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Vascular inflammation in chronic
kidney disease: the role of uremic
toxins in macrophage activation
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Chronic kidney disease (CKD) is a progressive condition characterized by the
gradual loss of kidney function, leading to the accumulation of uremic toxins in
the bloodstream. These toxins play a pivotal role in mediating vascular
inflammation, a key contributor to the high cardiovascular morbidity and
mortality observed in CKD patients. This review article explores the intricate
mechanisms by which uremic toxins accelerate vascular inflammation.
Macrophages, as versatile immune cells, are central to the inflammatory
response. Evidence suggests that the uremic milieu influences macrophage
biology. In this review article, we focus on the signaling through which uremic
toxins, particularly indoxyl sulfate—an independent risk factor for cardiovascular
complications in CKD patients, modulate macrophage activation and function,
and how these changes contribute to vascular inflammation, leading to the
increased cardiovascular risk. Investigation of such mechanisms provide
molecular bases for the development of new therapies that retard the
development of cardiovascular disorders in CKD patients.
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Introduction

Chronic kidney disease (CKD) is one of the most significant global health burden of

the 21st century, in part due to the rise in risk factors such as diabetes, hypertension,

dyslipidemia and obesity (1). Chronic Kidney Disease (CKD) affects over 800 million

people worldwide, impacting 8%–16% of adults. It also significantly increases the risk of

cardiovascular disease (CVD), with the prognosis for CVD in CKD patients being

particularly poor (2). The data from Canada showed the life expectancy of 55-year-old

end-stage renal disease (ESRD) patients is only 5.6 years (3). A major cause of death in

ESRD worldwide is CVD (40%) and this population is growing (4, 5). The incidence of

myocardial infarction and stroke is 5–15-fold higher and cardiovascular mortality is 30

times higher in the dialysis patients than in the general population (4, 6, 7). Studies

revealed a higher prevalence of atherosclerotic lesions in CKD (8–10). However,

underlying mechanisms for accelerated atherogenesis in CKD remain unclear and

effective medical solutions are limited. Prior research by our group (11–14, 15) and
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others (16–22) reported that CKD aggravates major signs of

vascular disorders, such as inflammation and calcification, in

clinical and experimental atherosclerosis.

Pro-inflammatory activation of macrophages plays a pivotal

role in chronic inflammation and accelerates vascular diseases

(23). Evidence suggests macrophages are a group of cells with

heterogeneous phenotypes (24–27). Different sets of signaling

pathways may lead to changes in macrophage phenotypes

towards pro-inflammatory subsets. For example, we reported that

Delta-like ligand 4 (Dll4) of the Notch pathway promotes pro-

inflammatory activation (28) probably by regulating macrophage

heterogeneity (14). Notch signaling determines the growth,

differentiation, and survival of various cell types in diverse

tissues (29, 30). Our studies demonstrated that the Dll4-Notch

axis promotes vascular and metabolic disorders (14, 31).

Persistent inflammation in CKD, which significantly

contributes to vascular complications, may represent sustained

activation of macrophages in CKD. Among the various immune

cells involved, macrophages appear to play a pivotal role in

mediating vascular inflammation in CKD (14, 16). Macrophages

are highly plastic cells that can adopt different functional states

in response to microenvironmental signals. A traditional concept

classified macrophages into two phenotypes: pro-inflammatory

macrophages and anti-inflammatory macrophages (e.g., M1 vs.

M2 phenotypes) (32, 33), while recent current understandings

suggest a more complex, multi-dimensional heterogeneity (26, 27).

Uremic toxins, byproducts of impaired renal excretion,

significantly contribute to the pathogenesis of cardiovascular and

metabolic disorders in CKD. Uremic toxins in CKD play a crucial

role in macrophage activation and vascular inflammation,

comparable to traditional CVD risk factors such as hypertension,

diabetes, and dyslipidemia. Their accumulation due to impaired

kidney function triggers systemic inflammation, which worsens as

CKD progresses. From stage 3 CKD (eGFR <60 ml/min/1.73 m2)

onward, uremic toxin-induced inflammation becomes significant,

escalating in stages 4 and 5, where heightened toxin levels further

intensify inflammatory responses and cardiovascular risk (34, 35).

