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The development of venous thromboembolism (VTE) may complicate not only
the management of the primary disease but also significantly affect the overall
quality of life and prognosis for the patient. With the increasing understanding
of the incidence and risks associated with VTE, there is an imminent need for
better management strategies, coupled with a wider knowledge base. In
recent years, Ten-Eleven Transformation 2 (TET2) has become a subject of
interest among medical scientists because of its function as DNA
demethylase for the treatment of a number of hematologic and oncologic
disorders. The current literature concerning the association of VTE with
mutations in the TET2 gene is rather diverse in terms of outcomes and,
therefore, not completely coherent. While some papers propose that TET2
has an antithrombotic effect, others point to a prothrombotic effect or a
more subtle effect of TET2 on the development of thromboembolism. These
different views must then be integrated in order to create the aetiologic
narrative of TET2 in VTE that provides a framework for understanding the
epidemiologic and clinical realities. However, there is no review on the
mechanism and clinical significance of TET2 in venous thromboembolism. In
this review article, the authors strived to investigate Ten-Eleven
Transformation 2 (TET2) connected with venous thromboembolism (VTE),
analyze its molecular mechanism features and draw clinical conclusions. It is
the purpose of this work to perform a comprehensive review of the TET2
function, to elucidate its involvement in VTE development, and to discuss
possible treatments based on targeting TET2. It is our understanding that the
review of the current literature will offer fresh insight and research agendas
for the future endeavours and practice of the significant medical speciality.
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1 Introduction

Venous thromboembolism (VTE) is a major clinical challenge,
particularly among hospitalized patients with malignancy as
comorbidity. VTE encompasses deep vein thrombosis (DVT)
and pulmonary embolism (PE), both serious health sequelae and
potentially life-threatening conditions. VTE occurs across an
incredibly broad patient population, but the incidence is
strikingly elevated in cancer patients because of factors such as
tumour burden, surgical procedures, chemotherapy, and many
others that greatly elevate the risk of VTE (1). However, the
development of VTE may complicate not only the management
of the primary disease but also significantly affect the overall
With the
increasing understanding of the incidence and risks associated

quality of life and prognosis for the patient (2).

with VTE, there is an imminent need for better management
strategies, coupled with a wider knowledge base. The TET2
gene, a member of the Ten-Eleven Translocation (TET) family,
is highly associated with controlling the DNA methylation
process and has been identified as an important factor in a
range of haematological malignancies. TET2 catalyzes the
conversion of 5-methylcytosine into 5-hydroxymethylcytosine,
which is an important epigenetic modification that influences
differentiation (3). Indeed,
mutations of the TET2 gene frequently occur in myeloid

gene expression and cellular
malignancies, including acute myeloid leukemia (AML) and
chronic myeloid leukemia (CMML), among others, and are
associated with a worse prognosis (4). However, the exact
function of TET2 in hematopoietic processes and, therefore,
thromboembolism (VTE),

especially in malignancies, remains an active area of research. Its

possible involvement in venous
determination is of critical importance because of the complex
interrelation between genetic risk factors such as those involving
the mutation of the TET2 gene and pathophysiological
mechanisms of VTE. Such a detailing of the mechanisms of
TET2 dysregulation leading to thrombotic events during the
course of the research may unravel new avenues for therapy and
better risk stratification of patients prone to VTE. This review
outlines the relationship between TET2 and VTE and deepens

the understanding of this important link in biology.

2.1 Biological functions of TET2

2.1.1 Structure and mechanism of TET2
The TET2 gene is a tumour suppressor located on
chromosome 4q24 and is a member of the TET enzyme family

Abbreviations

TET2, Ten-Eleven Transformation 2; VTE, venous thromboembolism; DVT,
deep vein thrombosis; PE, pulmonary embolism; AML, acute myeloid
leukemia;  CMML,  chronic  myeloid  leukemia;  5-hmC,  5-
hydroxymethylcytosine; aKG dependent, a- ketoglutarate dependent; HSPCs,
hematopoietic progenitor cells and stem cells; 5mC, 5-methylcytosine; CSE,
cystathionine gamma-lyase; EndMT, endothelial mesenchymal transition;
VSMCs, vascular smooth muscle cells; MIF, migration inhibitory factor; RA,
retinoic acid.
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(5). The TET2 gene consists of 11 exons and plays an essential
DNA methylation
hydroxymethylation. Structurally, TET2 contains a conserved

role in the regulation of and
C-terminal structural domain, which is also its functional
domain. Moreover, the cysteine-rich domain and the double-
stranded f-helix folding domain confer its dioxygenase
activity, which is essential for catalyzing the conversion of
5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) and
This
process is vital for active DNA demethylation, a mechanism

further to 5-formylcytosine and 5-carboxylcytosine.

