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Background: Heart Failure with Preserved Ejection Fraction (HFpEF) in patients

with Premature Myocardial Infarction (PMI) is a crucial factor affecting long-

term prognosis. This study aims to develop a model based on a machine

learning algorithm that can predict the risk of in-hospital HFpEF in patients

with PMI early and quickly.

Methods: This prospective study consecutively included PMI patients from

January 2017 to December 2022. Lasso-Logistic, XGBoost, Random Forest,

K-Nearest Neighbor, and Support Vector Machine models were constructed.

The prediction performance of the models was compared through AUC,

Accuracy, Precision, F1 score, and Brier score. Shapley Additive exPlanations is

used to explain the model. A prediction system was developed to identify

high-risk patients.

Results: The study finally included 840 PMI patients. 268 (31.90%) developed

in-hospital HFpEF. The XGBoost model has the best prediction performance

(AUC 0.854; Accuracy 0.798; Precision 0.686; F1 score 0.586; Brier

score 0.143). The final model included ten variables, which were Brain

natriuretic peptide (BNP) > 100pg/ml, SYNTAX Score > 14.5, Age, Monocyte to

Lymphocyte Ratio (MLR) > 0.3, Hematocrit (HCT) < 45%, Heart rate (HR) > 75

bpm, Body Mass Index (BMI)≥ 24 kg/m2, C-reactive Protein to Lymphocyte

Ratio (CLR) > 2.83, Hypertension and Fibrinogen (Fg) > 4 g/L.

Conclusions: The explainable prediction model established based on the

XGBoost algorithm can accurately predict the risk of in-hospital HFpEF in

PMI patients and is available at https://hfpefpmi.shinyapps.io/apppredict/. This

system is expected to assist clinicians in decision-making by providing timely,

prioritized, and precise interventions for PMI patients, ultimately reducing the

incidence of HFpEF and improving long-term prognosis.
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Introduction

The risk of heart failure (HF) remains after premature

myocardial infarction (PMI) and is a determinant of poor

prognosis (1). Heart Failure with Preserved Ejection Fraction

(HFpEF) is defined as HF with a left ventricular ejection fraction

(LVEF) ≥50%. As a result of improved treatments and increased

public awareness of HFpEF, the proportion of HFpEF in HF has

increased to approximately 50%, affecting up to 32 million

people worldwide (2). Previous studies have shown that 30%–

60% of patients with HFpEF have a history of acute myocardial

infarction (AMI) (3). The in-hospital occurrence of HFpEF after

AMI significantly affects the long-term prognosis, especially in

the younger population, where patients suffer from decreased or

even loss of their labor capacity, which in turn triggers a

significant increase in the cost of medical care and creates

a massive burden on the family and society (4). Therefore, a

rapid, accurate, and reliable comprehensive algorithm to assess

the risk in this specific group is needed for the early

identification of high-risk patients with poor prognosis and for

the timely improvement of long-term prognosis and quality of

survival through personalized treatment.

While logistic regression (LR) remains computationally

efficient and highly interpretable, it is constrained by its linear

assumption, making it difficult to capture complex interactions.

Additionally, LR struggles with high-dimensional data, relies

heavily on manual feature selection, and is sensitive to outliers

and missing values. In contrast, machine learning (ML) has

gained increasing attention in cardiovascular disease prediction

due to its ability to process large-scale clinical data and uncover

intricate patterns (5, 6). Various ML algorithms have been widely

applied to classification and predictive tasks. Among them,

Extreme Gradient Boosting (XGBoost) has gained prominence

for its ability to integrate multiple weak learners through a

gradient boosting tree framework, achieving superior predictive

performance while effectively mitigating overfitting risk (7). This

ensemble approach performs exceptionally well in both binary

and multiclass classification tasks and often outperforms

traditional logistic regression models in clinical prediction

settings (8). Random Forest (RF) is another ensemble learning

method that constructs multiple decision trees and combines

their outputs through averaging or majority voting, thereby

enhancing model generalizability and reducing variance (9).

K-Nearest Neighbors (KNN) is a simple yet effective

classification algorithm that assigns class labels based on the

proximity of data points (10, 11). Support Vector Machine

(SVM) constructs an optimal hyperplane to maximize the

margin between different classes, making it well-suited for binary

classification tasks in structured datasets (12). Previous studies

have demonstrated that XGBoost excels in predicting 30-day

readmission in HF patients (13), AMI outcomes (14),

ICU mortality (15), and acute kidney injury (16), whereas

Random Forest has shown superior performance in postoperative

delirium prediction (17).

Despite numerous advances, few applications of machine

learning have been addressed in predicting HFpEF events during

hospitalisation in patients with PMI. Given that PMI patients

may exhibit unique risk factors, this study leverages the strengths

of multiple ML algorithms to develop a predictive model

integrating multidimensional clinical features of PMI patients.