Among these, indoxyl sulfate, a protein-bound uremic toxin (36)

derived from dietary tryptophan metabolism—has garnered

considerable clinical attention in cohorts of humans (2, 4, 7, 37,

38). Elevated indoxyl sulfate levels are strongly associated with

vascular dysfunction, endothelial cell activation, and accelerated

atherosclerosis, highlighting its pivotal role in exacerbating CKD-

related cardiovascular morbidity. Its dual impact on oxidative

stress and pro-inflammatory pathways underscores the need for

mechanistic studies to unravel its contribution to vascular

complications, paving the way for targeted therapeutic interventions.
Role of macrophages in CKD-
associated vascular inflammation

Macrophages play a crucial role in the pathophysiology of

CKD, particularly in driving vascular inflammation, which is a

hallmark of CKD-related cardiovascular complications. The

activation of macrophages in CKD occurs through various
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mechanisms that are influenced by metabolic dysregulation,

oxidative stress, and immune signaling.

Macrophages, as key players in innate immunity, contribute

significantly to inflammation and tissue remodeling in CKD. In

the context of CKD, there is an increase in pro-inflammatory

stimuli that activates macrophages, skewing them towards a pro-

inflammatory phenotype. These macrophages secrete high levels

of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6,

which propagate inflammation and damage to the vascular

endothelium (39). This persistent macrophage-mediated

inflammation not only promotes endothelial dysfunction but also

contributes to vascular calcification, arterial stiffening, and the

progression of atherosclerosis in CKD (40, 41). Moreover,

macrophages also play a role in the recruitment and activation of

other immune cells, such as T cells, that exacerbate vascular

inflammation. Activated macrophages release chemokines,

including MCP-1, that attract monocytes to the sites of injury,

perpetuating a cycle of inflammation and vascular damage (42).

Accumulation of uremic toxins in CKD contributes to

macrophage activation. In cultured human primary macrophages,

these toxins induce oxidative stress and enhance the secretion of

pro-inflammatory cytokines by macrophages (34). This oxidative

environment shifts macrophages towards a pro-inflammatory

phenotype, exacerbating vascular inflammation (43). As depicted in

Figure 1, several mechanisms mediated by uremic toxins underlie

macrophage activation in CKD, leading to vascular inflammation:

1. Oxidative Stress: CKD is characterized by heightened oxidative

stress due to reduced renal function and impaired clearance of

reactive oxygen species (ROS). The elevated oxidative stress

activates macrophages through redox-sensitive pathways, such

as the activation of NF-κB, which promotes the production

of pro-inflammatory mediators (44). These macrophages

further release ROS, amplifying the local oxidative stress and

contributing to endothelial dysfunction and vascular

inflammation in cultured vascular smooth muscle cell (45).

2. Chronic Inflammation: CKD is a state of chronic low-grade

inflammation. This inflammatory milieu, characterized by

elevated levels of cytokines such as IL-6 and CRP, provides

continuous activation signals to macrophages (46). Chronic

inflammation drives macrophage polarization towards the M1

phenotype, increasing the release of inflammatory cytokines

that perpetuate vascular injury (16).

3. Dyslipidemia: CKD is often associated with dyslipidemia, which

contributes to the activation of macrophages. Lipoproteins,

particularly oxidized LDL, can be internalized by macrophages,

leading to foam cell formation. In cultured peritoneal

macrophages isolated from apoE−/− mice, this process not

only promotes atherosclerosis but also triggers macrophage

activation, enhancing the release of pro-inflammatory

cytokines and contributing to vascular inflammation (47).

4. Phagocytosis: In patients with CKD, the accumulation of

uremic toxins such as indoxyl sulfate impairs macrophage

functions, including phagocytosis (48) and efferocytosis. This

dysfunction primarily stems from heightened oxidative stress

and disrupted intracellular signaling, which collectively
frontiersin.org
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FIGURE 1

Uremic toxins affecting key macrophage functions leading to vascular inflammation in CKD—macrophages are central to both the development and
progression of vascular inflammation. Their roles are diverse, encompassing lipid uptake, foam cell formation, cytokine release, and the regulation of
plaque stability or destabilization. Various uremic toxins have been shown to impair macrophage function, thereby promoting the progression of
chronic kidney disease and its associated cardiovascular complications, as illustrated in this figure.
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compromise the ability of macrophages to effectively clear

apoptotic cells and pathogens. Such impairments drive

persistent inflammation, further accelerating CKD progression.