that influences gene expression and cellular identity during
development and in response to environmental cues (6). TET2
is a Fe**- and a- ketoglutarate dependent (aKG dependent)
CpG demethylation of
promoters and enhancers in hematopoietic progenitor cells
and stem cells (HSPCs) (Figure 1A). Therefore, TET controls
HSPC amplification and differentiation by altering gene

DNA dioxygenase that mediates

expression patterns (7). The enzymatic activity of TET2 is
regulated by various post-translational modifications, such as
phosphorylation and ubiquitination, which modulate its
stability and function (8). Importantly, TET2’s role is not
(5mCQC) to

and promoting DNA

limited to  oxidizing  5-methylcytosine
(5hmC)

demethylation at the DNA level; it is also involved in the

5-hydroxymethylcytosine

recruitment of transcriptional co-factors and chromatin
remodelers, thereby influencing chromatin architecture and
gene expression patterns (9). At the post-transcriptional level,
TET2 can also catalyze RNA 5hmC modification, leading to
instability and eventual degradation of the target RNA (10).
Further research should be conducted on the structural and
mechanistic basis of TET2 function to elucidate its broader
health

haematological malignancies

implications  in and disease, particularly in
where TET2 mutations are

prevalent (11).

2.1.2 Role of TET2 in DNA demethylation

TET2 plays a pivotal role in the active demethylation of
DNA, which is involved in cellular reprogramming and
The
5-methylcytosine to

differentiation. enzyme catalyzes the conversion of

5-hydroxymethylcytosine, which can

subsequently be oxidized to 5-formylcytosine and
5-carboxylcytosine, leading to the removal of methyl groups
through base excision repair mechanisms (Figure 1B) (12).
This activity is particularly important during embryonic
development and in the maintenance of pluripotency in stem
cells, requiring precise regulation of DNA methylation patterns
(13). Moreover, TET2-mediated demethylation has been shown
to influence gene expression in various contexts, including the
regulation of oncogenes and tumour suppressor genes in
(14). Additionally, TET2’s

modulation of DNA methylation patterns has implications for

cancer involvement in the
metabolic processes, as seen in studies linking TET2 activity to
glucose metabolism and insulin signaling (15). Therefore,
TET2 assumes multiple functions in DNA demethylation,
impacting not also  broader

only gene regulation but

physiological processes.
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FIGURE 1
Structure and biological functions of TET2. (A) The structure of TET2 protein includes CXXC4 domain, cysteine (Cys)-rich domain, and a double-
stranded B-helix fold (DSBH), which is characteristic of three Fe?* binding and one a-Ketoglutarate (a-KG) binding. (B) TET2 plays a pivotal role in
DNA demethylation. DNA methyltransferases (DNMT) convert cytosine (C) to form 5-methylcytosine (5mC), then TET2 and thymine DNA
glycosylase (TDG) convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5cac). (C) TET2 plays a
central role in regulating cell proliferation, cell cycle, and cell apoptosis

2.1.3 Relationship between TET2 and cell

proliferation and apoptosis
The TET2 gene often undergoes mutations in malignant

tumours and solid cancers of the hematopoietic system and is
of the
hematopoiesis in the general population (16). The influence of

one most common mutated genes in clonal

TET2 on cell proliferation and apoptosis is a critical aspect of
its biological function, particularly in the context of cancer
(Figure 1C).
tumour-suppressive effects by regulating cell cycle progression

A previous study revealed that TET2 exerts

and promoting apoptosis in various cancer types, including
leukaemia and solid tumours (14). For instance, restoration of
TET2 function in TET2-deficient cancer cells is associated
with reduced tumour growth and enhanced sensitivity to
17). TET2
modulates the expression of genes involved in apoptosis and

chemotherapeutic  agents Mechanistically,
cell cycle regulation, such as those related to the p53 pathway
and other apoptotic signalling cascades (18). Additionally,
TET2 plays a central role in maintaining genomic stability
and preventing clonal expansion of hematopoietic stem cells,
which further underscores its importance in regulating cell
proliferation and apoptosis (19). The interplay between TET2,
cell proliferation, and apoptosis highlights its potential as a

therapeutic target in cancer treatment, where modulation of
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TET2 activity could enhance the efficacy of existing therapies
and improve patient outcomes.

