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The gut microbiome refers to the collective genomes of the approximately

1,000–1,150 microbial species found in the human gut, called the gut

microbiota. Changing the gut microbiota composition has been shown to

affect cardiovascular health significantly. Numerous studies have demonstrated

the part that gut microbiota and its metabolites play in the development and

course of several illnesses, including colon cancer, heart failure, stroke,

hypertension, and inflammatory bowel disease. With cardiovascular diseases

responsible for more than 31% of all fatalities globally, conditions like

hypertension, atherosclerosis, and heart failure are serious global health issues.

Developing preventive measures to fight cardiovascular diseases requires

understanding how the gut microbiota interacts with the cardiovascular

system. Understanding the distinctive gut microbiota linked to cardiovascular

diseases has been made possible by microbial sequencing analysis. The gut

microbiota and cardiovascular diseases are closely related, and more profound

knowledge of this association may result in treatment strategies and broad

guidelines for enhancing cardiovascular health through gut microbiome

modification. This review summarizes the role of gut microbiota in

cardiovascular diseases, highlighting their influence on disease progression

and potential therapeutic implications.

KEYWORDS
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1 Introduction

It is estimated that between 1,000 and 1,150 different types of microorganisms reside in

the human gut (1). These groups are referred to as “gut microbiota,” and “gut microbiomes”

are the collective term for all of the genomes of microorganisms in the gut, including their

DNA sequences and other genetic data (2). A small number of phyla, such as Firmicutes,

Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia, dominate the gut

microbiota in healthy people, which maintains a very consistent composition (3). There is

growing evidence that altering the composition of the gut microbiota impacts the

cardiovascular phenotypes of the host (4–6).

Numerous research conducted in recent years have shown how the gut microbiota and

its metabolites influence the development of both cardiovascular and non-cardiovascular

diseases in the host, including inflammatory bowel disease, colon cancer, hypertension,

heart failure, and stroke (7). One of the leading causes of death and morbidity globally

is cardiovascular disease (CVD). It is the primary cause of death worldwide and
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includes heart failure, atherosclerosis, and hypertension (8).

Atherosclerotic cardiovascular disease is now widely

acknowledged as a serious global health hazard, accounting for

almost 31% of all fatalities worldwide (9). Finding potential

preventive measures is crucial to halting the onset and

progression of CVD. Numerous details regarding the existence of

distinctive gut microbiota linked to CVDs have been made

available by microbial sequencing study (10–12). Gut microbiota

has been linked to peripheral artery disease (PAD), especially in

diabetic individuals, in addition to its well-established roles in

hypertension and coronary artery disease. Atherosclerosis and

vascular problems in PAD are accelerated by endothelial

dysfunction, oxidative stress, and chronic inflammation, all of

which are exacerbated by dysbiosis in the gut microbiota.

Furthermore, metabolites originating from the gut, like

trimethylamine-N-oxide (TMAO), have been connected to

vascular dysfunction and enhanced platelet aggregation, which

exacerbates ischemia conditions in PAD. The importance of

microbiota in diabetic PAD was emphasized by Biscetti et al.,

who proposed that microbial manipulation might be a novel

treatment approach to enhance vascular outcomes in these

patients (13). A growing body of research has demonstrated a

substantial correlation between CVDs and gut microbiota (14,

15). By better understanding the relationship between the gut

microbiota and the cardiovascular system, we may be able to

develop general guidelines and therapeutic strategies that support

the gut microbiota’s cardio-protective function. In this review, we

summarize the role of gut microbiota in cardiovascular diseases.

2 Gut microbiota mechanisms of
action in cardiovascular diseases

The gut microbiota might influence cardiovascular disorders

through metabolites like short-chain fatty acids, trimethylamine-

N-oxide, coprostanol, bile acid, indoxyl sulfate,

phenylacetylglutamine, and vitamin K2 (Figure 1).

2.1 Short-chain fatty acid production

The metabolites acetate, butyrate, and propionate are

categorized as short-chain fatty acids (SCFAs) and are produced

when intestinal bacteria ferment the indigestible polysaccharides

(16). SCFAs diffuse across the intestinal mucosa, enter the

bloodstream through the portal system at low millimolar

concentrations, and interact with G protein-coupled receptors

(GPCRs) on the plasma membranes of various target cells

throughout the mammalian body (17, 18). These fatty acids

exhibit a positive correlation with Eubacterium rectale, Alistipes

FIGURE 1

Gut microbiota mechanisms of action in cardiovascular diseases.
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putredinis, Bacteroides spp., Roseburia, and Faecal prausnitzii (19).

By improving intestinal barrier integrity through increased

production of cellular junction proteins and acting as energy

substrates for epithelial cells, SCFAs positively affect the

gastrointestinal tract. Furthermore, they affect inflammation and

metabolic processes. They can reduce oxidative stress, show anti-

inflammatory and anti-tumorigenic properties, alter glycemic

control and lipid metabolism, and alter the release of

inflammatory cytokines and chemokines (20, 21).

The importance of SCFAs in preserving cardiovascular system

health is suggested by their notable effects against various

inflammatory illnesses, such as Coronary artery disease (CAD)

and hypertension (22, 23). The amount of dietary fiber

consumed and the composition of the gut flora’s SCFA-

producing bacteria control how much SCFA is produced.