Specifically, we aim to identify key predictive factors, quantify

their contributions, and provide a foundation for risk

stratification and early intervention in this high-risk cohort.

Material and methods

Study population

The flow of the study is shown in Figure 1. This is a single-

center, prospective, observational cohort study. Consecutive

patients admitted to Tianjin Chest Hospital for AMI between

January 2017 and December 2022, meeting the PMI age

threshold, were included in the PMI cohort. The inclusion

criteria were as follows: (a) Age > 18 years, with male≤ 50 years

and female≤ 55 years; (b) First diagnosis of AMI upon

admission, meeting the universal definition including clinical

symptoms, typical changes in the electrocardiogram, and elevated

cardiac biomarkers (18, 19). (c) No occurrence of HF upon

admission; (d) Undergoing coronary angiography (CAG) and

primary percutaneous coronary intervention (PPCI). CAG and

PPCI were performed by two or more cardiologists qualified in

coronary diagnosis and treatment at our center.

The exclusion criteria were as follows: (a) Patients with severe

liver and/or renal failure; (b) Patients with congenital heart

disease and/or valvular heart disease; (c) Patients with severe

inflammatory diseases and/or malignant tumors; (d) Patients

with missing transthoracic echocardiography and/or other data;

(e) Patients without signed informed consent. This study was

conducted in accordance to the Declaration of Helsinki and was

approved by the Ethics Committee of Tianjin Chest Hospital

(No. 2017KY-007-01).

Data collection

We developed a structured electronic medical record database

specifically for PMI patients at our hospital. This database was

designed to standardize data collection and facilitate analysis.

The collected data includes age, sex, body mass index (BMI),

smoking and alcohol habits, family history of coronary artery

disease (CAD), previous history, type of AMI; admission vital

signs; laboratory examinations, CAG, and transthoracic

echocardiography (TTE) parameters. TTE was conducted by

certified sonographers following a standardized image acquisition

protocol and utilizing consistent imaging equipment to capture

the final result before discharge. Inflammatory biomarkers were

determined using the following formulas, CLR (C-reactive

Protein (mg/L) to Lymphocyte (*109/L) ratio) and MLR

(Monocyte (*109/L) to Lymphocyte (*109/L) ratio). The SYNTAX

Score (20) was utilized to evaluate the severity of CAD and to

aid in risk stratification and the planning of revascularization
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strategies among patients with CAD. It was calculated using

software available online (https://syntaxscore.org/). In addition,

we recorded the patient’s medication status during

hospitalization, including antiplatelet drugs, statins, diuretics,

angiotensin-converting enzyme inhibitors (ACEI), angiotensin-

receptor blockers (ARB), angiotensin receptor-neprilysin

inhibitor (ARNI), and beta-blockers.

Study endpoint

All patients had a TTE assessment before discharged. HF was

defined according to the criteria established by the guidelines for

HF (21, 22). The diagnostic criteria for HFpEF are as follows:

(1) Presence of at least one typical heart failure symptom (e.g.,

exertional dyspnea, orthopnea) AND/OR one clinical sign of

fluid retention (e.g., jugular venous distension, pulmonary

rales, Leg edema).

(2) Objective evidence of cardiac congestion demonstrated

by either:

(a) Hemodynamic confirmation via right heart

catheterization [resting pulmonary capillary wedge

pressure (PCWP)>15 mmHg],

(b) tructural/functional abnormalities through imaging:

Thoracic radiography demonstrating pulmonary

vascular redistribution or interstitial edema;

Echocardiographic indices elevated E/e′ ratio (>13).

(3) Echocardiography indicates that the LVEF is ≥50%.

Model construction and validation

The minimum sample size required to construct the predictive

model based on the pmsampsize criterion proposed by Riley et al.

(23) requires the inclusion of at least 298 subjects. The missing rate

of each variable was less than 5%; we used the median to fill in the

missing values for continuous variables and conducted multiple

imputations for categorical variables. The parameters for multiple

imputation were set as m = 5, method = NULL, maxit = 50, and

seed = 123. The number of missing values for each variable and

the analysis results of the dataset before and after imputation are

presented in Supplementary Table S1. To construct the model,

the dataset is first randomly divided into: 80% as a training set

for model training and cross-validation, and 20% as a testing set

for final model evaluation. Within the training set, a five-fold

cross-validation is further employed. The training data is

randomly partitioned into five equal folds. For each iteration,

four folds are selected for training, and one fold is used for

validation. This process is repeated five times to optimize

hyperparameters and reduce the risk of overfitting. The final

model is evaluated using the 20% testing set to ensure a true

FIGURE 1

Flow chart of the study. AMI, acute myocardial infarction; CA. G, coronary angiography; DCA, decision curve analysis; HF, heart failure; HFpEF, heart