Notably, targeting these dysregulated pathways holds

therapeutic promise for restoring immune function in CKD.

For example, indoxyl sulfate has been shown to enhance

macrophage responses to lipopolysaccharide (LPS), resulting in

elevated production of ROS and pro-inflammatory cytokines.

Furthermore, evidence suggests that indoxyl sulfate directly

suppresses macrophage phagocytic activity through oxidative

mechanisms mediated by pathways such as NADH oxidase

(NOX), protein kinase C (PKC), and phosphoinositide

3-kinase (PI3K) (49). The role of uremic toxins in macrophage

efferocytosis within the context of CKD is an underexplored

area of research that holds significant promise for future studies.

Signaling pathways involved in
macrophage activation in CKD-
associated vascular inflammation

Macrophages are pivotal contributors to vascular inflammation

in CKD, driven by various signaling pathways that regulate their

activation. Understanding these pathways is essential to grasp the
Frontiers in Cardiovascular Medicine 03
mechanisms underlying macrophage-induced vascular injury in

CKD. The major signaling pathways implicated in macrophage

activation in CKD are discussed below.

1. Dll4-Notch signaling: Notch signaling regulates the mechanism

of signal transduction in embryonic development and

differentiation of various cell types and organs (29, 30). The

Notch pathway in mammals involves five ligands (Jagged1,

Jagged2, Dll1, Dll3, and Dll4) and four receptors (Notch1,

Notch2, Notch3, and Notch4) (Figure 2). Notch signaling is

typically triggered by direct cell-to-cell contact. Notch receptor

activation is then regulated by the receptor cleavage. ADAM

metalloprotease and γ-secretase mediate this cleavage to release

the Notch intracellular domain (NICD). NICD translocate to

the nucleus, binds with the transcriptional repressor RBP-Jκ,

and leads to transcriptional activation (30, 50).

Our study by Nakano et al (14) demonstrated potential

mechanism for pro-inflammatory activation of macrophages in

CKD involves crosstalk between OATP2B1 and the Dll4-Notch

axis in primary human macrophages. Indoxyl sulfate, taken up

by macrophages via OATP2B1, may inhibit Dll4 degradation

through USP5, leading to increased Dll4 recycling and

enhanced Notch signaling, which induces pro-inflammatory

gene expression, although other mechanisms may also be
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FIGURE 2

Proposed mechanism of indoxyl sulfate-mediated proinflammatory activation of macrophages, contributing to vascular inflammation in chronic
kidney disease. lndoxyl sulfate, a uremic toxin that accumulates in patients with chronic kidney disease undergoing hemodialysis, is taken up by
macrophages. Normally, the Dll4 protein undergoes endocytosis and recycling. However, indoxyl sulfate inhibits Dll4 degradation, increasing its
recycling. The enhanced interaction between Dll4 and its receptor (e.g., Notch 1) may amplify Notch signaling, driving the expression of
proinflammatory genes. This continuous receptor recycling in the signal-sending macrophage promotes a proinflammatory state, ultimately
leading to vascular inflammation.

Jha et al. 10.3389/fcvm.2025.1574489
involved. Figure 2 demonstrates the proposed mechanism of

indoxyl sulfate-mediated proinflammatory activation of

macrophages, contributing to vascular inflammation in CKD

via Dll4-Notch signaling (14).

2. NF-κB Pathway: The nuclear factor-kappa B (NF-κB) pathway

is a central regulator of macrophage activation in CKD. Uremic
Frontiers in Cardiovascular Medicine 04
toxins such as indoxyl sulfate, which accumulate due to

reduced renal clearance, stimulate the NF-κB pathway,

leading to increased transcription of pro-inflammatory

cytokines such as TNF-α, IL-1β, and IL-6. Upon stimulation

by these uremic toxins or other inflammatory signals like

advanced glycation end-products (AGEs), NF-κB translocate
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into the nucleus, where it activates genes involved in

macrophage pro-inflammatory responses. The continuous

activation of NF-κB in macrophages contributes to a chronic

inflammatory state in the vascular endothelium, promoting

endothelial dysfunction, vascular calcification, and

atherosclerosis in CKD (44).

