
EDITED BY

Ting Yuan,

Goethe-Universität Frankfurt, Germany

REVIEWED BY

Liwu Li,

Virginia Tech, United States

Yue Wang,

Goethe University Frankfurt, Germany

*CORRESPONDENCE

Runze Huang

runzehuang@pku.org.cn

Wei Li

liwei249188@sina.com

RECEIVED 07 February 2025

ACCEPTED 24 July 2025

PUBLISHED 06 August 2025

CITATION

Jiang M, Huang R and Li W (2025) From

mitochondria to heart: the role and challenges

of mitochondrial antiviral signaling protein in

cardiovascular disease.

Front. Cardiovasc. Med. 12:1572559.

doi: 10.3389/fcvm.2025.1572559

COPYRIGHT

© 2025 Jiang, Huang and Li. This is an open-

access article distributed under the terms of

the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

From mitochondria to heart: the
role and challenges of
mitochondrial antiviral signaling
protein in cardiovascular disease

Mengting Jiang
1
, Runze Huang

1,2* and Wei Li
1,2*

1The key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical

University, Guiyang, Guizhou, China, 2Department of Cardiovascular Medicine, The Affiliated Hospital of

Guizhou Medical University, Guiyang, Guizhou, China

Mitochondrial Antiviral Signaling Protein (MAVS) is a pivotal adaptor protein in the

innate immune response, mediating the activation of NF-κB and type I interferon

signaling pathways during viral infections. As an integral component of the

mitochondrial outer membrane, MAVS also plays critical roles in the regulation

of apoptosis, cellular metabolism, and the activation of inflammasomes,

including NLRP3 and caspase family members. Emerging evidence indicates

that MAVS is not only essential in antiviral defense but also contributes

significantly to the pathogenesis of various diseases, notably cardiovascular

diseases. In this review, we provide a comprehensive overview of the

molecular structure of MAVS and the regulatory mechanisms modulating its

activity. We further highlight the involvement of MAVS in the development of

cardiovascular diseases through its participation in innate immune signaling and

mitochondrial dynamics. Particular attention is given to the regulation of MAVS

by post-translational modifications—such as ubiquitination, methylation, and

acetylation—as well as by microRNAs and other mitochondria-associated

proteins. These insights aim to deepen the understanding of MAVS as a potential

biomarker and therapeutic target, offering novel perspectives for the prevention,

diagnosis, and immunotherapeutic intervention of cardiovascular diseases.

KEYWORDS

mitochondrial antiviral signaling protein (MAVS), inflammation, mitochondrial
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1 Introduction

Cardiovascular diseases are one of the leading causes of death and disease burden

worldwide, with complex and diverse pathogenesis, including various pathological

processes such as inflammatory response, lipid metabolism disorders, and apoptosis.

Mitochondria are double-membrane organelles found in mammalian cells that can

regulate and respond to different stress sources and metabolic demands, enabling them

to effectively coordinate various cellular functions. In recent years, with the

advancement of research, the critical role of mitochondria in the occurrence and

development of cardiovascular diseases has gradually drawn attention (1).

MAVS is a key receptor of the innate immune system primarily located on the

outer membrane of mitochondria. MAVS senses viral invasion and activates

downstream signaling pathways, such as NF-κB and IRF3, thereby promoting the

production of type I interferons (I-IFN) and pro-inflammatory cytokines, further
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participating in antiviral immune responses. Emerging evidence

suggests that MAVS is also closely related to the pathogenesis of

various cardiovascular diseases.

This review aims to summarize the mechanism of action of

MAVS in cardiovascular diseases and its potential clinical

application value. We will first review the basic functions of

MAVS in innate immunity, then conduct an in-depth analysis of

the specific roles of MAVS in different types of cardiovascular

diseases, including viral myocarditis, heart failure, and

myocardial infarction. By systematically summarizing the

research progress of MAVS in the cardiovascular system, we aim

to offer new insights into the prevention and treatment of

cardiovascular diseases in the future.

2 Molecular structure and biological
functions of MAVS

2.1 Genes and protein structure of MAVS

The MAVS gene, located on human chromosome 20p13,

encodes a polypeptide chain composed of 540 amino acids. The

MAVS protein is mainly divided into three domains, each

playing a crucial role in the function of MAVS.