failure with preserved ejection fraction; PPCI, primary percutaneous coronary intervention; PMI, premature myocardial infarction; SHAP: shapley

additive exPlanations; NRI, net reclassification improvement; IDI, integrated discriminant improvement.
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assessment of its generalization performance. Considering the wide

range of intervals for the different variables, as well as achieving the

goal of rapid clinical application of the prediction system, we

converted continuous variables other than age into categorical

variables for analysis based on reference ranges, guidelines, or

medians, and normalized age by a min-max scaling. Specifically,

BMI was classified according to the Chinese population’s

overweight standard (24 kg/m2) (24). Heart rate (HR), systolic

blood pressure (SBP), diastolic blood pressure (DBP), white

blood cell count (WBC), neutrophils percentage (NEU%),

hematocrit (HCT), hemoglobin (Hb), platelet count (PLT), total

bilirubin (TBil), creatinine (Cr), uric acid (UA), homocysteine

(HCY), glucose (Glu), glycated hemoglobin (HbA1c), total

cholesterol (TC), triglycerides (TG), low-density lipoprotein

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-

C), free fatty acids (FFA), C-reactive protein (CRP), D-dimer,

fibrinogen (Fg), and brain natriuretic peptide (BNP) were

classified according to their normal value reference ranges or

guideline recommendations for classification. We classified total

bile acids (TBA), CLR, MLR, creatine kinase isoenzyme (CK-

MB), cardiac troponin T (cTnT), and SYNTAX scores according

to the median of the dataset due to the lack of clear classification

criteria. The number of HFpEF patients in this study is lower

than that of non-HF patients. This imbalance in the data

samples could significantly impact the performance of the

prediction model. Therefore, we use the Synthetic Minority

Over-sampling Technique (SMOTE) to balance the data set in

the training set. The k-Nearest Neighbor (k-NN) threshold used

in SMOTE is 5, and the over-sampling ratio is 1. This technique

involves increasing the number of samples in the minority class

by synthesizing new samples. Achieving a balanced number of

samples in the data set is crucial for improving the model’s

training effectiveness (25).

Five ML models, Least absolute shrinkage and selection

operator (Lasso)-Logistic, RF, XGBoost, KNN, and SVM, were

constructed using the data from the training set with whether or

not an in-hospital HFpEF occurred as the outcome event.

Gradient boosting technology is based on decision trees.

Variance inflation factor (VIF) was used to assess

multicollinearity among predictor variables, and variables with

VIF greater than 10 were excluded. Lasso is a regularization

technique that performs variable selection and coefficient

estimation by imposing constraints on the sum of the absolute

values of the model parameters. This process causes some

coefficients to be reduced to zero, effectively excluding them

from the final model. Using the variables screened by Lasso, a

two-category logistic risk prediction model is constructed. The

modeling process of the other four models (RF, XGBoost, KNN,

and SVM) is as follows. First, all variables are trained. To

optimize the model’s performance, the automatic parameter

adjustment strategy is adopted, and a 5-fold cross-validation is

used as the re-sampling strategy to evaluate the model’s

generalization ability. To further optimize model performance,

we rank the variables based on their importance and select the

top 10 features for retraining, following the same procedure as

described above.

Statistical analysis

Shapiro–Wilk test was used to evaluate the normality of

continuous variables. Mean ± standard deviation (SD) or median

(interquartile) was used to describe variables according to the

evaluation results. T-test or Mann–Whitney test was used for

inter-group comparison. The categorical variables were expressed

as numbers and percentages, and the chi-square test or Fisher’s

exact test was used for intergroup comparisons.

To evaluate the models, the area under the curve (AUC),

Precision, Accuracy, F1 score, and Brier score were calculated in

the testing set. Net Reclassification Improvement (NRI) and

Integrated Discriminant Improvement (IDI) are used to assess

the enhancement of the predictive model. According to the

comparison results, the model with the best comprehensive

performance was selected to construct the in-hospital HFpEF

prediction model of PMI patients. The final model is explained

using Shapley Additive exPlanations values (SHAP). Calibration

curves determine how close the model’s predicted probabilities

are to the actual observed probabilities. Decision Curve Analysis

(DCA) quantifies the net benefit of using the model at different

thresholds and assesses the utility of the model in decision-

making. Finally, a visual online prediction system was

constructed to calculate the prediction probability for

clinical application.

All statistical analyses were performed in SPSS Statistics 26.0

(IBM, Chicago, USA) and R software (version 4.3.1). Specifically,

SPSS was used for descriptive statistics (normality tests, means,

standard deviations and frequency distributions), and basic

inferential analyses (t-tests, one-way ANOVA, and chi-square

tests). R was employed for model construction, validation,

performance evaluation and visualization analysis. A two-sided

P < 0.05 was considered statistically significant.