3. JAK/STAT Pathway: The Janus kinase/signal transducer and

activator of transcription (JAK/STAT) pathway plays a

significant role in the polarization of macrophages towards

the pro-inflammatory M1 phenotype in CKD. Activation of

this pathway occurs in response to cytokines such as IFN-γ

and IL-6, which are elevated in CKD. These cytokines

activate JAKs, which in turn phosphorylate STAT proteins,

leading to their dimerization and nuclear translocation, where

they initiate the transcription of pro-inflammatory genes (51).

In preclinical mouse model of CKD, the persistent activation

of the JAK/STAT pathway by inflammatory stimuli amplifies

macrophage-driven vascular inflammation, contributing to

endothelial injury and vascular stiffening (52).

4. NLRP3 Inflammasome Pathway: The NLRP3 (NOD-like

receptor pyrin domain-containing 3) inflammasome is a

crucial intracellular sensor of stress signals, including

oxidative stress and metabolic dysregulation in CKD.

Activation of the NLRP3 inflammasome in macrophages

leads to the cleavage of pro-IL-1β and pro-IL-18 into their

active forms, IL-1β and IL-18, which are potent drivers of

inflammation (53). Uremic toxins, oxidative stress, and

mitochondrial dysfunction seen in CKD contribute to the

activation of the NLRP3 inflammasome, promoting

macrophage-mediated inflammatory responses and subsequent

vascular injury. This pathway has been shown to accelerate

atherosclerosis and vascular calcification by enhancing the pro-

inflammatory activity of macrophages (54, 55).

5. MAPK Pathway: The mitogen-activated protein kinase

(MAPK) pathway, comprising ERK, JNK, and p38 MAPK, is

another important signaling cascade involved in macrophage

activation in CKD. The MAPK pathway is activated in

response to various stimuli, including pro-inflammatory

cytokines, oxidative stress, and mechanical stress within the

vascular wall. Activation of MAPKs in macrophages leads to

the production of pro-inflammatory cytokines, such as TNF-

α and IL-6, and induces macrophage polarization towards the

M1 phenotype. In CKD, the sustained activation of MAPK

signaling contributes to vascular inflammation, endothelial

dysfunction, and smooth muscle cell calcification, worsening

CVD outcomes (56, 57).

6. TLR Pathway: Toll-like receptors (TLRs) are key pattern

recognition receptors (PRRs) that detect pathogen-associated

molecular patterns (PAMPs) and damage-associated

molecular patterns (DAMPs). In CKD, the heightened levels

of PAMPs and DAMPs, such as AGEs, and oxidative stress

by-products, lead to TLR activation, particularly TLR4, in

macrophages (58). Upon activation, TLRs initiate downstream

signaling through adaptor proteins such as MyD88, resulting

in the activation of NF-κB and MAPK pathways, which

further enhance the production of pro-inflammatory
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vascular inflammation in CKD, promoting endothelial

dysfunction and accelerating the development of vascular

calcification and atherosclerosis (59).

7. Aryl Hydrocarbon Receptor (AhR): The aryl hydrocarbon

receptor (AhR) pathway plays a crucial role in macrophage

activation in CKD. AhR, a ligand-activated transcription

factor, can be activated by various uremic toxins, including

indoxyl sulfate, leading to the modulation of macrophage

function (60). Activation of AhR influences macrophage

differentiation, polarization, and the expression of pro-

inflammatory genes, contributing to the chronic

inflammation observed in CKD patients (61). Targeting the

AhR pathway may offer therapeutic potential for mitigating

inflammation and improving outcomes in CKD (60, 62).