2.2 The role of TET2 in venous thrombosis
formation

2.2.1 The association between TET2 and platelet
function

TET2 (Ten-Eleven Translocation 2) plays an essential role in
regulating platelet function, which is involved in venous
thrombosis (Figure 2). Research has shown that the absence of
TET2 can lead to decreased platelet function, which in turn
impairs platelet activation and aggregation (10). These findings
highlight its importance in maintaining normal hemostatic
function. Specifically, TET2 deficiency in mice resulted in
altered platelet responses to agonists, suggesting that TET2 is
essential for optimal platelet function. Hence, TET2 deficiency
may contribute to thrombotic risk. Furthermore, TET2 is
involved in the epigenetic regulation of genes associated with
platelet activation, underscoring its role in thrombogenesis. Aref
et al. observed that platelet counts in TET2 mutant patients
were higher than those in non-mutant patients (20).In contrast,
Panuzzo et al. (2020) and Wang et al. (2019) observed that
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The role of TET2 in venous thromboembolism (VTE). TET2 plays an essential role in regulating platelet function (@), endothelial cell function (@)
vascular smooth muscle cells (VSMCs) differentiation (®), coagulation factor expression (@), and inflammatory response (®)

platelet counts in TET2 mutant patients were lower than those in
non-mutant patients (21, 22). Veninga et al. (2020) explained
higher platelet count in TET2 mutated patients as the TET gene
product represses the transcription of inflammatory molecules,
such as interleukin-6 and -8, which are known as pro-
mediators (23). So,
in TET2 are associated with an increased
inflammation tendency that subsequently up-regulates the
thrombopoietin production by the liver resulting in higher
platelet count. This regulatory function suggests that TET2

mutations or dysregulation could predispose individuals to
thrombotic

atherogenic

somatic loss-of-function

mutations

events, particularly in conditions such as

myeloproliferative neoplasms, where thrombosis risk is notably

Frontiers in Cardiovascular Medicine 04

elevated (24). Clinical data shows that CMML patients with
TET2 mutations have lower platelet levels compared to wild-
type TET2 patients (25, 26). In addition, previous studies using
a genetically engineered TET2 deletion mouse model have found
that the absence of TET2 results in a decreased proportion of
megakaryocyte-erythroid progenitor cells and hyperploid
megakaryocytes (10). This may be the mechanism by which
TET?2 affects platelet numbers and function.

2.2.2 The role of TET2 in endothelial cells

TET2 also plays a pivotal role in endothelial cell function,
influencing angiogenesis and vascular homeostasis (Figure 2).
Research indicates that loss of TET2 impairs endothelial cell
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angiogenesis by downregulating key target genes associated with
the STAT3 signalling pathway, which participates in endothelial
cell proliferation and survival (27). Another study revealed that
TET2 overexpression increases CSE expression by promoting
CSE
promoter, thereby upregulating the CSE/H2S system to protect
endothelial function (28). Additionally, TET2 has
implicated in the endothelial mesenchymal transition (EndMT),

demethylation of the (cystathionine gamma-lyase)

been

a process that can contribute to vascular remodelling and
thrombosis. Moreover, low shear stress conditions have been
shown to downregulate TET2, thereby promoting endothelial-
mesenchymal transition (EndMT) or inducing pyroptosis in
endothelial cells, which may further exacerbate the risk of
thrombosis (29, 30). This indicates that TET2 not only
maintains endothelial integrity but may also represent a novel
therapeutic target for endothelial dysfunction-related vascular
diseases. Given the crucial role of endothelial function in the
process of thrombosis, we speculate that TET2 may influence
thrombus formation by modulating endothelial function.