Results

Baseline characteristics

The baseline characteristics of the study population, stratified

into the HFpEF group (n = 268) and the Non-HF group

(n = 572), are presented in Table 1. The total cohort comprised

840 participants, with a median age of 42[38–44] years and a

pronounced male predominance (91.0% males vs. 9.0% females).

Notably, significant differences were observed between the two

groups. The HFpEF group had a higher proportion of females

compared to the Non-HF group (15.7% vs. 5.9%, P < 0.001) and

a slightly older median age (42 [39–45] vs. 41 [37–44] years,

P = 0.001). Additionally, participants with HFpEF exhibited a

higher prevalence of obesity (BMI≥ 24 kg/m2: 82.5% vs. 74.5%,

P = 0.013) and hypertension (56.3% vs. 45.8%, P = 0.006).

Laboratory and clinical findings further distinguished the groups.

The HFpEF group demonstrated elevated markers of

inflammation (CRP >5.0 mg/L: 63.4% vs. 43.5%, P < 0.001; MLR

>0.3: 65.7% vs. 42.7%, P < 0.001) and cardiac dysfunction (BNP

>100 pg/ml: 91.0% vs. 62.4%, P < 0.001). Coronary angiography
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revealed more severe coronary artery disease in HFpEF patients,

as evidenced by a higher SYNTAX Score >14.5 (64.2% vs.

43.0%, P < 0.001).

In summary, the HFpEF cohort was characterized by older age,

a higher burden of comorbidities, and more pronounced

cardiovascular dysfunction compared to the Non-HF group.

Supplementary Table S2 shows the baseline characteristics of

the training set and testing set. Supplementary Table S3 shows

the descriptive statistics of continuous variables.

Model construction

According to the ratio of 8:2, 840 patients were randomly

divided into a training set and a testing set, with 672 in the

training set and 168 in the testing set, and five different models

were constructed in the training set. The VIF values are all

below 5, indicating that multicollinearity is not a significant issue

in our model.

Lasso regression screening (Figures 2A,B)was performedon the full

set of variables, identifying 12 key predictors: female sex, hypertension,

STEMI, BMI ≥24 kg/m2, SYNTAX Score >14.5, admission HR

>75 bpm, NEU% >75%, HCT <45%, cTnT >1.44 ng/L, MLR >0.3,

CLR >2.83, and BNP >100 pg/ml. Multivariate logistic regression

modeling was carried out using the 12 variables from the

screening. The final predictive model obtained consisted of

8 variables, which were female, BMI ≥24 kg/m2, SYNTAX Score

>14.5, admission HR >75 bpm, HCT <45%, MLR >0.3, CLR >2.83,

and BNP >100 pg/ml.

TABLE 1 Baseline characteristics of the hFpEF group and Non-HF group.

Variables Total
(n= 840)

Non-HF
(n = 572)

HFpEF
(n = 268)

P

Sex, n (%) <0.001

Female 76 (9.0) 34 (5.9) 42 (15.7)

Male 764 (91.0) 538 (94.1) 226 (84.3)

Age (years) Median (Q1, Q3) 42 (38, 44) 41 (37, 44) 42 (39, 45) 0.001

BMI≥ 24 kg/m2, n (%) 647 (77.0) 426 (74.5) 221 (82.5) 0.013

Smoke, n (%) 597 (71.1) 417 (72.9) 180 (67.2) 0.104

Alcohol, n (%) 322 (38.3) 219 (38.3) 103 (38.4) 1.000

Family history of CAD, n (%) 104 (12.4) 75 (13.1) 29 (10.8) 0.408

Previous history

Hypertension, n (%) 413 (49.2) 262 (45.8) 151 (56.3) 0.006

Diabetes, n (%) 196 (23.3) 132 (23.1) 64 (23.9) 0.866

Hyperlipidemia, n (%) 221 (26.3) 155 (27.1) 66 (24.6) 0.500

Type of AMI, n (%) 0.003

NSTEMI 220 (26.2) 168 (29.4) 52 (19.4)

STEMI 620 (73.8) 404 (70.6) 216 (80.6)