Multiple signaling pathways, including NF-κB, JAK/STAT,

NLRP3 inflammasome, MAPK, and TLR, are critical in the

activation of macrophages in CKD, driving vascular

inflammation. These pathways collectively contribute to

endothelial dysfunction, vascular calcification, and the

progression of atherosclerosis. Understanding these mechanisms

provides opportunities to develop targeted therapies aimed at

modulating macrophage activation to alleviate vascular

inflammation and reduce cardiovascular risk in CKD patients.
Role of indoxyl sulfate in CKD-
associated vascular inflammation

Although CKD patients commonly have CVD risk factors (e.g.,

hypertension, dyslipidemia, diabetes), such traditional factors

cannot entirely explain their increased cardiovascular risk (2, 4,

7, 37, 38). Uremia, defined as the accumulation of solutes, plays

a critical role in the pathogenesis of accelerated CVD in CKD,

making “uremic” risk factors emerging research spotlights (35,

38, 63). Indoxyl sulfate represents metabolites of dietary

tryptophan. After tryptophan’s conversion to indole by intestinal

bacteria and to indoxyl sulfate in the liver, it is normally cleared

by the kidney. When kidney function fails, indoxyl sulfate

accumulates in the blood. Among various uremic toxins in CKD,

indoxyl sulfate has become prime focus for the following reasons:

1. Clinical and basic research has established that indoxyl sulfate

causes cardiovascular organ damage (35, 38, 64–66). While

CKD increases various uremic toxins, clinical evidence has

established that indoxyl sulfate serves as an independent,

powerful risk factor for cardiovascular mortality and adverse

cardiovascular events (38, 67, 68), and its levels also associate

with the severity of coronary atherosclerosis (67, 69). Indoxyl

sulfate induces endothelial dysfunction, through the increased

production of NADPH oxidase-derived reactive oxygen

species (ROS), the increased expression of intercellular

adhesion molecule-1 (ICAM-1) and E-selectin, factors playing

key roles in monocyte–endothelial interactions (70, 71).

Indoxyl sulfate increases the expression of proinflammatory

cytokines, IL-1β, TNF-α, and MCP-1 in macrophages (14, 72,
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TABLE 1 A comprehensive overview of various uremic toxins implicated in macrophage activation and the resulting vascular inflammation, particularly in
the context of chronic kidney disease. Each toxin is categorized by its biochemical nature, source, and mechanism of action. The table highlights how
these toxins influence macrophage behavior and contribute to inflammatory processes in vascular tissues. The referenced studies provide further
insights into the role of these uremic toxins in macrophage-mediated inflammation and their broader implications for cardiovascular health in
CKD patients.

Uremic Toxin Category Source Mechanism of Action Effects on Macrophages/
Vascular Inflammation

References

Indoxyl sulfate Protein-
bound

Tryptophan
metabolism

Inhibits endothelial proliferation,
macrophage inflammation and promotes
vascular calcification

Enhances macrophage mediated
inflammation, increases vascular
inflammation

(14, 118)

p-Cresyl sulfate Protein-
bound

Tyrosine and
phenylalanine
metabolism

Disrupts endothelial function, induces
oxidative stress

Promotes vascular inflammation, increases
endothelial permeability

(86, 118)

Advanced glycation end
products (AGEs)

Protein-
bound

Glucose metabolism Cross-links proteins, induces oxidative
stress

Promotes inflammation, enhances
macrophage activation

(93, 95)

Phenylacetic acid Protein-
bound

Phenylalanine
metabolism

Disrupts cellular function, induces
oxidative stress

Increases macrophage activation, promotes
vascular inflammation

(119)

Kynurenic acid Protein-
bound

Tryptophan
metabolism

Modulates immune response, induces
oxidative stress

Enhances macrophage activation, promotes
vascular inflammation

(114, 115)

Urea Unbound Protein catabolism Inhibits cellular metabolism, induces
oxidative stress

Increases macrophage activation, promotes
vascular inflammation

(119)

Creatinine Unbound Muscle metabolism Impairs cellular energy metabolism,
induces oxidative stress

Contributes to macrophage and endothelial
dysfunction, promotes vascular
inflammation

(119)

Asymmetric
dimethylarginine
(ADMA)

Unbound Protein metabolism Inhibits nitric oxide synthesis, induces
oxidative stress

Promotes endothelial dysfunction,
enhances vascular inflammation

(119)

Trimethylamine-N-
oxide (TMAO)

Unbound Choline metabolism Disrupts lipid metabolism, induces
oxidative stress

Promotes atherosclerosis, promotes
macrophage activation and enhances
vascular inflammation