2.2.3 The role of TET2 in smooth muscle cells

In vascular smooth muscle cells (VSMCs), TET2 has been
identified as a key epigenetic regulatory factor for VSMC
differentiation and phenotype transition to pro-proliferative
and migratory phenotypes (31, 32). TET2 regulates cellular
plasticity and differentiation, which are vital for maintaining
vascular homeostasis. High levels of TET2 are associated with
mature and  differentiated SMC  phenotypes,  while
dedifferentiated SMCs show a significant loss of TET2 (33). in
vitro, experiments have confirmed that overexpression of TET2
increases the level of 5hmC by catalyzing demethylation of
5mC, leading to high expression of the pro-contractile gene
MYOCD,
preventing VSMCs from dedifferentiation and vascular
remodeling (Figure 2) (33, 34). In addition, Allison C. Ostriker
et al. reported that overexpression of TET2 inhibited IFEN y-
induced dedifferentiation of VSMCs. TET2 can inhibit
apoptosis and abnormal proliferation of VSMCs induced by

maintaining the contractile phenotype, and

IFN y and TNF—a signalling pathways, thereby preventing
intimal thickening (35). These conditions can predispose to
vascular complications, including thrombosis (36). Moreover,
the knockdown of TET2 in VSMC leads to changes in DNA
methylation and results in epigenetic modifications of histones,
regulate DNA
accessibility with other chromatin-modifying enzymes (32).

indicating that TET2 may synergistically

Furthermore, TET2 modulates the epigenetic landscape of
VSMCs, influencing their response to various stimuli and their
ability to adapt to changes in the vascular environment. For
instance, studies have shown that TET2 is involved in the
differentiation of VSMCs
underscoring its role in vascular development and repair (37).

from pluripotent stem cells,
Thus, the TET2 gene plays an integral role in the proliferation
of vascular endothelial cells, ensuring that growth remains
within normal limits. This regulatory mechanism is important
in maintaining the structural integrity of the vasculature, which

is crucial in the prevention of thrombus formation.
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2.2.4 The interaction of TET2 with coagulation
factors

The TET2 gene serves as a critical regulator in venous
thrombosis by modulating the interaction of coagulation factors.
that TET2 epigenetically
regulates the expression of both procoagulant and anticoagulant

Accumulating evidence indicates
factors, thereby maintaining the dynamic balance of the
coagulation cascade. Experimental studies have demonstrated
that loss of TET2 function leads to aberrant platelet activation
and enhanced thrombin generation, ultimately increasing
thrombotic risk (38). Furthermore, TET2 plays a pivotal role in
preserving the

coagulation-anticoagulation equilibrium by

modulating the expression of coagulation-related genes.
Dysfunction of TET2 can induce a hypercoagulable state, which
is particularly prominent in patients with myeloproliferative
neoplasms (MPNs), where TET2 mutations are frequently
observed. Clinical studies have confirmed that these patients
exhibit a higher incidence of thrombotic and thromboembolic
events, further underscoring the essential role of TET2 in

coagulation regulation (39, 40).

2.2.5 TET2 and inflammatory response

It is well established that inflammatory responses play a
pivotal role in thrombogenesis. Current evidence suggests that
TET?2 plays a role in regulating inflammation through epigenetic
mechanisms (41, 42). Experimental studies by Fuster et al.
demonstrated that TET2 deficiency in macrophages enhances
NLRP3 (NOD-like receptor protein 3, LRR-, and pyrin domain-
containing protein 3) inflammasome-mediated interleukin-1§
(IL-1B) secretion (43). Clinical investigations further revealed
of the cytokine
interleukin-8 (IL-8) in human subjects carrying TET2 mutations

elevated plasma levels proinflammatory

(44). These findings collectively suggest that TET2 may function

as a negative transcriptional regulator of inflammatory

responses. Moreover, somatic TET2 mutations have been shown
to promote macrophage inflammatory polarization through
clonal hematopoiesis, leading to increased secretion of
proinflammatory mediators, including interleukin-6 (IL-6) (43,
TET2

activation of inflammatory genes, such as IL-6, in dendritic cells

45).  Epigenetically, suppresses the transcriptional
and macrophages through histone deacetylation (46). Taken
together, we hypothesize that TET2 deficiency may disrupt
inflammatory homeostasis, resulting in hyperinflammatory states

that ultimately elevate the risk of thrombosis.