Admission vital signs

HR > 75 bpm, n (%) 98 (11.7) 51 (8.9) 47 (17.5) <0.001

SBP > 140 mmhg, n (%) 832 (99.1) 567 (99.1) 265 (98.9) 0.715

DBP > 90 mmhg, n (%) 182 (21.7) 123 (21.5) 59 (22.0) 0.938

Laboratory examination

WBC > 10*109/L, n (%) 389 (46.3) 254 (44.4) 135 (50.4) 0.123

NEU% > 75%, n (%) 326 (38.8) 196 (34.3) 130 (48.5) <0.001

HCT < 45%, n (%) 555 (66.1) 352 (61.5) 203 (75.8) <0.001

Hb < 120 g/L, n (%) 33 (3.9) 14 (2.5) 19 (7.1) 0.002

PLT > 300*1012/L, n (%) 136 (16.2) 89 (15.6) 47 (17.5) 0.532

TBA > 1.56 umol/L, n (%) 395 (47.0) 271 (47.4) 124 (46.3) 0.821

TBil > 17.1 umol/L, n (%) 229 (27.3) 145 (25.4) 84 (31.3) 0.083

Cr > 110 umol/L, n (%) 22 (2.6) 11 (1.9) 11 (4.1) 0.107

UA > 360 umol/L, n (%) 392 (46.7) 279 (48.8) 113 (42.2) 0.086

HCY > 15 umol/L, n (%) 280 (33.3) 191 (33.4) 89 (33.2) 1.000

Glu > 7.0 mmol/L, n (%) 212 (25.2) 140 (24.5) 72 (26.9) 0.510

HbA1c > 6.5%, n (%) 176 (21.0) 118 (20.6) 58 (21.6) 0.806

TC > 5.20 mmol/L, n (%) 283 (33.7) 193 (33.7) 90 (33.6) 1.000

TG > 1.70 mmol/L, n (%) 525 (62.5) 362 (63.3) 163 (60.8) 0.541

LDL-C > 3.40 mmol/L, n (%) 339 (40.4) 225 (39.3) 114 (42.5) 0.420

HDL-C < 1.0 mmol/L, n (%) 593 (70.6) 414 (72.4) 179 (66.8) 0.115

FFA > 0.9 mmol/L, n (%) 65 (7.7) 39 (6.8) 26 (9.7) 0.187

CRP > 5.0 mg/L, n (%) 419 (49.9) 249 (43.5) 170 (63.4) <0.001

CLR > 2.83, n (%) 420 (50.0) 246 (43.0) 174 (64.9) <0.001

MLR > 0.3 n (%) 420 (50.0) 244 (42.7) 176 (65.7) <0.001

D-dimer > 0.5 mg/L, n (%) 110 (13.1) 240 (42.0) 168 (62.7) <0.001

Fg > 4.0 g/L, n (%) 161 (19.2) 92 (16.1) 69 (25.8) 0.001

CK-MB > 77 U/L, n (%) 413 (49.2) 259 (45.3) 154 (57.5) 0.001

cTnT > 1.44 ng/L, n (%) 420 (50.0) 255 (44.6) 165 (61.6) <0.001

BNP > 100 pg/ml, n (%) 601 (71.6) 357 (62.4) 244 (91.0) <0.001

Coronary angiography

SYNTAX Score > 14.5, n (%) 418 (49.8) 246 (43.0) 172 (64.2) <0.001

Three-vessel artery disease,

n (%)

255 (30.4) 169 (29.6) 86 (32.1) 0.505

Left main artery disease, n (%) 19 (2.3) 9 (1.8) 10 (3.7) 0.087

Complete coronary

occlusion, n (%)

452 (53.8) 301 (52.6) 151 (56.3) 0.350

LVEF (%) 55 (51, 58) 55 (50, 59) 55 (52, 58) 0.943

Symptoms and signs

Jugular venous distension 117 (13.93) 0 (0.00) 117 (43.95) <0.001

Pulmonary rales 102 (12.14) 0 (0.00) 102 (38.06) <0.001

Leg edema 58 (6.90) 0 (0.00) 88 (21.64) <0.001

(Continued)

TABLE 1 Continued

Variables Total
(n= 840)

Non-HF
(n = 572)

HFpEF
(n = 268)

P

Killip class <0.001

I 792 (94.29) 572 (100.00) 220 (82.09)

II 43 (5.12) 0 (0.00) 43 (16.04)

III 5 (0.60) 0 (0.00) 5 (1.87)

IV 0 (0.00) 0 (0.00) 0 (0.00)

Medication during hospitalization

Aspirin 840 (100.00) 572 (100.00) 268 (100.00) –

P2Y12 inhibitors 840 (100.00) 572 (100.00) 268 (100.00) –

Statins 830 (98.81) 563 (98.43) 267 (99.63) 0.135

Beta-blockers 645 (76.69) 211 (78.73) 434 (75.87) 0.361

ACEI/ARB 561 (66.79) 379 (66.26) 182 (67.91) 0.636

ARNI 93 (11.07) 30 (11.19) 63 (11.01) 0.938

Loop diuretics 30 (3.57) 0 (0.00) 30 (11.19) <0.001

MRA 41(4.88) 0(0.00) 41(15.30) <0.001

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; ARNI,

angiotensin receptor-neprilysin inhibitor; BMI, body mass index; BNP, brain natriuretic

peptide; CAD, coronary artery disease; CK-MB, creatine kinase isoenzyme; CLR, C-reactive

protein to lymphocyte ratio; cTnT, cardiac troponin T; Cr, creatinine; CRP, C-reactive

protein; DBP, diastolic blood pressure; FFA, free fatty acids; Fg, fibrinogen; Glu, glucose; Hb,

hemoglobin; HbA1c, glycated hemoglobin; HCT, hematocrit; HCY, Homocysteine; HDL-C,

high-density lipoprotein cholesterol; HR, heart rate; LDL-C, low-density lipoprotein

cholesterol; LVEF, left ventricular ejection fraction; MLR, monocyte to lymphocyte ratio;