(103–105)

Uric acid Unbound Purine metabolism Induces oxidative stress, promotes crystal
formation

Enhances macrophage activation, promotes
vascular inflammation

(120)

Homocysteine Protein-
bound

Byproduct of
methionine
metabolism

Causes oxidative stress and endothelial
dysfunction

Induces macrophage activation and
promotes inflammatory responses

(121, 122)

Methyl guanidine Unbound Protein catabolism Causes oxidative stress and apoptosis Induces macrophage activation, leading to
increased pro-inflammatory cytokine
release

(123)

Hippuric acid Protein-
bound

dietary polyphenols Causes oxidative stress and endothelial
dysfunction

unknown (99)

Visfatin Protein secreted by visceral
adipose tissue

promotes vascular inflammation and
endothelial damage

Cholesterol accumulation in macrophages (109, 112)
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73). In THP-1 derived macrophages, indoxyl sulfate also

decreases the expression of ATP-binding cassette transporter

G1 (ABCG1), which is a cholesterol efflux transporter in

macrophages, and reduces cholesterol efflux (72). Indoxyl

sulfate induces proinflammatory cytokines in human

macrophages via the Dll4–Notch signaling pathway (14) and

aryl hydrocarbon receptor (AhR) (73), which contribute to

atheroma progression. The biology of indoxyl sulfate has thus

emerged as an important research topic.

2. Dialysis prolongs the survival of end stage renal disease

patients, but cannot completely remove uremic toxins (74).

Among gut-derived uremic toxins, indoxyl sulfate and p-

cresyl sulfate are largely protein bound in the blood

circulation (mostly to albumin) and thus poorly cleared by

diffusive dialysis procedures (35, 75).

3. Due to incomplete mechanistic understanding, no effective

therapies to reduce levels of indoxyl sulfate are available. In

preclinical animal models of CKD, the micro spherical

carbon adsorbent AST-120 reduced serum indoxyl sulfate

levels, monocyte activation (76), and atherogenesis (6). Small
Frontiers in Cardiovascular Medicine 06
clinical studies showed beneficial effects of AST-120 on

carotid intima-media thickness in pre-dialysis patient cohorts

(77, 78). Large clinical trials, including a few multicenter,

randomized, controlled phase III trials, however, showed no

benefits of AST-120 on cardiovascular events in CKD, which

may have resulted from the low magnitude of indoxyl sulfate

reduction in patients (<10%–20%) (79).

Thus, more mechanistic studies are needed to understand

mechanisms by which indoxyl sulfate affects macrophage

responses in CKD and to explore strategies to regulate

macrophage phenotype in the high indoxyl sulfate milieu.
Other uremic toxins involved in
inflammation in CKD

In addition to indoxyl sulfate, other molecules also participate

in pro-inflammatory processes linked to CKD. Evidence has linked

uremic toxins other than indoxyl sulfate with cardiovascular

morbidity and mortality in patients with CKD. Table 1 depicts
frontiersin.org
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comprehensive overview of various uremic toxins implicated in

macrophage activation and the resulting vascular inflammation,

particularly in the context of CKD.

(1) P-cresyl sulfate: Intestinal bacteria metabolize tyrosine and

phenylalanine to produce p-cresol, which is taken up and

sulfated by SULT1A1 to produce p-cresyl sulfate (pCS) (80,

81). pCS induce oxidative stress, renal fibrosis/inflammation,

and an EMT-like process through activation of the RAS

pathway (82). In hemodialysis patients, pCS have been

associated with an increase in carotid atherosclerotic plaque

and is implicated in vascular inflammation, vascular

calcification, and atherogenesis (83). pCS induce increased

production of ROS, increased expression of NADPH

oxidase, and increased expression of pro-inflammatory

factors MCP-1 and TNF-α in human endothelial cells and

aortic smooth muscle (84). pCS induces osteogenesis in

human arterial smooth muscle cells, leading to vascular

calcification through oxidative stress and specific signaling

pathways (85). pCS can activate macrophages by increasing

oxidative burst and phagocytosis. pCS also promote the

expression of inflammatory factors and adhesion molecules

in macrophages and cultured endothelial cells (86, 87).