2.2.6 TET2 and neutrophil extracellular traps

In experimental models of deep vein thrombosis, neutrophil
extracellular traps (NETs) have been firmly established as crucial
mediators in the initial stages of thrombus formation (47). By
creating a chromatin-based scaffold, NETs provide a structural
foundation that enhances platelet adhesion (48). Given their
pivotal role, NETs may offer new targets for the development of
DVT drugs (49). The architecture of NETs is the primary
feature disrupted by TET2 mutations. Neutrophils with TET2
mutations produce smaller and more compact NETs, and the
these mutated cells exhibits decreased

chromatin from
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endonuclease accessibility (50). Moreover, NETs produced by
TET2-mutated neutrophils are more resistant to degradation by
circulating nucleases, suggesting that they may persist longer
and drive inflammation. Therefore, TET2 mutations can
influence thrombus formation by affecting the structure and

function of NETs.

2.3 TET2 gene mutations and VTE risk

2.3.1 Epidemiological studies of TET2 mutations
Currently, a growing number of epidemiological studies are
being conducted on the association of mutations in the TET2
gene with the risk of VTE. The TET2 gene is implicated in
epigenetic regulation-DNA methylation-which is a crucial
process in both hematopoiesis and immune function. Recent
studies identified TET2 mutations as one of the highly prevalent
among various hematological malignancies and clonal
hematopoiesis of indeterminate potential (CHIP) (51). These are
a series of mutation types, the most common being amino acid
substitution, frameshift mutation, nonframeshift deletions, and
the creation of premature termination codons. All of these
mutations interfere with gene function leading to disease. In a
cohort study of older adults, it was found that TET2 mutation
was significantly associated with VTE risk (52). The TET2 gene
mutations have also emerged as a significant contributor to
thrombosis in myeloproliferative neoplasms-a hematologic
malignancy (40). Additionally, TET2 gene mutation may
independently predict thrombosis in patients with polycythemia
vera (53, 54). TET2 gene

cardiovascular events; to date, this has been associated with

mutations confer enhanced
VTE, especially in clonal hematopoiesis amongst elderly subjects
(55). Further study has recorded that TET2 mutations can give
rise to an inflammatory predisposition for thrombosis (56). This
finding identifies a genetic predisposition that may mandate
testing of populations with a high risk of developing VTE.
Identification of TET2 mutations will enable clinicians to better
assess individual risk and implement tailored prevention in a
bid to reduce the incidence of VTE.

2.3.2 Impact of mutations on VTE pathogenesis
Mutations in TET2 cause the TET2 enzyme to lose its
function, which in turn results in changes to DNA methylation
patterns (57). This mutation is expressed in an increased linking
of LFA and platelet activation and production of thrombin,
leading to an increased incidence of VTE (58). Here, we found
that TET2 affects coagulation function. The analysis of a cohort
of patients made by Wang Z et al. reported that TET2 mutation
patients had significantly elevated D-dimer, significantly
decreased AT-III, and increased levels of FDP as compared to
normal. This may explain why TET2 mutations are a risk factor
for thrombosis in ET patients (38). In addition, TET2 gene
mutation was observed to elevate macrophage migration
(MIF)

promotes coagulation activation (59). This study raises the

inhibitory factor that enhances inflammation and

possibility that the genetic changes involved in inflammation
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may be related to the enhanced susceptibility to VTE for
patients with mutated TET2 genes. They could also be a part of
the process of thrombosis in a number of clinical settings such
as those related to cancer (60).

2.3.3 Interaction between TET2 and other genetic
factors

Notably, the current study underscores the need for
understanding the association of TET2 mutations with other
genetic factors in an effort to predict recurrent VTE risk
appropriately. Research has indicated the possibility that TET2
mutations are compatible with other mutations for example the
FLT3 and JAK2 gene mutations. It is already understood that
FLT3 is linked with leukaemia and thrombosis (61), whereas
JAK2 mutations act as significant risk drivers for further disease
and new VTE events (62). On the other hand, the outcome of
TET2 gene mutations on the risk of VTE can be skewed by
lifestyle and other environmental factors indicating a
reciprocalrogenesis  relationship ~ between  genotype and
exogenous factors (63). Both the JAK2V617F and MPL190A
mutations appear to enhance the risk of thrombotic events and
the simultaneous presence of both mutations may also enhance
the risk; however, the JAK2V619F mutation has not been
risk of VTE in

haematopoietic individuals, thereby mandating the need to

associated with an increased clonal
systematically assess VTE risk in clonal haematopoietic patients.
The knowledge of these interactions might contribute toward
the design of patient patient-tailored therapeutic approach to
enhance the outcome in TET2-related RARS patient groups at

risk of VTE.

