecting gut

microbiota rather than liver cells. Through in vitro experiments, it

was demonstrated that gut microbiota treated by s-amlodipine

happened to a proliferation of Escherichia coli and a reduction in

Mucispirillum and Bacillus uniformis in the rat intestine, resulting

in intestinal inflammation, increased intestinal permeability, and

increased production of LPS by intestinal bacteria, which led to an

increase in blood LPS levels, causing final liver inflammation and

dysfunction (35). However, another study showed that amlodipine

has the potential to restore intestinal integrity in NAFLD mice

with hypertension, alleviating liver injury and steatosis caused by

nonalcoholic fatty liver disease (36). The differences between these

two studies may be due to the different models. Therefore, it is

necessary to explore the effects of the gut microbiota on CCB

under different physiological or pathological conditions.

Angiotensin-converting enzyme inhibitor/
angiotensin II receptor blocker

Angiotensin-converting enzyme inhibitors (ACEI) are

compounds that inhibit the activity of angiotensin-converting

enzyme (ACE). ACE catalyzes the conversion of Ang I to Ang

II, the latter being a potent vasoconstrictor and activator of

aldosterone release from the adrenal cortex, significantly

elevating blood pressure. Angiotensin II receptor blockers

(ARB) selectively block the angiotensin II receptor (AT1 type),

thereby inhibiting the effects of Ang II, such as

vasoconstriction, increased blood pressure, aldosterone

secretion, sodium and water retention, and sympathetic

nervous system activation, producing pharmacological effects

similar to those of ACEI. Ang II is a key component of the

renin-angiotensin-aldosterone system (RAAS) and a major

contributor to hypertension and myocardial fibrosis. Recent

studies have shown that gut microbiota is involved in the

pathophysiological mechanism of AngII in hypertension.

AngII affects the α and β diversity of gut microbiota in mice,

leading to gut dysbiosis, characterized by an increase in

bacteria producing TMAO (101) and a decrease in bacteria

producing SCFA (102), both of which have significant impacts

on the cardiovascular system. AngII can induce Th17 cells to

produce interleukin-17A (IL-17A) which is a key mediator of

AngII-induced hypertension and vascular dysfunction (103).

Gut microbiota can promote this process because Ang II-

induced IL-17A production is attenuated in mice without gut

microbiota (104). Can ACEI/ARB reverse the above changes?

The answer is possibly yes. Long-term candesartan treatment

increases the SCFA level in intestine of SHR (105). SCFA,

particularly propionate, can directly act on Th17 cells located

in the cecum, reducing IL-17A secretion by inhibiting histone

deacetylase (106). Enalapril can improve intestinal

permeability and reduce TMAO absorption in SHR. The

abundance of Coprococcus which is considered a butyrate

producer was increased in SHR fed with Enalapril, which is

beneficial for lowering blood pressure (107). However, Yang

et al. found that Coprococcus has esterase activity, which can

decompose ester-type ACEI (33), impairing the

antihypertensive effect of ACEI. Lactobacillus can produce

GABA through L-glutamate metabolism. High-salt diet is an

important factor for hypertension, which can deplete

Lactobacillus in mice (108), while candesartan can counteract

the decrease of Lactobacillus caused by hypertension, and

candesartan treatment also increases the intestinal expression

of genes encoding tight junction proteins (such as zonula

occludens, occludin, and claudin-1), improving increased

intestinal permeability caused by hypertension and preventing

gut microbiota translocation (105). These findings indicate

that ACEI and ARB exert part of their therapeutic effects

through the gut microbiota.Future research is needed to

elucidate the molecular mechanisms of the interaction between

ACEI/ARB and the gut microbiota.
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Conclusion

There are complex interactions between gut microbiota and

cardiovascular drugs. We discussed the main interactions

between the two. On the one hand, cardiovascular drugs cause

changes in the composition and metabolism of gut microbiota,

affecting the production and absorption of metabolites related to

cardiovascular health such as TMAO, SCFA and BA. On the

other hand, many cardiovascular drugs will be metabolized by

gut microbial enzymes due to the ability of gut microbiota to

metabolize exogenous substances and the self-induction of drugs.

Cardiovascular drugs will not only affect specific intestinal

bacteria, but also change the overall intestinal microbial

characteristics of people with CVD, making them closer to the

intestinal microbial characteristics of healthy people. It has

potential impact on the overall health level of the body.

Personalized treatment of CVD is promising based on individual

differences in the gut microbiota. By evaluating the

characteristics of a patient’s gut microbiota, more suitable

cardiovascular drugs and dosages can be selected for their

specific needs, thereby improving treatment effectiveness and

reducing side effects. Further research on the mechanism of the

interaction between the two is needed to provide new

perspectives and new strategies for the treatment of CVD.
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