MRA, mineralocorticoid receptor antagonist; NEU%, neutrophils percentage; NSTEMI, non-

ST-segment elevation myocardial infarction; PLT, platelet; SBP, systolic blood pressure;

STEMI, ST-segment elevation myocardial infarction; TBA, total bile acids; TBil, total

bilirubin; TC, total cholesterol; TG, triglyceride; UA, uric acid; WBC, white blood cell.
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Following model training using RF, XGBoost, KNN, and SVM,

the top 10 most important variables were identified and used for

subsequent modeling. The ordering of important variables based

on the Lasso-Logistic, XGBoost, RF, KNN, and SVM models are

shown in Figures 2C–G, respectively.

Model performance

The classification performance of different models is compared

in the testing set. (Table 2, Figures 3A,B). Regarding

discrimination, the AUC values of the five models range from

0.517–0.854, with the highest being XGBoost and the lowest

being SVM. The F1 score for combined precision and recall was

the highest among the XGBoost models (0.586). A radar plot was

made based on precision, accuracy, AUC, F1 score, and Brier

score, which reflects the performance of each model (Figure 3B).

Although the XGBoost model predicts a lower accuracy than

Lasso-Logistic (0.686 vs. 0.762), its AUC, accuracy, and F1 score

are the highest, and its Brier score is comparable to Lasso-

Logistic (0.143 vs. 0.143). Supplementary Figure S1 illustrates the

class distribution of the training set before and after applying the

FIGURE 2

(A) Lasso regression coefficients vs. λ values; (B) cross-validated λ and classification error plot relationships. Ranking of important variables based on

Lasso-Logistic (C), XGBoost (D), RF (E), KNN (F), and SVM (G) models. BMI, body mass index; BNP, brain natriuretic peptide; CLR, C-reactive protein to

lymphocyte ratio; cTnT, cardiac troponin T; Cr, creatinine; Fg, fibrinogen; Hb, hemoglobin; HbA1c, glycated hemoglobin; HCT, hematocrit; HDL-C,

high-density lipoprotein cholesterol; HR, heart rate; MLR, monocyte to lymphocyte ratio; NEU%, neutrophil percentage; SBP, systolic blood pressure;

TC, total cholesterol; UA, uric acid; WBC, white blood cell.
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SMOTE. The figure demonstrates that SMOTE effectively

addresses class imbalance by generating synthetic samples for the

minority class, ensuring a more balanced distribution for model

training. We noticed improvements in the performance of most

models, with the exception of SVM. In particular, the F1 score of

the combined precision and recall, and the AUC of the XGBoost

and KNN models also improved. Even after balancing the classes

with SMOTE, XGBoost remained the best-performing model

(Supplementary Table S4). Supplementary Table S5 shows the

NRI and IDI calculated for the XGBoost and four other models.

The NRI calculated by the XGBoost model and Lasso-logistic

was 0.149 (95% CI: 0.008–0.290, P = 0.039), and the IDI was

0.049 (95% CI: 0.008–0.091, P = 0.019). The NRI calculated by

the XGBoost model and RF model was 0.222 (95% CI: 0.067–

0.377, P = 0.005), and the IDI was 0.051 (95% CI: 0.015–0.086,

p = 0.005). The NRI calculated by the XGBoost model and KNN

model was 0.212 (95% CI: 0.028–0.396, P = 0.025), and the IDI

was 0.067 (95% CI: 0.004–0.130, p = 0.038). The NRI calculated

with the XGBoost model and the SVM model was 0.428 (95%CI:

0.277–0.579, P < 0.001), and the IDI was 0.227 (95% CI: 0.175–

0.279, P < 0.001). These results indicate that the XGBoost model

demonstrates stronger predictive ability compared to the

other models.

Calibration curves show that the predicted probabilities of

the XGBoost model are in good agreement with the actual

probabilities (Figures 3C,D). The DCA plot (Figures 3E,F)

demonstrates that the XGBoost model provides positive net

benefits across a range of threshold probabilities in both the

training and testing sets. This suggests that the model has strong

clinical utility in aiding clinicians with accurate risk assessment

and decision-making for PMI patients. In conclusion, the

XGBoost model was selected as the final model based on its

superior performance.