Accordingly, changes in the composition of the gut microbiota

are a significant factor influencing the levels of SCFAs, thereby

promoting the development of CVD linked to inflammation (24).

There are two main ways that SCFAs might demonstrate their

anti-inflammatory properties. The first is that SCFAs are known

to inhibit histone deacetylase (HDAC). When HDAC inhibits the

histone acetylation process, the chromatin structure decondenses,

increasing gene expression and promoting the development of

regulatory T cells to generate anti-inflammatory cytokines like

interleukin 10 (IL-10) (22, 25). However, butyrate is a negative

modulator of inflammation, and its anti-inflammatory action is

achieved by inhibiting HDAC, which typically controls innate

immunity pathways, regulating the differentiation of myeloid

cells and the inflammatory response mediated by the expression

of genes induced by toll-like receptors (TLR) and interferon

(IFN) (26, 27). Thus, butyrate inhibits HDAC to limit the

synthesis of pro-inflammatory cytokines like interferon-γ (IFN-

γ), IL-12, and tumor necrosis factor-α (TNF-α). This increases

monocytes’ in vitro production of IL-10, which has anti-

inflammatory effects (28). Second, it is found that SCFAs

contribute to anti-inflammatory responses through the activation

of specific G protein-coupled receptors (GPCRs). The intestinal

epithelial cells and almost all immune cell types express GPCRs,

such as GPCR41, GPCR43, and GPCR109A, which SCFAs bind

to (29). SCFA binding to the GPCR can trigger several

intracellular signaling cascades, including nuclear transcription,

enzyme activation, and cell membrane ion transport (30). This

binding protects the gut from inflammation by promoting

regulatory T-cell differentiation to produce IL-10 and enhancing

intestinal barrier integrity through the NLR family pyrin domain

containing 3 (NLRP3) inflammasomes. These inflammasomes

generate IL-19, which enhances epithelial integrity by improving

the function of tight junction proteins (29, 31).

Butyrate regulates blood pressure by activating the GPCR41

and vasorelaxing the blood vessels (32). Butyrate specifically

lowers diastolic blood pressure in humans. The effects of

butyrate on 60 patients with type 2 diabetes mellitus were

investigated in a randomized, double-blind trial. The results

showed that the diastolic blood pressure of the treatment groups

decreased statistically significantly (P < 0.05). Additionally, treated

patients had higher levels of Akkermansia muciniphila, a bacteria

with anti-inflammatory properties (33). Propionate activates

GPCR41 to cause vasodilation, which lowers blood pressure

slightly. The improvement of endothelial dysfunction may be the

mechanism for the long-term decrease in blood pressure (34). By

preventing the production of cholesterol and moving it to the

liver, SCFAs can help reduce serum lipid levels (35). As a result,

they have been proposed as a protective factor against the

development of CAD. Additionally, there has been a decrease in

SCFA-producing bacteria in some CAD cases and the gut

dysbiosis of hypertension patients (36–39). Additionally, the

intestinal metabolism of cholesterol is influenced by SCFAs.

There is an inverse relationship between serum cholesterol levels

and the conversion of cholesterol to coprostanol in patients with

elevated fecal amounts of SCFAs; the precise mechanisms are still

unclear, although this could be because the gut flora is different

(40). Although there is growing evidence that short-chain fatty

acids are involved in several cardiovascular disorders, more

investigation is necessary to fully understand the underlying

mechanism and the diverse effects of SCFA supplementation on

the cardiovascular system.

2.2 Trimethylamine-N-oxide production

TMAO, a risk factor for the development of CAD, is produced

by dietary choline, betaine, phosphatidylcholine, lecithin, and

L-carnitine (41–44). Choline, phosphatidylcholine, and carnitine-

trimethylamine are frequently found in meat, egg yolks, and

high-fat dairy products. These substances undergo a two-step

modification process: (A) undergo conversion by the gut bacteria

into TMA, which is then taken up and transported to the liver

via the portal circulation. 36 species with 102 genomes have been

reported to create TMA. Firmicutes, Proteobacteria, and

Actinobacteria are among the TMA producers; Bacteroidetes do

not produce TMA. TMA production has been linked to

firmicutes, such as Anaerococcus, Clostridium, Desulfitobacterium,

Enterococcus, Streptococcus, and Proteobacteria, such as

Pseudomonas, Enterobacter, Proteus, Escherichia, Dseulfovibrio,

Actinobacter, Citrobacter, and Klebsiella (45, 46). (B) The flavin-

containing monooxygenase (FMO) enzyme, which is expressed

by the FMO gene in the liver, kidney, and other tissues, converts

the microbiome-derived TMA molecule into TMAO once it

enters the host’s circulation and reaches hepatocytes (43, 47, 48).

Microbiota, age, medicines, gender, and lifestyle all interact to

affect TMAO levels (49). The volume of dietary precursor

ingestion and the composition of each person’s gut microbial

flora determine how much TMAO each individual produces (50).

Animal products with high concentrations of TMA precursors

are a feature of Western diets, altering the gut flora and raising

TMAO levels (51).