The N-terminal Caspase Activation and Recruitment Domain

(CARD) containing cysteine aspartate protease: The main

function of this domain is to interact with the CARD domains of

Retinoic Acid-Inducible Gene I (RIG-I) and Melanoma

Differentiation-Associated Gene 5 (MDA5), thereby initiating the

antiviral signaling cascade. The interaction of the CARD domain

is a key step in MAVS signal transduction, determining its

responsiveness to viral infections. In addition, the CARD domain

of MAVS participates in activating caspase proteins and the

NLRP3 inflammasome, mediating its own cleavage to regulate

immune homeostasis (2, 3).

The PRR Domain (Proline-Rich Region) in the middle: the

PRR domain contains a TRAF interaction motif (TIM) and a

proline-rich domain (PRD). TIM allows MAVS to interact with

various tumor necrosis factor receptor-associated factors (TRAF)

family proteins, promoting downstream signaling, while PRD

acts as a scaffold for recruiting E3 ubiquitin ligase, playing a key

role in the activation and regulation of immune responses

mediated by MAVS.

The C-terminal TM (Transmembrane) domain: This domain

anchors MAVS to the outer membrane of mitochondria,

ensuring its stability and effectiveness in antiviral signaling. The

presence of this domain enables MAVS to transduce signals from

the viral sensor RIG-I-like receptors (RLR) pathway to

downstream effectors. In addition, the TM domain also facilitates

the aggregation of MAVS on the membrane, forming

inflammasomes that contain TRAF3, TRAF6, and other signaling

molecules, further amplifying the antiviral signal (4) (Figure 1).

2.2 Mechanisms of innate immunity
involving MAVS and its distribution

When facing bacterial or viral infection, MAVS initiates

downstream signaling cascades by interacting with the CARD

domains of RIG-I or MDA5 (5). The specific process involves

RIG-1 and MDA5 undergoing conformational changes upon

contact with viral DNA or RNA, exposing their N-terminal CARD

domains to form tetramers. The E3 ubiquitin ligase modifies the

CARD with polyubiquitination, thereby promoting the binding of

RIG-1 and MDA5 to MAVS through the CARD. MAVS forms

prion-like protease-resistant fibrils that convert other MAVS on

the mitochondrial outer membrane into prion-like aggregates (6).

Prion-like aggregates are the basis for antiviral immune defense

and inflammasome activation signal transduction.

Subsequently, MAVS interacts with TRAF2, TRAF3, TRAF5,

or TRAF6 to promote the activation of the TBK1 complex

(TANK-binding kinase 1) (containing TBK1, i-κb kinase (IKK)i/

ϵ and NEMO) in the presence of TRAF2/3/5/6, and to promote

the activation of the IKK complex (containing IKKα/β and

NEMO) in the presence of TRAF2/5/6. The TBK1 complex

promotes the phosphorylation of IRF3 and/or IRF7, leading to

nuclear translocation and binding to the IFN-stimulated response

element, thereby inducing the transcription of target genes.

Similarly, the TRAF2/5/6-activated IKK complex activates NF-

κB, promoting the transcription of pro-inflammatory cytokines.

Therefore, the two MAVS-mediated signaling pathways play

different but crucial roles in antiviral innate immunity (4).

Among the intensive studies, it has been found that MAVS can

also bind to NOD-like receptor thermal protein domain protein 3

(NLRP3) that is recruited to the mitochondria to promote the

production of IL-1β. It was also unveiled that the N-terminal

pyrin domain (PYD) of NLRP3 is the key sequence mediating

the NLRP3-MAVS interaction and localizing NLRP3 to the

mitochondria (3) (Figure 2).

At the organ level, MAVS is substantially expressed in the

heart, skeletal muscles, liver, and placenta. At the cellular level, it

is distributed in various immune cells like macrophages,

dendritic cells, monocytes, and other types of cells like epithelial

cells and hepatocytes. At the subcellular level, it is located on the

outer mitochondrial membrane, peroxisomes, and mitochondria-

associated endoplasmic reticulum membranes (MAM). MAVS

located on peroxisomes directly participates in a faster innate

immune response which is independent of mitochondria to

protect the body from pathogen invasion (7).