2.4 The potential of TET2 as a therapeutic
target

2.4.1 Existing therapeutic strategies targeting
TET2

TET2 is a key member of the ten-eleven translocation (TET)
enzyme family and plays a critical role in DNA demethylation.
Its involvement in several hematological malignancies,
particularly acute myeloid leukemia (AML), is well documented
(64). Current therapeutic strategies for TET2-associated diseases
are aimed at restoring its normal function or mitigating factors
that reduce its activity. Retinoic acid (RA) and vitamin
C activate TET2 transcription, enhancing 5hmC production in
immature embryonic stem cells (65, 66). This TET2 activation
improves cancer immunotherapy efficacy against renal cell
carcinoma, regulates hematopoietic stem cell frequency, and
reduces leukaemia occurrence (67, 68). Ascorbic acid and other
TET2 modulators play important roles in the treatment of
TET2-related diseases, such as inflammatory conditions and
malignancies (69, 70). Overall, the development of targeted
therapies aimed at TET2 offers hope for improving treatment
outcomes in patients with TET2-related malignancies. Therefore,
we speculate that targeted TET2 therapy could also be applied

to the prevention and treatment of venous thrombosis.
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2.4.2 Prospects for novel drug development

The potential for novel drug development targeting TET?2 is
expanding, particularly in the context of its role in cancer and
immune response modulation. Recent research has highlighted
of TET2 in

microenvironment and

the importance regulating the tumour
immune evasion mechanisms. For
example, TET2 deficiency in immune cells has been shown to
exacerbate tumour progression by increasing angiogenesis in
lung cancer models (71). This relationship underscores the
potential for developing drugs that not only target TET2 directly
but also enhance its function within immune cells to improve
anti-tumour immunity. Additionally, TET2 has been identified
as a key player in the resistance mechanisms of various cancers,
such as non-small cell lung cancer, suggesting that drugs aimed
at restoring TET2 function could be effective in overcoming
therapeutic resistance (70). Drug repositioning strategies, where
existing medications are tested for efficacy against TET2-related
pathways, may also yield promising results, as evidenced by the
ongoing investigations into the effects of glucocorticoids on
TET2 activity (69). As research progresses, the development of
TET2-targeted therapies

treatment paradigms.

could significantly impact cancer

2.4.3 The relationship between TET2 and
personalized therapy

The relationship between TET2 and personalized therapy is
becoming increasingly significant, particularly with the
increasing application of genomic profiling of tumours. TET2
mutations and alterations in its expression levels are being
recognized as critical factors in determining patient prognosis
and treatment response. For instance, in AML, TET2 mutations
have been linked to specific therapeutic responses, indicating
that patients with these mutations may benefit from tailored
treatment approaches (72). Furthermore, the integration of
TET2

stratification of patients,

status into predictive models can enhance the
thereby facilitating individualized
treatment plans that consider the unique genetic landscape of
each tumour (73). With the evolution of personalized medicine,
the role of TET2 as a biomarker for therapy selection is likely to
expand, offering new avenues for optimizing treatment efficacy
and minimizing adverse effects. The ongoing research into
TET2’s role in immune modulation and drug resistance further
emphasizes its potential as a target for personalized therapeutic
strategies, ultimately aiming to improve outcomes for patients

with TET2-related malignancies.