In contrast to SCFAs, TMAO is a bacterial metabolite that

promotes inflammation and has also been linked to the

pathophysiology of cardiovascular disease. To cause thrombus

development, it works by triggering the immunological and

inflammatory responses, upregulating the expression of

inflammatory cytokines, and preventing the synthesis of bile
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acids (52). A higher risk of cardiovascular events and mortality has

been associated with elevated TMAO concentrations by 23% and

62%, respectively. A meta-analysis of more than 25,000

participants found that all-cause mortality increased by 7.6%

with every 10 μmol/L accumulation of TMAO (53, 54). TMAO

may contribute to the pathogenic process of atherosclerosis

development by stimulating macrophage migration and its

conversion into foam cells. Foam cells have a proatherogenic

action from the first lesion generation to the plaque rupture. The

biological signature and initial stage of atherogenesis is the

buildup of foam cells in artery intima. Most foam cells come

from macrophages, which can control the metabolism of

lipoproteins (41, 42). TMAO influences cholesterol metabolism

and induces the production of foam cells in several ways. High-

density lipoprotein (HDL) is a key component of the reverse

cholesterol transport (RCT) pathway, which keeps cholesterol

metabolism in equilibrium. It stimulates macrophages to release

free cholesterol (55). Research revealed that HDL was

considerably lower in the plasma of CVD patients with elevated

TMAO levels, which prevented the RCT pathway and

macrophage accumulation of cholesterol (41). Elevated TMAO

levels are associated with increased cardiovascular risks and

accelerated atherosclerosis. Additionally, TMAO increases

endothelial dysfunction, changes lipid metabolism, and causes

platelet hyperactivity by stimulating calcium release from the

rough endoplasmic reticulum. Platelet hyperactivity and the

consequent development of plaque are caused by TMAO, which

also increases cholesterol influx, decreases cholesterol circulation,

and blocks the bile acid route (56–58). Choline supplementation

raises TMAO levels and enhances platelet aggregation and

reactivity in healthy human volunteers (59). Non-culprit plaques

show signs of vulnerability in CAD patients with increased

TMAO. These include enhanced microvascularization, a higher

incidence of thin-cap fibroatheroma, and decreased fibrous cap

thickness (10, 60). C-reactive protein (CRP) and endothelial

dysfunction with elevated gut permeability are also linked to

TMAO (45, 58).

The relationship between elevated TMAO plasma levels and

CVD, as well as its association with major adverse cardiac events

(MACEs) like myocardial infarction, stroke, heart failure, and

cardiovascular death, has been assessed by recent metabolomics

investigations (42, 61, 62). The rate of MACEs was strongly

correlated with plasma TMAO concentrations over a 3-year

follow-up period in individuals who had elective coronary

angiography. Even after controlling for conventional risk

variables, patients in the highest quartile of circulating TMAO

levels had a 2.5-fold increased risk of MACEs compared to those

in the lowest (63). Even though numerous investigations have

verified the link between TMAO levels and different CAD

occurrences, some studies do not find a correlation between

TMAO and CAD. One study, for instance, found no correlation

between TMAO levels and atherosclerosis in the Framingham

Heart Study Offspring group (1,215 participants) or supporting

animal research (64, 65). Studies have demonstrated that the use

of broad-spectrum antibiotics changed the composition of the

gut microbiota and decreased TMAO levels, indicating the

significance of the gut microbiota in the metabolism of TMAO,

which is consistent with the mandatory role that the gut

microbiota performed in TMAO formation (41). Elevated TMAO

levels are linked to a greater risk of adverse cardiovascular

disease, so further large-scale prospective cohorts are expected to

characterize the association, especially the causality in the

general population.

2.3 Coprostanol production

In addition to TMAO, there are various microbial pathways

whose alteration or suppression could impact CVD risk. The gut

bacteria’s ability to convert cholesterol to coprostanol was

initially documented in the 1930s (66). Humans begin producing

coporstanol in the second half of their first year of life (67), as

well as being sex-dependent, with young women having higher

conversion rates than young men (68, 69). The gut converts

cholesterol to coprostanol, a non-absorbable sterol removed with

feces. Because it is linked to decreased blood cholesterol levels,

converting cholesterol to coprostanol has a clinically significant

effect (70). One potential method is the conversion of cholesterol

to sterol coprostanol by the microbial cholesterol dehydrogenase

enzyme (ismA gene) (71, 72). The number of bacteria that

metabolize cholesterol was shown to be closely associated with

factors that affect cholesterol conversion (73, 74). Intestinal

bacteria that can convert cholesterol to coprostanol include

Eubacterium coprostanoligenes, Bacteroides species, Lactobacillus

species, and Bifidobacterium species. IsmA has a role in the

oxidation of coprostanol to coprostanone and cholesterol to

4-cholesten-3-one. Interestingly, Escherichia colioverexpresses this

enzyme, and other microbial species that have IsmA genes have

been linked to lower blood cholesterol levels (75). Using animal

models, giving hypercholesterolemic rabbits the cholesterol-

lowering bacterium Eubacterium coprostanoligenes dramatically

lowered their plasma cholesterol levels. The intestinal contents of

rabbits-fed microorganisms showed higher than average

coprostanol/cholesterol ratios (76). Many studies on the gut’s

metabolism of cholesterol have been conducted using human

models (67, 77–80), and it has been proposed that the

coprostanol/cholesterol ratio in human feces and human serum

cholesterol have an inverse relationship (79, 81, 82).

Coprostanoligenic strain research may be useful in the clinic to

modify the microbiota and lower cardiovascular risk (83, 84).

Further research is necessary because the precise mechanisms are

still unclear.