Importance ranking

The XGBoost model’s variables’ importance ranking showed

that BNP >100 pg/ml is the most important characteristic

influencing the occurrence of in-hospital HFpEF in patients with

PMI. In addition, SYNTAX Score >14.5, Age, MLR >0.3, HCT

<45%, HR >75 bpm, BMI ≥24 kg/m2, CLR >2.83, Hypertension,

and Fg ≥4 g/L were also important variables in predicting

HFpEF (Figure 2D). Figure 4A and Supplementary Table S6

shows that the above variables were risk factors for in-hospital

HFpEF in patients with PMI.

Visual prediction system

The visual prediction system includes an input interface (left)

for entering patient variables (e.g., age, hypertension status) and

an output interface (right) displaying predicted probabilities (top)

and individualized SHAP charts explaining model decisions

(bottom). In Figure 4B, the system predicts a 65.5% probability

of HFpEF for a PMI patient based on clinical inputs. The system

is publicly accessible at https://hfpefpmi.shinyapps.io/apppredict/.

Discussion

In this study, we explored five ML methods to build a prediction

model for HFpEF in PMI patients based on clinically accessible data.

The model developed by XGBoost has superior prediction

performance and can better predict whether HFpEF occurs in the

hospital in patients with PMI. Based on the ranking of variable

importance, the final model includes ten predictive variables:

BNP > 100 pg/ml, SYNTAX Score >14.5, Age, MLR >0.3, HCT

<45%, HR >75 bpm, BMI ≥24 kg/m2, CLR >2.83, Hypertension,

and Fg >4 g/L. In addition, establishing a visual online prediction

system will facilitate a more convenient clinical application, which

can calculate the prediction probability of in-hospital HFpEF in

PMI patients. As a model explanation, SHAP can show how each

variable affects the model prediction and the degree of influence.

To our knowledge, this is the first study to develop an in-hospital

HFpEF prediction model for PMI patients using ML algorithms.

Previous studies, such as Liang et al. (26) and Xu et al. (27),

primarily relied on logistic regression models to identify risk factors

for HF in AMI patients. While logistic regression offers advantages

in model interpretability and statistical rigor, it struggles to capture

complex nonlinear interactions, potentially underestimating the

influence of key variables. Given the highly heterogeneous

pathophysiology of HFpEF, this study employs the XGBoost

algorithm, which excels in identifying nonlinear relationships and

intricate variable interactions, making it particularly suitable for

HFpEF prediction. Our model incorporates multidimensional

predictive factors, including SYNTAX score to assess coronary

complexity, inflammatory markers (CLR, MLR), metabolic risk

factors (BMI, hypertension), and dynamic biomarker thresholds

(e.g., BNP >100 pg/ml), enabling more refined risk stratification.

Unlike previous methods that primarily relied on static OR values,

we implemented SHAP-based visualization analysis, which

enhances model transparency and mitigates the “black-box” issue

commonly associated with ML applications in clinical practice.

In recent years, Li et al. (28) demonstrated the potential of

machine learning in predicting HF after AMI. Li et al. compared

seven ML algorithms and identified XGBoost as the best-

performing model (AUC = 0.966). However, their study primarily

focused on general HF prediction rather than specifically

addressing HFpEF as a distinct subtype. In contrast, our study is

dedicated to HFpEF risk prediction, filling a critical gap in early

risk stratification for PMI patients. Additionally, we developed an

interpretable and real-time visualization tool, which can assist

TABLE 2 Classification performance of five models on the testing set.

Model Precision Accuracy AUC F1
score

Brier
score

Lasso-Logistic 0.762 0.786 0.851 0.470 0.143

XGBoost 0.686 0.798 0.854 0.586 0.143

RF 0.667 0.756 0.846 0.369 0.155

KNN 0.516 0.726 0.726 0.410 0.177

SVM 0.280 0.280 0.517 0.438 0.204
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clinicians in rapidly assessing HFpEF risk in clinical practice.

However, unlike Li et al. (28) which conducted external

validation using an independent patient cohort, our study has

not yet undergone multi-center external validation. Future

research should focus on evaluating the model’s stability and

generalizability across different hospitals and populations,

ensuring its clinical applicability and scalability.

The epidemiology of HF after AMI has undergone significant

changes over the past decades, with an increased proportion of

HFpEF and a mortality rate comparable to that of patients with

Heart Failure with Reduced Ejection Fraction (HFrEF) (29).

HFpEF is a heterogeneous systemic disease in which risk factors

such as aging, obesity, hypertension, and systemic metabolic

disorders may impair cardiac, pulmonary, vascular, and

peripheral reserve capacity, abnormalities not apparent in the

resting state (30). Damage and necrosis of cardiomyocytes after

AMI can lead to impaired systolic reserve, and changes in

cardiomyocyte and interstitial structure, such as cardiomyocyte

hypertrophy and increased collagen fiber content, can lead to

impaired diastolic reserve (31, 32).