Although the function of MAVS in antiviral immune responses has

been extensively studied, the significant role it plays in inflammatory

Abbreviations

MAVS, mitochondrial antiviral signaling protein; Ⅰ-IFN, type I interferons;
DAMP, danger-associated molecular pattern; CARD, caspase activation and
recruitment domain; PRR, proline-rich region; TM, transmembrane domain;
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endoplasmic reticulum membranes; PTM, post-translational modifications;
RIG-Ⅰ, retinoic acid-inducible gene I; MDA5, melanoma differentiation-
associated gene 5; TRAF, tumor necrosis factor receptor associated factor; HF,
heart failure; MI, myocardial infarction; MIRI, myocardial ischemia
reperfusion injury; DCM, diabetic cardiomyopathy, MFN2, mitofusin protein
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response, apoptosis, and mitochondrial homeostasis has gradually

drawn attention to the role of MAVS in cardiovascular diseases.

Research indicates that abnormal activation or dysregulation of

MAVS may be associated with various cardiovascular diseases,

including myocarditis, heart failure, and myocardial infarction.

Therefore, understanding the molecular structure and biological

function of MAVS not only aids in revealing its role in innate

immunity but also provides a foundation for exploring its potential

role in cardiovascular diseases.

3 Mechanism of MAVS in
cardiovascular diseases

3.1 MAVS in viral myocarditis

Viral myocarditis is an inflammatory destruction of the

myocardium caused by cardiotropic viral infections such as

Coxsackie B virus, human herpesvirus, etc., and is a common cause

of dilated cardiomyopathy and heart attack (8). MAVS is extremely

important for the development of viral myocarditis. Serrano et al.

found that in normal cardiomyocytes, MAVS can be spontaneously

activated, subsequently expressing high baseline levels of IFN-β to

prevent viral invasion, and the MAVS on MAM is the necessity for

the high expression of IFN-β (9). Liu et al. discovered that in

cardiomyocytes infected with Coxsackievirus B3 (CVB3), the

expression of TRIM21 increases, which can interact with MAVS and

catalyze the k27-linked polyubiquitination of MAVS, promoting the

activation of IRF3 and the transduction of IFN-β signaling to

mitigate virus-induced cardiac damage (10). Additionally, research

carried by Bazzone has demonstrated that under the stimulation of

encephalomyocarditis virus (EMCV) RNA, A Disintegrin and

Metalloproteinase domain 9 (ADAM9) (a metalloproteinase)

activates downstream MAVS by binding to MDA5 and promoting

its oligomerization, thereby enhancing antiviral signaling during viral

infection (11). Fang et al. uncovered that TRIM18 exerts

exacerbation of viral myocarditis by recruiting protein phosphatase

1A (PPM1A) to dephosphorylate TANK-binding kinase 1 (TBK1),

preventing TBK1 from interacting with its MAVS and STING,

thereby inhibiting antiviral signaling transduction, and knockdown

TRIM18 can reduce less cardiac inflammation (12).

3.2 MAVS in heart failure

Heart failure (HF) is a series of clinical symptoms caused by the

heart’s inability to meet the body’s metabolic needs due to cardiac

dysfunction. In the late stages of heart failure, irreversible ventricular

dilation and ventricular remodeling always occur, which caused

severe outcomes (13). Research by Wang et al. underlined that

MAVS is involved in the main mechanism of HF occurrence by

affecting lipid metabolism and mitochondrial function. The

expressions of MAVS show entirely converse in LPS-treated and

Angiotensin Ⅱ (Ang Ⅱ)-treated hypertrophic hearts, which shows

reduced expression level of MAVS in LPS-treated mice and enhanced

MAVS expression in Ang Ⅱ-treated mice respectively. Hearts in

MAVS−/− mice showed downregulated levels of several fatty acids.