2.4 Bile acid modulation

The main amphipathic, water-soluble byproduct of the

breakdown of cholesterol is bile acids (BAs) (85). They have a

role in inflammatory bowel disease, gastrointestinal cancer,

metabolic disorders, and cardiovascular diseases (86). Since the

1960s, it has been shown that BAs are toxic to the heart. They

can induce cardiac remodeling and electrophysiological changes,

Zhang et al. 10.3389/fcvm.2025.1572948

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1572948
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


which can lead to deadly arrhythmias (87, 88). Because the ileum

reabsorbs around 95% of the bile acids and the enterohepatic cycle

returns them to the liver, bile acids can act as endocrine-like

signaling molecules that alter host metabolism and energy

homeostasis (89). The primary metabolites of cholesterol in the

liver that aid in the absorption of lipids, nutrients, and lipophilic

vitamins are bile acids, which are produced by the rate-limiting

enzyme cholesterol 7-alpha-hydroxylase (CYP7A1) (90, 91), and

also the energy metabolism, regulation of lipids and glucose (92, 93).

Bile salts are created when primary bile acids are coupled to the

amino acids taurine or glycine. These salts are then secreted into

bile and kept in the gallbladder until released into the small

intestine, emulsifying fats and creating micelles that enterocytes

can absorb (91). Primary bile acids like cholic acid (CA) and

chenodeoxycholic acid (CDCA) are broken down in the gut by

bile salt hydrolase (BSH) and the gut microbiota to produce

secondary bile acids, including deoxycholic acid (DCA),

lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) (91,

94). Except for UDCA and LCA, primarily eliminated in feces,

all conjugated and unconjugated bile acids in the lumen can be

reabsorbed (95%) and returned to the liver (90). The nuclear

receptor farnesoid X receptor (FXR) and the membrane

G protein-coupled bile acid receptor Gpbar-1 can be activated by

signaling molecules like bile acids in the gut (91, 95). Bile acids

can suppress bile acid synthesis through this method (94), which

may raise cholesterol levels (96). In the intestine, a wide range of

aerobic and anaerobic bacteria (including Gram-negative

Bacteroides, Lactobacillus, Clostridium, and Enterococcus, as well

as Gram-positive Bifidobacterium) catalyze the deconjugation of

the glycine and taurine moieties of PBA (97). Then, PBA (CA

and CDCA) are changed into secondary bile acids (SBA): LCA

and DCA, respectively, by bacterial hydroxysteroid

dehydrogenase (HSDH) enzymes, which eliminate a hydroxyl

group at the 7α position (98). Secondary bile acids (SBAs) have

been linked to cardiovascular health and are ligands of the

nuclear farnesoid X receptor (FXR). Diet can alter the

composition of the gut microbiota and the metabolism of bile

acids (99). The gut microbiota can impact how the liver regulates

cholesterol metabolism (28, 81) and contribute to the

modification of bile acids, which can affect systemic cholesterol

levels (100). Bile acids may be a helpful biomarker to predict the

severity of CVD, according to cohort studies conducted in

various populations (101, 102). Elevated plasma levels of LCA

were linked to an increased risk of CHD in a case-control study

(103). Patients with CAD had higher fasting serum total BA than

those without CAD, according to a survey of 7,438 participants

(104). Additional research is necessary to validate and deepen

our comprehension of BA’s function in modulating the

association between gut microbiota and the risk of CVD.

2.5 Indoxyl sulfate

Tryptophan, a necessary amino acid and a precursor to various

important mediators such as tryptamine, serotonin, melatonin,

kynurenines, and nicotinic acid, is converted in the intestines

into the molecule indole by gut bacteria (105–107). Escherichia

coli and other gut bacteria include tryptophanase, which converts

a portion of tryptophan obtained from proteins into indole

(108). The liver produces the indole metabolite indoxyl sulfate,

which enters the bloodstream as a serum molecule coupled to

albumin. Usually, indoxyl sulfate is eliminated by the urine.

Because indoxyl sulfate is not adequately eliminated in patients

with poor renal function, it increases in the blood and negatively

impacts the endothelium by causing arterial stiffness and

calcification. It is well-recognized that indoxyl sulfate damages

various cell types, including vascular endothelial cells (109–112).

In endothelial cells, elevated indoxyl levels cause oxidative stress,

a pro-inflammatory response, and increased adhesion molecule

expression. The pathophysiology of cardiovascular disorders in

people with chronic kidney disease (CKD) is influenced by the

harmful effects of indoxyl on endothelial cells. How indoxyl

affects the pathophysiology of CAD in individuals who do not

have renal impairment is still unknown (113). Among dialysis

patients with normal renal function, indoxyl sulfate was

associated with cardiovascular disease (114).

Serum indoxyl sulfate levels may be a predictive mechanistic

biomarker of the severity of coronary artery disease because they

have a positive correlation with coronary atherosclerosis scores

(115). Indoxyl sulfate causes thrombosis via increasing platelet

activity and the body’s reaction to collagen and thrombin (116).

There is evidence linking an increase of the nephrotoxin indoxyl

sulfate in the serum of uremic patients—which is caused by poor

renal secretion—to gut microbiota dysbiosis toward a greater

abundance of aerobic indole-producing bacteria (such as

Escherichia coli) (117, 118). Studies by Takayama et al.

demonstrated that by altering the composition of the gut

microbiota, hemodialysis patients receiving oral treatment with

non-indole-producing bacteria (such as Bifidobacterium) had a

significant decrease in indoxyl sulfate serum levels (118).