(2) Indole acetic acid: There are toxins other than indoxyl sulfate

derived from the metabolism of tryptophan by the intestinal

microbiota with potential for accumulation and toxicity in

patients with CKD, such as indole acetic acid. Indole acetic

acid has been shown to be an important ligand for the

aromatic hydrocarbon receptor (AhR), a ligand-activated

transcription factor involved in the expression of enzymes that

metabolize xenobiotics, inflammatory cytokines and adhesion

molecules, all of which are mediators of inflammation in

cardiovascular diseases (88). Patients with advanced CKD had

higher levels of indole-3-acetic acid (IAA), which was

associated with a significant increase in mortality from

cardiovascular events. A previous study demonstrated that IAA

increased the expression of endothelial inflammatory genes

such as IL-6, IL-8, ICAM-1 and MCP-1 (89).

(3) Advanced glycation end products: Advanced glycation end

products (AGEs) refer to a diverse group of compounds

formed as a result of the non-enzymatic glycation of proteins,

lipids and nucleic acids through a complex chain of reactions

known as the Maillard reaction (90). Amongst these

compounds, N-carboxymethyl lysine, pentosidine and

hydroimidazolone are the most extensively studied AGEs and

are considered markers of AGE accumulation in tissues (91,

92). The accumulation of AGEs in patients with CKD is a

result of oxidative stress and inflammation and can come

from external sources such as diet and smoking (93, 94). The

kidneys are responsible for filtering and eliminating AGEs,

however, AGEs can also become accumulate in the kidneys

and cause vascular damage (95). The interaction between

AGEs and their receptors, such as product receptors end-to-

end glycation, initiate several events that lead to endothelial

dysfunction, arterial stiffness, dysregulation of the immune

system and progression of atherosclerosis (93).
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(4) Hippuric acid: Hippuric acid is a protein-bound uremic toxin

that is elevated in patients with CKD. Hippuric acid is converted

from dietary polyphenols by the gut microbiome into benzoic

acid, which is further converted to hippuric acid by glycine-N-

acyltransferase in the liver or kidneys (96). Some evidence

suggests that the acid hippuric acid contributes to the

progression of renal fibrosis and endothelial dysfunction by

inducing oxidative stress (35, 97). While specific studies

directly linking hippuric acid to macrophage activation are

limited, there are some insights into its broader

immunomodulatory effects. Hippuric acid has been shown to

interact with the GPR109A receptor, which is involved in

anti-inflammatory responses. This interaction can potentially

influence macrophage activity by promoting anti-inflammatory

pathways (98). As a product of gut microbiota metabolism,

hippuric acid may contribute to the overall immune

modulation by influencing the gut-immune axis. This can

indirectly affect macrophage activation and function (99).

(5) Trimethylamine N-oxide: Trimethylamine N-oxide (TMAO)

is a free water-soluble low molecular weight uremic

toxin derived from the intestine (100). Intestinal bacteria

produce trimethylamine (TMA) from dietary choline,

phosphatidylcholine, L-carnitine and betaine, which is

converted into TMAO in the liver by means of flavin-

containing monooxygenases (101, 102). TMAO accumulates in

the plasma of small cohort of patients with CKD and its

concentration correlates with coronary atherosclerosis (103).

TMAO has been shown to play a significant role in

macrophage activation, particularly in promoting pro-

inflammatory responses. TMAO has been found to induce M1

macrophage polarization, which is associated with pro-

inflammatory responses. This polarization is mediated through

the activation of the NLRP3 inflammasome (104). TMAO

enhances the production of pro-inflammatory cytokines such

as IL-1β, IL-6, and TNF-α. This is achieved through the

activation of the NF-κB pathway, which is a critical regulator

of inflammation (105). TMAO can disrupt cholesterol and bile

acid metabolism, leading to the formation of foam cells. This

process is linked to the upregulation of macrophage scavenger

receptors and impaired reverse cholesterol transport (106).

Elevated levels of TMAO have been associated with various

chronic diseases, including cardiovascular diseases and CKD.

The pro-inflammatory effects of TMAO on macrophages

contribute to the progression of these conditions (107).