Also, Phosphatidylcholines (PC) were found to be reduced, while the

levels of PC catabolites increased, indicating that MAVS deletion

might increase cell membrane decomposition or decrease cellular

FIGURE 1

Represented illustration of the main domains of MAVS. CARD domain (green) of MAVS interacts with the CARD domains of RIG-I and MDA5, thereby

initiating the antiviral signaling cascade; TIM (red) in the PRR domain interacts with TRAF family members, activating the IKK and TBK-1 complex. PRD

(yellow) participates in recruiting E3 ubiquitin ligase; TM (purple) anchors MAVS to the outer membrane of mitochondria, ensuring its stability and

effectiveness. Created with Biorender.com.
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turnover, thereby limiting cardiomyocyte growth. Genes involved in

fatty acid metabolism were downregulated and fat accumulation

increased in MAVS−/− mice, indicating that MAVS deficiency

contributes to reduced energy generation in the heart. Moreover, the

mitochondria of MAVS−/− cardiomyocytes contained disrupted and

disappeared ridges with a decrease in mitochondrial membrane

potential (MMP) and mitochondrial autophagosomes, and

mitophagy marker proteins were upregulated. The levels of

byproducts in response to oxidative stress were found to be

upgraded, suggesting that mitochondrial damage exacerbates by

inducing oxidative stress and MAVS loss can impair the mitophagy

flux. Together, MAVS loss shows mitochondrial damage by inducing

mitochondrial ROS generation and abnormal mitophagy (14).

3.3 MAVS in myocardial infarction and MIRI

Myocardial Infarction (MI) refers to the pathophysiological

process where local myocardial ischemia and hypoxia occur due to

coronary artery blockage, leading to necrosis. It has a high incidence

and mortality rate globally (15). Numerous studies have shown that

inflammasome activation and autophagy play important roles in the

pathogenesis of acute myocardial infarction (15, 16). Tax1 binding

protein 1 (TAX1BP1) (a selective macro/autophagy receptor)

participates in the termination of pro-inflammatory signaling and

plays a significant role in host defense against pathogens and

regulation of the innate immune system (17). Xu et al. found that

TAX1BP1 inhibits the interaction between NLRP3 and MAVS by

suppressing the localization of NLRP3 to mitochondria, thereby

eliminating acute myocardial infarction-induced NLRP3

inflammasome activation and related mitochondrial dysfunction,

ultimately alleviating myocardial infarction and cardiac dysfunction.

The study also mentioned that RNF34, after being recruited by

MAVS, interacts with TAX1BP1 to promote K27-linked MAVS

polyubiquitination, thereby facilitating the autophagic degradation of

MAVS. Silencing RNF34 can reduce hypoxia-induced MAVS

aggregation in mitochondria, NLRP3 inflammasome activation, and

associated mitochondrial membrane potential loss (18).

Myocardial ischemia-reperfusion injury (MIRI) refers to the

situation where, after ischemia occurs in the myocardium due to

FIGURE 2

Represented illustration of MAVS antiviral signal simulation pathway. Interactions between CARD domains enable RIG-I and MDA5 activated by viruses

to interact with MAVS. Upon PRR stimulation, MAVS triggers downstream signaling cascades by recruiting TRAF. MAVS activates two cytosolic protein

kinase complexes, leading to the production of immune factors. The TBK1 complex phosphorylates IRF-3/7, promoting the transcription of IFN genes.

Simultaneously, the IKK complex activates NF-kB, resulting in the production of proinflammatory cytokines. NLRP3 binds to MAVS to promote the

production of IL-1β through its PYD in PRR. CARD, caspase activation and recruitment domain; PRR, proline-rich region; TM, transmembrane

domain; RIG-I, retinoic acid-inducible gene I; MDA5, melanoma differentiation-associated gene 5; NLRP3, NOD-like receptor protein 3; TRAF,

tumor necrosis factor receptor associated factor. Created with Biorender.com.
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coronary artery constriction, although blood perfusion is restored

through percutaneous coronary intervention (PCI) or other

methods, the structure and function of myocardial cells in

ischemia further deteriorate during this process, manifested as

arrhythmia, decreased cardiac function, apoptosis or necrosis of

myocardial cells. Many complex pathophysiological processes,

such as oxidative stress, Ca2+ overload, inflammatory response,

cell death, and autophagy, are involved in mediating MIRI

(19–21). Recently, a research has unfolded that the membrane-

associated RING finger protein 2 (MARCH2), an E3 ubiquitin

ligase, directly interacts with phosphoglycerate mutase 5

(PGAM5) and facilitates K48-linked polyubiquitination and

proteasomal degradation of MAVS, thereby inhibiting the

activation of the NLRP3 inflammasome and reducing MIRI in

cardiomyocytes (22) (Figure 3).