Another study demonstrated that giving indoxyl sulfate to rats

with CKD accelerated the disease’s progression and raised the

expression of the genes for pro-α1(I) collagen, tissue inhibitor of

metalloproteinase (TIMP)-1, and transforming growth factor

(TGF)-β1 (119). Additional research has demonstrated that

indoxyl sulfate exacerbates atrial fibrillation, cardiomyocyte

hypertrophy, and cardiac fibrosis (120, 121). These investigations

collectively show that indoxyl sulfate is biologically connected to

CVD at both the molecular and cellular levels.

2.6 Phenylacetylglutamine

The gut flora of heart failure patients and healthy people varies

in terms of both composition and function, according to a number

of studies conducted in recent years. Glutamate, which lowers

ammonia through the urea cycle bypass pathway, and

phenylacetate/phenylbutyrate (phenylacetate precursor) were

originally believed to be the only sources of

phenylacetylglutamine (PAGln), one of the main toxins

associated with chronic kidney illness (122). Recent research,

however, has shown that PAGln, which is also produced by
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intestinal microbes that metabolize the essential amino acid

phenylalanine, is regarded as an independent predictor of MACE

risk and has high plasma concentrations in patients who have

experienced MACE (104, 123). A metabolite called PAGln is

produced when the gut bacteria conjugates glutamine and

phenylacetate. PAGln has been linked to elevated thrombosis risk

and platelet activity (103). Klebsiella pneumoniae, Acinetobacter

baumannii, Proteus mirabilis, Lachnospiraceae, Christensenellaceae,

and Ruminococcaceae. Among the main microbes that produce

phenylacetylglutamine are Bacteroidetes, Firmicutes, Proteobacteria,

and Staphylococcus aureus (124–127).

High levels of PAGln are independently linked to a higher risk

of coronary in-stent restenosis, which is linked to a poorer

prognosis for CAD patients (128). Hazen et al. were the first to

show a positive association between the gut-derived metabolite

PAGln and platelet and thrombosis functions in a nontargeted

metabolomics investigation (123). Additionally, elevated PAGln

plasma levels are a strong independent predictor of carotid

plaque burden, indicating a potential link to atherosclerosis

(129). According to a study by Fang et al, increased plasma

PAGln levels and improved microbiota-derived PAGln synthesis-

related functions were linked to in-stent stenosis and hyperplasia

in CAD patients. To prevent stent stenosis in patients with CAD,

an intervention that targets gut bacteria may be a promising

approach (130).

2.7 Vitamin K2

There are two main types of vitamin K: phylloquinones

(vitamin K1, VK1) and menaquinones (vitamin K2, VK2). Four

isoprenoid residue side chains make up the single chemical VK1.

However, the side chains of VK2 range in length from four to

thirteen isoprene residues (131). Plants are the exclusive source

of VK1, but gram-positive bacteria in the human gastrointestinal

system create a number of congeners (menaquinone-5–

menaquinone-13, MK5–MK13) that make up VK2 (131, 132).

Vitamin K2 is an isoform of vitamin K and a cofactor that helps

carboxylate several proteins, including matrix Gla-protein (MGP)

(133). Fibroblasts, endothelial cells, vascular smooth muscle cells,

and chondrocytes all express the MGP (134). This protein plays

a role in preserving the vascular wall’s structural and functional

integrity (135). It prevents arterial calcifications by binding

calcium crystals and blocking bone morphogenetic protein-2

(BMP-2), a pro-mineralizing factor (136). Additionally, MGP

preserves the extracellular matrix’s composition and inhibits the

osteoblastic development of vascular smooth muscle cells (134).

Changes in vitamin K2 metabolism are linked to quantitative

changes in the constitute of the gut microbiota, such as in small

intestinal bacterial overgrowth (SIBO). Specifically, regardless of

daily vitamin K2 intake, individuals with SIBO had considerably

greater serum levels of dephosphorylated-uncarboxylated matrix

Gla-protein, the inactive form of MGP, than controls. Higher

levels of inactive MGP in patients were associated with an

increase in arterial stiffness as determined by pulse-wave velocity,

which was one of the early indicators of vascular dysfunction

(137). One of the most reliable indicators of poor vitamin K2

status is generally thought to be elevated levels of the inactive

form of MGP (138). Furthermore, it has been demonstrated that

increases in MGP inactive form are linked to early vascular

disease symptoms as well as cardiovascular morbidity and

mortality (139–143).

3 New strategies in CVD prevention
and treatment

Researchers have focused on gut microbiota and associated

metabolites to prevent and treat CVD. Therefore, as a new

regulator of CVD, the gut microbiota has emerged as a possible

therapeutic target.

3.1 Diet

The composition and function of the gut microbiota can be

altered by diet in several ways (144). These changes take time to

manifest, and they have more significant impact if they are

sustained over time (145). Short-term dietary changes can rapidly

and temporarily change the diversity of human microbiota.

Long-term dietary patterns influence the development of each

person’s stable microbiota profile (145, 146). The idea that a

regulated diet may result in positive changes in the composition

of the gut microbiota in the prevention of CVD is supported by

an observational study by Wang et al. (147).