2.5 Future research directions

2.5.1 Research gaps between TET2 and VTE

TET2, a member of the ten-eleven translocation (TET) family
of enzymes, is essential for DNA demethylation and has been
linked to various blood cancers. However, research has not
established the definite part played by TET2 in the development
of VTE. This then may have revealed that mutations in the
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TET2 gene contribute to blood cell formation problems with an
increased risk of thrombosis. However, strong studies which
established direct relationships between TET2 abnormality and
VTE outcomes cannot be demonstrated. In subsequent studies,
more attention should be paid to understanding how TET2 gene
mutations can raise the risk of thrombosis: the changes in the
regulative or mediatory functions of coagulation and
inflammatory processes. Furthermore, the study of TET2 gene
mutation frequency in VTE patients, and the ability of
mutations to predict thrombosis is necessary. Closing these gaps
will enhance risk prediction hence enhancing the opportunity
for designing better tailored approaches to the treatment of

patients at risk for VTE (74).

2.5.2 Application of multi-omics approaches in
TET2 research

The advances in genomics, transcriptomics, proteomics, and
metabolomics present a new opportunity to study the biological
aspects of TET2 with haematological disorders, especially VTE.
These integrated strategies provide the researchers with the
opportunity to study the molecular interfaces that are involved
in following TET2 mutations and the effects on cellular
signalling and metabolism. That is, transcriptomics may provide
information about changes in gene expression consequent to
TET2 loss-of-function mutations, while proteomics may define
alterations in the protein interactions responsible for the
MD
metabolomics dysregulation that increases VTE risk. Together

prethrombotic condition. Furthermore, could reveal
with the currently available resources, these datasets allow for
the understanding of molecular mechanisms of the effect of
TET2 mutations on the risk of thrombosis and open the
prospect of the discovery of new targets and biomarkers for

VTE (75).

2.5.3 Recommendations for clinical trial design

However, conducting clinical trials for TET2 gene mutations
in VTE is full of opportunities as well as challenges. In future
trials, more emphasis should be given to genetically structured
cohorts in order to evaluate the contribution of TET2 mutations
to the risk and outcome of VTE. Multi-centre trials are
particularly desirable when large numbers of patients from
different settings and the full range of severities of the condition
are likely to be enrolled in the trial, so increasing the
generalisability of its findings. Finally, the design of biomarker-
oriented endpoints, including the evaluation of TET2 mutation
and other related molecular markers, will add significant
information for predicting treatment efficacy and patient
categorization. Moreover, using adaptive trial designs that enable
interim changes according to results will enable the exploration
of therapeutic prospects for manipulating the pathways impacted
by TET2 mutations. Close cooperation between haematologists,
geneticists and clinicians will be essential to improving trial
parameters in an effort to ensure the answers to the key clinical
inquiries regarding TET2 and VTE are appropriately posed by
current and future trials (76).
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3 Conclusion

In conclusion, the important role of TET2 in venous
(VTE)
haematological and vascular biology research. New information

thromboembolism marks it as a key focus of
indicates that TET2 mutation and its alterations play a role in
the pathogenesis of VTE mainly through epigenetic and
inflammatory signaling pathways. This underlines the necessity
for more detailed research on the molecular effect of TET2 on
thrombosis and its interactions with genetic and environmental
factors. The current literature concerning the association of VTE
with somatic mutations in the TET2 gene is rather diverse in
terms of outcomes and, therefore, not completely coherent.
While some papers propose that TET2 has an antithrombotic
effect, others point to a prothrombotic effect or a more subtle
effect of TET2 on the development of thromboembolism. These
different views must then be integrated in order to create the
aetiologic narrative of TET2 in VTE that provides a framework
for understanding the epidemiologic and clinical realities.
Subsequent research should seek to integrate these various
sources of information, possibly through very large-scale
genomic assessments and extensive mechanisms employed to
identify the TET2 function in the vessels. Secondly, there are
interesting clinical considerations with regard to TET2 studies.
The search for a detailed understanding of the TET2 mechanism
of action provides a chance for target therapy. However, this
chance faces several specific difficulties such as the absence of
deep insights into the time and circumstances of TET2
Further,
interventions focusing on TET2 in preclinical studies and

regulation. understanding the successful rate of
clinical research is essential for applying said findings clinically.
In conclusion, as the current practice of studying the role of
TET2 in VTE is enhanced, some questions remain unanswered.
Consequently, it is required that further investigations and other
subsequent research aim to define the biological significance of
TET2 and to define its therapeutic functionality. Understanding
TET2 in this manner and reconciling the results from the
present study with the findings of other groups, will allow for
improved approaches to the primary and secondary prevention

of VTE.
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