4 Regulation of MAVS activity

4.1 Post-translational modifications (PTMs)
in MAVS and cardiovascular diseases

Post-translational modifications (PTMs) entail the conjugation

of various biochemical functional groups to proteins after

translation, which alters the chemical properties of amino acids

or induces structural changes, thereby enhancing protein

functions. The most crucial step in the activation process of

MAVS is the CARD-related PTMs. Therefore, extensive research

has been done on MAVS-related PTMs. While in cardiovascular

diseases, though the PTMs mentioned above have been discussed

thoroughly in other virus infected diseases, there’s still a lack of

evidence of the direct connections between PTMs of MAVS and

cardiovascular diseases. Therefore, the method to manipulate

PTMs of MAVS could be a new direction for cardiovascular

disease treatments. Here is the summary of PTMs that regulate

MAVS or participate in cardiovascular diseases.

4.1.1 Ubiquitination
Ubiquitination is the process by which ubiquitin molecules,

under the action of a series of special enzymes, categorize

intracellular proteins, select target protein molecules, and

perform specific modifications on the target proteins. Currently,

the ubiquitination of MAVS mainly focuses on Lysine 27 (K27),

K63, and K48-linked ubiquitination. Briefly speaking, MAVS can

be K63-linked polyubiquitinated to enhance its downstream

signaling activity by promoting the recruitment of TRAFs and

activation of the TBK1/IKKϵ complex, whereas K48-linked

polyubiquitination facilitates its proteasomal degradation and

FIGURE 3

Main mechanisms of MAVS in cardiovascular diseases. The role of MAVS in viral myocarditis, MIRI, acute myocardial infarction, and HF. The knock

down of MAVS or abnormal activation causes different pathological changes such as lipid metabolism disturbing, inflammation and mitochondrial

damage, leading to cardiac dysfunction and aggravating HF. When viruses are infected, RIG-I and MDA5 interact with MAVS and activate the

antiviral signal pathway; the expression of TRIM21 is upgraded and can cause k27-linked polyubiquitination of MAVS; ADAM9 leads to MAVS

oligomerization. In AMI, TAX1BP1 interacts with RNF34, interrupting the autophagic degradation of MAVS, and inhibits the interacting between

MAVS and NLRP3, leading to mitochondrial damage and exacerbate cardiac dysfunction. Created with Biorender.com.
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suppresses its activity. While in K27-linked ubiquitination, its

role in regulating MAVS and their related signaling pathways

is complex. For instance, IFN-induced BST2 recruits MARCH8

to catalyze the K27-linked ubiquitination of MAVS for

autophagic degradation, hence inhibiting type I interferon

signaling (23). RNF34 facilitates the autophagic degradation of

MAVS by targeting its K27-linked ubiquitination (24). But UBL7

enhances antiviral innate immunity by promoting K27-linked

polyubiquitination of MAVS (Table 1).

In atherosclerosis, persistent K63-linked signaling may

promote macrophage activation and foam cell formation through

enhancing NLRP3 inflammasome activation (25). Other

ubiquitin-regulated proteins (e.g., YAP, SR-A1, SR-B1) undergo

K63 ubiquitination that modulates lipid uptake and foam cell

formation (26).

4.1.2 Methylation
Methylation is a key modification in proteins and nucleic acids

(27), among which arginine methylation mediated by arginine

methyltransferase (PRMT) is an important PTM that can regulate

various cellular processes (28). Research has demonstrated that

arginine monomethylation serves as a negative regulatory

mechanism to MAVS-mediated antiviral response and is involved

in maintaining immune homeostasis. Wang et al. demonstrated

that PRMT7 suppresses the oligomerization of MAVS and its

downstream interferon signaling (29). Bai et al. discovered that

PRMT9 can catalyze arginine methylation of MAVS at the Arg41

and Arg43 sites to inhibit MAVS aggregation and auto-activation.

After viral infection, PRMT9 dissociates from MAVS on the

mitochondria, allowing MAVS aggregation and activation (30).