High-fiber diets inhibit the growth of known opportunistic

pathogens and promote the growth of helpful commensal

bacteria (148, 149). A high-fiber diet has been shown to reduce

blood pressure, lessen heart hypertrophy and fibrosis, and boost

the microbiota that produces acetate (150). According to Xiao

et al., dietary interventions using whole grains and foods from

traditional Chinese medicine can enhance intestine beneficial

bacteria like Bifidobacterium and decrease Enterobacteriaceae

harmful bacteria (151). Furthermore, a diet rich in fiber can

boost the microbiota that produces acetic acid, which reduces

blood pressure (150). The quantity of microbiomes that are

members of the Bacteroidetes phylum with genera Prevotella and

Bacteroides decreased in CAD patients, and it has been shown

that those who eat a high-fiber diet create SCFAs (152). More

SCFAs and phosphatidylcholine are produced when the gut

bacterial community is modulated by a diet high in plant

products, enabling the growth of species that can ferment fibers.

A high-fat diet, on the other hand, causes adverse alterations in

the fecal metabolomic composition, systemic inflammation, and

gut flora (153). Fecal metabolomic patterns are a reflection of

changes in the gut bacterial ecology. In fact, a high-fat meal

causes circulating pro-inflammatory factors (such as plasminogen

activator inhibitor-1, IL-1, and TNF-α mRNA) to rise while

SCAs decrease and arachidonic acid and LPS production

increases (154). Another study demonstrated the anti-

inflammatory effects of a Mediterranean diet, showing a negative

relationship between the production of SCFAs and the expression

Zhang et al. 10.3389/fcvm.2025.1572948

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1572948
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


of inflammatory cytokines, including VEGF, MCP-1, IFN-γ-

induced protein 10 (IP-10), IL-17, and IL-12. Additionally,

Enterorhabdus, Lachnoclostridium, and Parabacteroides were

more prevalent in the Mediterranean diet (155). Mediterranean

diets high in fruits and vegetables decreased the incidence of

heart failure by 70% in randomized controlled studies (156).

Lower TMAO levels in both males and females were also

associated with consuming a Mediterranean diet (157).

Additionally, 200 g vs. 500 g of unprocessed lean red meat per

week differed between two diet groups in a 5-week randomized

experiment. The TMAO levels were lower in the group that

consumed 200 g of red meat per week than in the group that

consumed 500 g (158). When Organ et al. performed transverse

aortic constriction surgery on C57BL6/J mice to cause HF, they

discovered that the animals receiving TMAO or choline-

supplemented diets showed worse HF symptoms and biomarkers

than the mice receiving a control diet (159). According to

another study, a lower ratio of Firmicutes, including Bacteroidetes

and Streptococcus, and a higher ratio of Catenibacterium,

Bifidobacterium, and fecal SCFAs were linked to a closer

adherence to the Mediterranean dietary pattern and increased

consumption of plant-based nutrients, such as vegetable proteins

and polysaccharides (160). In contrast to a diet heavy in

saturated fat, which can raise LDL cholesterol, a westernized diet

high in unsaturated fat can boost Bacteroidetes and decrease

Firmicutes and Bilophila wadsworthia (sulfite-reducing

microorganisms) (161).

Sodium chloride, or NaCl, is another name for salt, an essential

component of human nutrition. The words “salt” and “sodium” are

commonly used in ways that imply they have the same meaning

(162). A daily consumption of less than 5 g of salt is advised by

the World Health Organization’s (WHO) Healthy Diet Fact

Sheet (163). Several recent studies have examined the effects of a

high salt intake on gut microbiology and disease (164), including

inflammatory bowel disease (162) and cardiovascular disease

(165), given the well-established relationship between diet and

gut microbiology and its implications for the development of

disease. Recent research has shown that consuming too much

salt, especially sodium, might raise blood pressure by altering the

gut flora (164, 166). One example of this is the advice to limit

salt consumption because some people and model organisms are

sensitive to a diet high in salt (38, 167). A high-salt diet

mechanistically increases intestinal permeability and pro-

inflammatory cytokines in human and animal research,

promoting local and systemic tissue inflammation (164, 168,

169). Certain bacteria, such as Bacteroides fragilis, may be

responsible for some of the effects of dietary salt. They activate

the mineralocorticoid receptor and raise blood pressure through

intermediate metabolic actions (170). Ferguson JF and colleagues

found that a high-salt diet decreased the number of lactate-

producing bacteria, such as those belonging to the Bacilli class,

the Lactobacillales order, the Leuconostocaceae family, and the

Leuconostoc genus, in both people and mice. Usually, these

bacteria prevent hypertension and T-cell activation by salt (164,

171). According to a different study by Wilck et al., eating a lot

of salt impacts the gut microbiota, mainly by decreasing

Lactobacillus murinus and raising Th17 cells and blood

pressure. L. murinus supplementation reduced hypertension and

inhibited Th17 activation (164).

These studies demonstrate how a diet high in salt can

negatively impact gut microbiota, which can then affect gut

health and contribute to the development and progression of

cardiovascular disease. Given the intricate relationships between

food, gut microbiota, and the metabolites that follow, diet is a

significant risk factor for CVD and cardiovascular health. To

maintain physical health, patients with CVD must optimise their

food composition and make suitable dietary adjustments.