(6) Visfatin: Also known as nicotinamide phosphoribosyl

transferase (NAMPT) or pre-B colony enhancing factor, is

an adipokine primarily, but not exclusively, secreted by

visceral adipose tissue. At 52 kDa, it is one of the largest

medium-sized molecules to be elevated in uremia (108).

Intracellularly, it is involved in the biosynthesis of

nicotinamide and adenine dinucleotide, but it is also

released extracellularly, where it appears to have a wide

range of effects, including stimulating angiogenesis and

endothelial cell proliferation. It also promotes vascular smooth

muscle cell growth, has anti-apoptotic effects on macrophages,

and promotes vascular inflammation and endothelial damage
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(109). High levels of visfatin expression have been found in

atherosclerotic plaques in human studies. In addition,

circulating levels of visfatin predict the presence of unstable

plaque (110). Visfatin plays a significant role in macrophage

activation, particularly in promoting inflammatory responses.

Visfatin induces the production of pro-inflammatory cytokines

such as IL-1, IL-6, TNF-α, and IL-8 in macrophages. This is

mediated through the activation of the NF-κB pathway (111).

Visfatin promotes cholesterol accumulation in macrophages by

upregulating scavenger receptors like SR-A and CD36. This

process contributes to the formation of foam cells, which are

crucial in the development of atherosclerosis (112). Visfatin

can induce the expression of chemokines such as CCL20,

which attract other immune cells to the site of inflammation,

thereby amplifying the immune response (111).

(7) Kynurenic acid: Kynurenic acid is a metabolite of the

kynurenine pathway, plays a significant role in both vascular

inflammation and macrophage activation. In cultured Bone

marrow-derived macrophages, kynurenic acid suppresses the

activation of the NLRP3 inflammasome in macrophages,

which reduces the production of pro-inflammatory cytokines

such as IL-1β (113). This anti-inflammatory action helps

mitigate vascular inflammation. Kynurenic acid acts as a

ligand for the AhR, a receptor involved in regulating immune

responses. AhR activation by kynurenic acid leads to anti-

inflammatory effects, which are beneficial in reducing vascular

inflammation (114). Kynurenic acid influences various

immune pathways, including NF-κB, which is crucial for the

regulation of inflammation and immune responses in

macrophages (115). By modulating inflammatory responses,

kynurenic acid contributes to the protection against

cardiovascular diseases (115).
Future perspectives

The role of uremic toxins in macrophage activation and vascular

inflammation provides critical insight into CKD management. Since

CVD is a leading cause of morbidity and mortality in CKD patients,

understanding the cellular mechanisms underlying vascular

inflammation is essential for developing targeted therapies.

Therapeutic strategies aimed at reducing uremic toxin levels, such

as the use of intestinal adsorbents or gut microbiota modulators

(e.g., probiotics), may help mitigate macrophage-driven vascular

inflammation. Probiotics have gained significant attention as a

natural biotreatment due to their health-promoting effects and

potential to combat diseases like CKD (116). The intestinal

microbiota has emerged as a key contributor to CKD progression

and complications, highlighting the importance of selecting

probiotic strains based on specific functional biomarkers. Over the

past decade, interest in probiotics for CKD has surged, fueled by

their potential to reduce uremic toxin production and enhance

renal function, as evidenced by in vitro, animal, and human

studies (117). However, high-quality clinical trials assessing their

therapeutic efficacy in CKD remain limited. Additionally, targeting
Frontiers in Cardiovascular Medicine 08
macrophage activation and polarization, perhaps by modulating

upstream regulators of specific signaling mechanisms such as NF-

κB or NLRP3, could offer new avenues for reducing vascular

complications in CKD. Antioxidants or drugs that reduce ROS

generation could also serve as potential treatments by attenuating

oxidative stress-induced inflammation.

In conclusion, targeting themacrophage-uremic toxin link inCKD

presents a promising strategy for mitigating cardiovascular risks in

these patients. Future clinical approaches should prioritize both

reducing toxin levels and directly modulating immune responses to

curb vascular inflammation. This dual-focus strategy not only

emphasizes the significance of managing uremic toxins but also

highlights the necessity of personalized interventions to better

protect CKD patients from cardiovascular complications.
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