While PRMT5 has not yet been directly shown to methylate

MAVS, it symmetrically dimethylates various immune-related

proteins, raising the possibility of MAVS as a future substrate.

When it comes to cardiovascular diseases, PRMTs

dysregulation precipitates endothelial dysfunction, resulting in

increased permeability, aberrant vasodilation, and inflammatory

response, thereby culminating in atherosclerosis (31). Besides,

PRMTs actively participate in blood pressure regulation by

influencing vascular tone and endothelial function (31, 32).

4.1.3 Acetylation
Acetylation refers to the process in which an acetyl group from

acetyl coenzyme A (acetyl-CoA) is transferred to an amino acid

residue of a protein under the action of acetyltransferase. Lysine

acetylation modification in proteins also regulates various properties

of proteins, including DNA-protein interactions, subcellular

localization, transcriptional activity, protein stability, etc. Recent

studies have demonstrated that sirtuin3 (SIRT3) and SIRT5 play

important regulatory roles as targets for cardiovascular diseases (33,

34). Other studies have also discovered that SIRT3 can interact with

MAVS to catalyze the deacetylation of MAVS at lysine residue 7

(K7), promoting MAVS aggregation, leading to increased MAVS

activation and enhanced type I IFN signaling. SIRT3 knockout can

cause the increasing viral susceptibility, while knocking out SIRT5

may counteract the action caused by SIRT3 knockout. Therefore,

this study hypothesizes that SIRT3 may positively regulate antiviral

immunity through MAVS, while SIRT5 may act as its antagonist to

coordinate antiviral innate immunity (35) (Table 2).

4.2 Other regulatory pathways for MAVS

In addition to classical interactors and PTMs, MAVS activity is

modulated by various microRNAs and mitochondria-associated

proteins, many of which also play important roles in

cardiovascular diseases. Several miRNAs have been identified as

regulators of MAVS expression or functions. miR-125a directly

targets MAVS and suppresses its expression, thereby attenuating

type I interferon responses. miR-33/33* inhibits AMPK signaling

and indirectly reduces MAVS aggregation, impairing mitophagy

and mitochondrial homeostasis—mechanisms closely linked to

atherosclerosis. The miR-302/367 cluster, known to promote

myocardial regeneration post-myocardial infarction, can inhibit

MAVS activation by downregulating SLC25A12, a mitochondrial

carrier essential for RLR signaling.

Moreover, several mitochondrial membrane proteins directly

interact with MAVS to regulate its activity. Tom70, a

mitochondrial import receptor, binds MAVS and facilitates

IRF3-dependent antiviral signaling (36, 37). Downregulation of

Tom70 exacerbates post-MI injury, increases ROS production,

and promotes maladaptive cardiac hypertrophy (38). Mitofusin 2

(MFN2) interacts with the C-terminus of MAVS to suppress

RIG-I/MDA5 signaling (39). MFN2 also improves cardiac

oxidative balance and mitochondrial ATP production (40). Optic

Atrophy 1 (OPA1) is associated with MAVS to maintain

mitochondrial structure and function. Knockdown of OPA1

TABLE 1 Ubiquitination regulation related proteins of MAVS.

MAVS
Regulatory
mechanism

Regulatory factors Relevant
references

K27 linked

Ubiquitination

TRIM21, UBL7, MARCH8 (55–57)

K63 linked

Ubiquitination

TRIM31, USP18, N4DP3 (58–60)

K48 linked

Ubiquitination

TRIM28, SMURF1, SMURF2,

TRIM25, OTUD4, TRIM44,

MARCH5, RNF5, RNF146

(61–69)

TABLE 2 PTMs of MAVS and of cardiovascular diseases.