3.2 Probiotics and prebiotics

A growing body of research is investigating how probiotics can

lower cardiovascular risk, particularly in light of recent findings

linking the gut microbiota to the etiology of CVD. According to

the Greek definition, probiotics are “live microorganisms which,

when administered in adequate amounts, confer health benefits

on the host” (Pro: promotion, Biotic: life) (172). Lactobacillus,

Bifidobacterium, Lactococcus, Streptococcus, and Enterococcus are

common probiotics (173). Across many cultures, people eat a

wide variety of fermented foods that contain probiotic strains,

including yoghurt, kefir, sauerkraut, tempeh, and kimchi (174).

Probiotics may work in a variety of ways, including adjusting

pH, producing antibiotic compounds, and competing with

pathogens (175). Prebiotics are defined as “non-digestible food

components allowing the specificity of microbial changes in the

intestinal tract, thereby exhibiting beneficial effects on host’s

health,” as was initially set there by Gibson and Roberfroid in

1995 and then revised in 2004 (176, 177). The International

Scientific Association for Probiotics and Prebiotics has since

maintained the most widely recognized definition of this term as

a substrate that host bacteria preferentially use to provide health

benefits (178). Studies conducted both in vitro and in vivo have

shown that oligosaccharides, particularly fructans

[fructooligosaccharides (FOS) and inulin] and galactans

[galactooligosaccharides (GOS)], are the most well-known

prebiotics (179). The majority of prebiotics are carbohydrates

found in foods such as cereals, fruits, and vegetables (173).

Probiotics and prebiotics’ ability to alter gut microbiota has

emerged as a new avenue for CVD prevention and treatment.

Numerous studies have demonstrated the positive effects of

prebiotics and probiotics on lipid regulation, which has indirect

advantages for CVD (180–183). Furthermore, there is strong

evidence that functional foods that contain prebiotics and

probiotics may help prevent several cardio-metabolic conditions,

such as type I diabetes, obesity, and hypertension (184–186).

Another explanation for the protective benefits of probiotic and

prebiotic treatments on CVD is host immune system regulation.

Changes in epithelial cells, dendritic cells, effector lymphocytes,

natural killer T cells, T regulatory cells, and B cells are among

the immunological processes that probiotics and prebiotics

support (187).
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Some studies examined the positive benefits of inulin or inulin-

containing prebiotics on a range of CVDs in both human and

animal models, including coronary artery disease, chronic renal

disease, atherosclerosis, hypercholesterolemia, and CHD or

diabetes linked to CHD (188–192). Furthermore, it was

discovered that the probiotics Lactobacillus fermentum and

Bifidobacterium breve can lower blood pressure by preventing

endothelial dysfunction and re-establishing the balance of

the gut microbiota (193). In patients with CKD, the treatment

of Lactobacillus sp. was linked to a considerable decrease in small

intestinal toxins such as dimethylamine and nitrosodimethylamine,

and in patients with carotid atherosclerosis, it was related to

alterations in colon levels of certain SCFAs (194, 195). A 6-week

daily supplementation with Lactobacillus plantarum 299v (Lp299v)

has a positive effect on CVD by causing changes in circulating

metabolites originating from the gut microbiome, according to a

pilot trial including 21 men with stable coronary artery disease.

Lp299v supplementation can decrease systemic inflammation and

enhance endothelium-dependent brachial artery vasodilation by

increasing nitric oxide bioavailability (196). Additionally, Lam

et al. discovered that Lactobacillus plantarum could decrease the

size of myocardial infarctions and enhance ventricular function

(197). One gut microbiota component that has positive impacts on

the pathophysiology of cardiovascular disease and arterial

hypertension is Akkermansia muciniphila (198). Patients with

heart failure can benefit from Saccharomyces boulardii’s ability to

lower serum creatinine and inflammatory marker levels (199).

Although probiotics and prebiotics can be added to the diet of

patients with CVD based on their circumstances to improve gut

dysbiosis and regulate the gut microbiota, there are still

unanswered questions regarding the precise immunological and

physiological effects they may have on health and illness,

necessitating more research.

3.3 Fecal microbiota transplantation

Transplanting a fecal solution from a healthy donor into the

recipient’s digestive tract is known as fecal microbiota

transplantation (FMT), and it has been used to treat ulcerative

colitis and Clostridium difficile infections (200, 201). Stools from

healthy donors or recipients (self-FMT) are collected as part of

this procedure before being administered to patients with

illnesses or associated dysbioses. These complicated investigations

about CVD endpoints have not yet been thoroughly examined.

Although the clinical usefulness of this strategy for CVD is

debatable, FMT has been shown to have a therapeutic effect

against small intestine permeability and insulin resistance

(202–204). The use of FMT via fecal enema as an adjuvant in

treating pseudomembranous colitis was initially reported by

Eisman et al. (205). FMT is much more effective than standard

treatment procedures, including vancomycin antibiotics, and it

has been instrumental in treating recurring Clostridium difficile

infections (206, 207). Additionally, FMT is promising as a

treatment for additional conditions linked to the microbiota,

such as Crohn’s disease, ulcerative colitis, obesity, type 2

diabetes, and cardiovascular disease.

FMT has also recently been investigated as a potential

treatment for cardiometabolic diseases (208, 209). Fecal donation

improved myocarditis in animal models (210). To maintain a

balanced gut flora, it is thought to support beneficial

microorganisms, compete with pathogens, and restore a healthy

gut microbiota. Restoring the gut’s health could aid in treating

CVD because dysbiosis and gut microbiome are linked to the

disease. In fact, in experimental mouse models of autoimmune

myocarditis, FMT was shown to alleviate myocarditis (210).