Doshi et al. (33) studied the characteristics of HFpEF occurring

during hospitalization in STEMI patients undergoing PCI and

showed that older age, a higher proportion of females, and more

comorbidities were risk factors for HFpEF. The SYNTAX Score,

which reflects the extent of coronary artery disease, is also an

essential factor in HFpEF. Complex coronary artery disease

indicates the presence of a more significant atherosclerotic

burden. The prevalence of HFpEF is strongly associated with

metabolic syndrome epidemics, and obesity may be a significant

driver of HFpEF in young people (34). The prevalence of

FIGURE 3

(A) ROC curve of five algorithms; (B) Radar plot of precision, accuracy, AUC, F1 score, and Brier score of the five models; Calibration curves of the

XGBoost model in the training set (C) and testing set (D) DCA of the XGBoost model in the training set (E) and testing set (F).
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subclinical left ventricular dysfunction has been confirmed to occur

in Asians at lower BMI thresholds (35). In this study, HFpEF was

predicted in young AMI patients with a BMI ≥24 kg/m2. In

addition to the traditional belief that hypertension leads to

increased left ventricular afterload, causing left ventricular

hypertrophy and subsequent left ventricular diastolic dysfunction,

the pro-inflammatory state resulting from systemic hypertension

also promotes the development of HFpEF (36). HFpEF is also

manifested by elevated circulating inflammatory biomarkers, and

the results of the present study suggest that inflammatory

markers such as CLR, MLR, and Fg. On the other hand, the

increase of Fg indicates increased clotting ability and impaired

blood flow. Additionally, our study demonstrates a significant

gender disparity, with a markedly higher prevalence of HFpEF

among PMI patients compared to males (15.7% vs. 5.9%,

p < 0.001). This finding is consistent with existing literature on

sex-specific comorbidity burden and adverse outcomes following

AMI in young women (37, 38). It highlights the need for early

identification and gender-specific management strategies to

improve outcomes in this vulnerable population.

Combined with the predictive factors discussed in this study,

for high-risk patients, first-line treatment includes early use of

sodium-glucose cotransporter type 2 (SGLT2) inhibitors for

patients without contraindications and diuretics for patients with

evident hyperemia to maintain average blood volume (2).

Revascularization treatment should be carried out for patients

with complex vascular lesions as soon as possible, and related

risk factors should be controlled. Patients should insist on taking

medicine, limit sodium, calorie, and fluid intake, control blood

pressure, and monitor BNP and inflammatory markers.

FIGURE 4

(A) Forest plot with 10 important variables based on the XGBoost model. (B) Visual online prediction system based on the XGBoost model. The input

interface is on the left, and the output interface is on the right. The upper part of the right represents the prediction probability, and the lower part of

the right shows an individualized SHAP diagram. The red feature makes the model recognize the sample as class 1, while the blue feature makes the

model identify the sample as class 0. BMI, body mass index; BNP, brain natriuretic peptide; CLR, C-reactive protein to lymphocyte ratio; Fg, fibrinogen;

HCT, hematocrit; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HR, heart rate; MLR, monocyte to lymphocyte ratio.

Wang et al. 10.3389/fcvm.2025.1571185

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1571185
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


In this study, we investigated for the first time the risk factors

and characteristics of in-hospital HFpEF in young patients with

AMI and developed a prediction model. With the prevalence of

metabolic syndrome in young people, the incidence of HFpEF is

increasing, and the prognosis is poor; more attention should be

given to the young population. In addition, the XGBoost

algorithm can enhance the performance of the prediction model,

and there has not been a previous attempt to apply the ML

algorithm to predict the risk of in-hospital HFpEF in patients with

PMI. This study has several limitations. First, the single-center

design may limit generalizability despite internal cross-validation.

Second, although the sample size was sufficient for preliminary

model development, a larger cohort is necessary to validate feature

stability and improve model robustness. The limited sample size

might affect model robustness. Third, future studies should

incorporate additional clinical dimensions including lifestyle

factors (e.g., diet, physical activity), medication histories,

socioeconomic parameters, and genetic profiles to improve

predictive performance. Finally, external validation across diverse

populations remains essential before clinical implementation.

Conclusions

In this study, a new model was developed to predict the risk of

in-hospital HFpEF in PMI patients. In a comprehensive

comparison, the XGBoost model had the best predictive ability.

The XGBoost-based visual prediction system shows clinical

decision-support potential for PMI management, pending

rigorous external validation in diverse clinical settings. Following

successful validation, it could provide early and precise

intervention guidance for PMI patients to reduce HFpEF

incidence and improve long-term prognosis.
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