PTM type MAVS regulatory
effect

Potential
cardiovascular

relevance

Ubiquitination K27 and K63-linked

promote signaling, K27 and

K48-linked induce

degradation

Viral myocarditis, promote

macrophage activation and foam

cell formation through enhancing

NLRP3 activation in AS

Arginine

methylation

Inhibits oligomerization,

dampens IFN-I signaling

Immune overactivation control,

protection from tissue damage

Acetylation May regulate mitochondrial

localization/function

Energy stress adaptation,

ischemia-related cardio-

protection
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mimics MAVS deficiency and accelerates cellular senescence, while

reintroduction of either protein restores mitochondrial homeostasis

in stem cells (41). Toll-interacting protein (TOLLIP), a negative

regulator of RLR signaling and a modulator of autophagy,

enhances the interaction between MAVS and the SUMO protease

SENP1, promoting deSUMOylation and reducing MAVS

aggregation (42). TOLLIP has been implicated in the regulation

of several cardiovascular diseases, including atherosclerosis,

cardiac hypertrophy, and myocardial infarction (43–45). TTLL12,

identified as a MAVS-binding protein with tubulin tyrosine ligase

and methyltransferase activity, can suppress MAVS-mediated

type I IFN production through direct interaction (46). Though

the role of TTLL12 in cardiovascular diseases hasn’t been

discovered, it has been proved its key role in epithelial cells

polarization, influencing cilia formation in polarized renal

epithelial cells and anti-tumor immunity (47, 48) (Table 3).

5 MAVS-targeted therapies in different
diseases

Although MAVS-targeted therapies are still in the early stages

of development, their potential applications are broad. Preliminary

studies suggest that MAVS-targeted strategies could become an

integral component of combination therapies for virus-related

cancers and resistant malignancies (49–52). Furthermore, these

approaches may be valuable in treating autoimmune and

inflammatory conditions where MAVS signaling is dysregulated

(53). As more clinical data accumulates, MAVS-targeted

therapies are expected to emerge as novel strategies for managing

complex immune and inflammatory diseases, which could open

new avenues for MAVS-targeted immunotherapy, not only in

virus-associated tumors but also in a range of inflammatory and

autoimmune disorders.

Given the diverse and complex mechanism of the pathogenesis

of cardiovascular diseases, when MAVS is absent, it will damage

mitochondrial function, increase oxidative stress, and lead to the

deterioration of the disease. As the research has shown,

supplementing MAVS can alleviate functional damage of

mitochondria. Therefore, using MAVS agonists for these diseases

may have therapeutic effects. Also, MAVS is involved in the

activation of the antiviral signaling pathway and inflammasome,

so MAVS inhibitors can, to some extent, alleviate certain

inflammatory diseases such as atherosclerosis. Various viruses

have evolved immune evasion mechanisms to avoid the

activation of MAVS, the treatments for specific viral infections

should be adjusted instead of focusing on MAVS itself. The goal

is to achieve precise immunomodulation and alleviate disease

symptoms without compromising the host’s antiviral defenses.

6 Conclusions and perspectives

In summary, MAVS, as a key mitochondria-associated receptor

protein, plays an important role in innate immunity and the

pathophysiological processes of various cardiovascular diseases.

During viral infections, MAVS recruits its interacting proteins

and downstream molecules, activates NF-κB and IRF signaling,

mediates the production of IFN, and plays a crucial role in

mitochondria-mediated antiviral innate immune responses.

Moreover, MAVS also significantly impacts the inflammatory

response of cardiomyocytes and various immune cells by

activating the NLRP3 inflammasome, potentially having critical

regulatory significance in the development of various

cardiovascular diseases.

6.1 Regulation mechanism of MAVS

Various post-translational modifications are involved in

regulating MAVS activity and the activation of its mediated

signaling pathways; miRNA regulation of MAVS and various

TABLE 3 Other regulatory pathways of MAVS.

Other Regulatory
Pathways

For MAVS Relevance with Cardiovascular Diseases

miR-125a Suppress MAVS expression and attenuate type I interferon

responses (−)

Protection against MIRI; (70) suppress endothelial cell proliferation and high

glucose-induced VSMC proliferation and migration (71, 72)

miR-33 Reduce MAVS aggregation, impairing mitophagy and

mitochondrial homeostasis (−)

Inhibit ABCA1/ABCG1-mediated cholesterol efflux of macrophages in AS (73)

miR-302b Inhibit MAVS activation by downregulating SLC25A12 (−) Promote cardiomyocyte proliferation and functional regeneration after MIRI (74)

OPA1 Knock down OPA1 causes mitochondrial structural and

functional damage caused by MAVS deficiency, accelerating

cellular aging (−)