Increasing the Firmicutes/Bacteroidetes ratio and decreasing

inflammatory infiltration are two proposed ways. Through the

anti-inflammatory mechanism, the study validates the impact of

gut flora on CVD and the significant function of Bacteroidetes in

microbiota composition (211). More preclinical research expands

our understanding of FMT and its potential by transferring the

feces of healthy people and hypertension patients into germ-free

mice. As expected, mice that received patient microbiomes had

more tremendous blood pressure than mice that received healthy

microbiomes (212). Furthermore, the impact of FMT on

atherosclerosis was also investigated (213).

In a randomized, double-blind, controlled study with 20 patients

with metabolic syndrome, it was discovered that vegetarians’ post-

single transplant fecal flora might alter the intestinal flora

composition of specific individuals but not the vasculitis-related

measures (214). Recently, Fan et al. reported their clinical trial

design of FMT effects on primary hypertension patients. The

expected outcomes include microbiota profile, blood pressure,

blood glucose and lipids, ankle-branchial index, and the causes of

events. This investigation may be among the earliest clinical trials

to examine the effects of FMT on hypertension, offering crucial

data for additional research. Patients with hypertension were

found to benefit from a modified form of FMT known as the

“washed microbiota transplantation effect.” (215).

However, due to the hazards involved, such as the potential for

endotoxins or infectious organisms to spread and produce new

gastrointestinal issues, the use of FMT is currently

restricted (216, 217).

Without preclinical trials of FMT on CVD, including CAD,

PAD, and heart failure, clinical trials may not have sufficient

data and support to be carried out. Therefore, research on the

FMT approach to CVD therapy and prevention is still needed.

3.4 Small-molecule antimicrobial enzyme
therapeutics

As discussed earlier, gut microbiota produces a metabolite

called TMA through the breakdown of dietary

phosphatidylcholine/choline, L-carnitine, or betaine in consumed

red meat or animal flesh (41, 42, 63, 218). Certain choline TMA

lyase inhibitors can help lower plasma TMAO levels and improve

atherosclerosis and thrombosis. It has been demonstrated that

the natural substance 3,3-dimethyl-1-butanol (DMB), which is

present in some red wines, balsamic vinegar, cold-pressed extra
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virgin olive oils, and grape seed oils, lowers plasma TMAO in mice

given a chow diet supplemented with carnitine or choline (218).

Furthermore, DMB reduces the in vivo rate of thrombus

formation and platelet reactivity, which a choline diet

improves (219).

By creating a small-molecule tool medication to limit microbial

choline TMA lyase activity, this technique recently demonstrated

proof of concept (218). Although there is currently little

information available, new choline TMA-lyase inhibitors have

recently been created, such as iodomethylcholine (IMC) and

fluoromethylcholine (FMC) (220). Without prolonging the

bleeding period, the IMC and FMC molecules can lower the

host’s TMA and TMAO levels, which will limit platelet

aggregation and the in vivo rate of thrombus formation (219).

FMO3, another regulator in the production pathway for TMAO,

quickly transforms TMA into TMAO. Berberine, 3, 3C-

diindolylmethane (DIM), and indole-3-carbinol are examples of

phytochemicals that have demonstrated promise in lowering the

generation of TMAO and suppressing FMO3 activity (221, 222).

Research on the antisense oligonucleotide-based regulation of

FMO3 in animal models revealed a decrease in TMAO serum

levels concurrent with a reduction in diet-enhanced

atherosclerosis (223). Thus, the possibility of developing

microbial enzyme inhibitors to treat people’s cardiometabolic

abnormalities is quite exciting.

4 Conclusion

Despite mounting evidence linking gut microbiota to

cardiovascular diseases (CVDs), significant information gaps still

exist. The absence of clear evidence connecting particular

changes in the microbiome to cardiovascular disease is one of

the main drawbacks of current research. Since the majority of

research uses observational and correlational data, it is

challenging to determine whether gut dysbiosis is a direct cause

of CVD development or merely an effect of the illness state.

These linkages may become clearer in the future with the use of

advanced microbiome sequencing, metabolomics, and causal

inference techniques like Mendelian randomization.

Inter-individual variation in gut microbiota composition,

which is impacted by environmental exposures, genetics,

nutrition, and drugs, is a further major challenge. The

development of standardized microbiome-based treatments for

CVD is complicated by this diversity. Our review highlights the

potential for patient-specific microbial profile-based specific gut

microbiome therapies, an area that needs more investigation.

Furthermore, although a number of metabolites originating from

the gut (such as bile acids, SCFAs, and TMAO) have been linked

to cardiovascular function, the exact molecular mechanisms

behind the gut-heart axis are still not fully known. Finding new

microbial metabolites and understanding how they specifically

affect inflammation, atherosclerosis, and endothelial function

may lead to the discovery of new treatment targets. Finally, there

is still difficulty in implementing microbiome-targeted treatments

in clinical settings. Although fecal microbiota transplantation

(FMT), probiotics, prebiotics, and microbial enzyme inhibitors

have demonstrated promise, their long-term safety and

effectiveness in preventing and treating CVD are yet unknown.

This review addresses new approaches that may help close this

gap, such as targeted enzyme inhibitors and precision medicine

based on the microbiome. Appropriate treatment approaches that

target the gut microbiota promise improved CVD management

and prevention in the future.
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