Imbalanced OPA1 processing and mitochondrial fragmentation aggregate HF

(75); promote mitochondrial fusion against DCM (76)

TOM70 Binds MAVS and facilitates IRF3-dependent antiviral signaling

(+)

Attenuate post-MIRI and MIRI; (36, 77) protect cardiomyocytes from

myocardial hypertrophy; (38)

MFN2 Interacts with the C-terminus of MAVS to suppress RIG-I/

MDA5 signaling (−)

Improve cardiac oxidative balance and mitochondrial ATP production in HF,

restore mitochondrial function in DCM; (78) alleviate drug-induced

cardiotoxicity (79, 80)

TOLLIP Enhance the interaction between SENP1 and MAVS, leading to

deSUMOylation and less aggregation of MAVS (−)

Disrupting Lipophagy in AS (45); anti-hypertrophic effects (43); promoting

inflammation and apoptosis in MI (44); attenuate the hypertrophic response of

cardiomyocytes induced by IL-1β (81)

TTLL12 Interact with MAVS and inhibit I-IFN expression (−) —

(+): Indicates activating MAVS-related antiviral signal pathway and promoting MAVS aggregation. (−): Indicates the inhibition of MAVS activation or mitochondrial dysfunction.
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proteins can interact with MAVS to regulate its own activity or

related pathways. Research on these pathways and the application

of MAVS agonists and antagonists may provide new therapeutic

strategies for future cardiovascular disease research.

6.2 The potential role of MAVS in
cardiovascular diseases

MAVS shows an important role in cardiovascular disease

models such as viral myocarditis, heart failure, MIRI, and

myocardial infarction, suggesting that MAVS has application

value as a diagnostic and therapeutic target for

cardiovascular diseases.

6.3 Research gaps and challenges about
MAVS

6.3.1 Insufficient clinical research in cardiology
Most MAVS-related studies to date have focused on viral

immunity, oncology, or autoimmune conditions. Despite

accumulating preclinical evidence indicating that MAVS may

influence cardiovascular homeostasis, direct clinical studies

evaluating MAVS expression or activity in human cardiac tissues

or patient cohorts are scarce. Particularly, there is a lack of:

• Clinical correlation between MAVS levels and cardiovascular

disease severity or prognosis.

• Serum biomarker analyses for MAVS or related

mitochondrial proteins.

• Integration of MAVS-related indices into existing cardiovascular

risk models.

Furthermore, while surrogate inflammatory indicators such as the

neutrophil-to-lymphocyte ratio (NLR) have been associated with

mitochondrial stress and RIG-I–MAVS signaling (54), no direct

clinical linkage between MAVS activation and NLR dynamics has

been established.

6.3.2 Incomplete mechanistic understanding of

MAVS regulation in cardiovascular contexts
Although post-translational modifications (PTMs) such as

ubiquitination, methylation, and acetylation of MAVS have been

extensively studied in the context of viral infections, their direct

roles in cardiovascular diseases remain poorly characterized. Key

knowledge gaps include:

• The functional consequences of specific MAVS PTMs (e.g.,

K27-linked ubiquitination) in cardiomyocytes.

• Whether disease-specific stimuli (e.g., ischemia, oxidative stress,

mechanical overload) selectively influences MAVS activity.

• The organellar-specific roles of MAVS (e.g., mitochondrial outer

membrane vs. MAMs or peroxisomes) in metabolic

reprogramming of the failing heart.

Future studies employing cardiac-specific MAVS mutants and

PTM-deficient models are needed to dissect these mechanisms.

6.3.3 Translational challenges in MAVS-targeted

therapeutic developments
While MAVS agonists or antagonists have shown promise in

regulating immune responses, their application in cardiovascular

diseases is still hypothetical. Major barriers include:

• Lack of MAVS-selective modulators with proven efficacy and

safety in cardiovascular settings.

• Uncertainty regarding the therapeutic window: MAVS

activation may enhance antiviral protection but also

exacerbate inflammation.

• Off-target effects due to MAVS expression in non-cardiac

tissues (e.g., immune cells, liver).

Targeted delivery strategies, such as tissue-specific nanoparticles or

cardiac-tropic gene therapy vectors, may be required to address

these challenges.
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