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The development of venous thromboembolism (VTE) may complicate not only 

the management of the primary disease but also significantly affect the overall 

quality of life and prognosis for the patient. With the increasing understanding 

of the incidence and risks associated with VTE, there is an imminent need for 

better management strategies, coupled with a wider knowledge base. In 

recent years, Ten-Eleven Transformation 2 (TET2) has become a subject of 

interest among medical scientists because of its function as DNA 

demethylase for the treatment of a number of hematologic and oncologic 

disorders. The current literature concerning the association of VTE with 

mutations in the TET2 gene is rather diverse in terms of outcomes and, 

therefore, not completely coherent. While some papers propose that TET2 

has an antithrombotic effect, others point to a prothrombotic effect or a 

more subtle effect of TET2 on the development of thromboembolism. These 

different views must then be integrated in order to create the aetiologic 

narrative of TET2 in VTE that provides a framework for understanding the 

epidemiologic and clinical realities. However, there is no review on the 

mechanism and clinical significance of TET2 in venous thromboembolism. In 

this review article, the authors strived to investigate Ten-Eleven 

Transformation 2 (TET2) connected with venous thromboembolism (VTE), 

analyze its molecular mechanism features and draw clinical conclusions. It is 

the purpose of this work to perform a comprehensive review of the TET2 

function, to elucidate its involvement in VTE development, and to discuss 

possible treatments based on targeting TET2. It is our understanding that the 

review of the current literature will offer fresh insight and research agendas 

for the future endeavours and practice of the significant medical speciality.
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1 Introduction

Venous thromboembolism (VTE) is a major clinical challenge, 

particularly among hospitalized patients with malignancy as 

comorbidity. VTE encompasses deep vein thrombosis (DVT) 

and pulmonary embolism (PE), both serious health sequelae and 

potentially life-threatening conditions. VTE occurs across an 

incredibly broad patient population, but the incidence is 

strikingly elevated in cancer patients because of factors such as 

tumour burden, surgical procedures, chemotherapy, and many 

others that greatly elevate the risk of VTE (1). However, the 

development of VTE may complicate not only the management 

of the primary disease but also significantly affect the overall 

quality of life and prognosis for the patient (2). With the 

increasing understanding of the incidence and risks associated 

with VTE, there is an imminent need for better management 

strategies, coupled with a wider knowledge base. The TET2 

gene, a member of the Ten-Eleven Translocation (TET) family, 

is highly associated with controlling the DNA methylation 

process and has been identified as an important factor in a 

range of haematological malignancies. TET2 catalyzes the 

conversion of 5-methylcytosine into 5-hydroxymethylcytosine, 

which is an important epigenetic modification that in.uences 

gene expression and cellular differentiation (3). Indeed, 

mutations of the TET2 gene frequently occur in myeloid 

malignancies, including acute myeloid leukemia (AML) and 

chronic myeloid leukemia (CMML), among others, and are 

associated with a worse prognosis (4). However, the exact 

function of TET2 in hematopoietic processes and, therefore, 

possible involvement in venous thromboembolism (VTE), 

especially in malignancies, remains an active area of research. Its 

determination is of critical importance because of the complex 

interrelation between genetic risk factors such as those involving 

the mutation of the TET2 gene and pathophysiological 

mechanisms of VTE. Such a detailing of the mechanisms of 

TET2 dysregulation leading to thrombotic events during the 

course of the research may unravel new avenues for therapy and 

better risk stratification of patients prone to VTE. This review 

outlines the relationship between TET2 and VTE and deepens 

the understanding of this important link in biology.

2.1 Biological functions of TET2

2.1.1 Structure and mechanism of TET2
The TET2 gene is a tumour suppressor located on 

chromosome 4q24 and is a member of the TET enzyme family 

(5). The TET2 gene consists of 11 exons and plays an essential 

role in the regulation of DNA methylation and 

hydroxymethylation. Structurally, TET2 contains a conserved 

C-terminal structural domain, which is also its functional 

domain. Moreover, the cysteine-rich domain and the double- 

stranded β-helix folding domain confer its dioxygenase 

activity, which is essential for catalyzing the conversion of 

5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) and 

further to 5-formylcytosine and 5-carboxylcytosine. This 

process is vital for active DNA demethylation, a mechanism 

that in.uences gene expression and cellular identity during 

development and in response to environmental cues (6). TET2 

is a Fe2+- and α- ketoglutarate dependent (αKG dependent) 

DNA dioxygenase that mediates CpG demethylation of 

promoters and enhancers in hematopoietic progenitor cells 

and stem cells (HSPCs) (Figure 1A). Therefore, TET controls 

HSPC amplification and differentiation by altering gene 

expression patterns (7). The enzymatic activity of TET2 is 

regulated by various post-translational modifications, such as 

phosphorylation and ubiquitination, which modulate its 

stability and function (8). Importantly, TET2’s role is not 

limited to oxidizing 5-methylcytosine (5mC) to 

5-hydroxymethylcytosine (5hmC) and promoting DNA 

demethylation at the DNA level; it is also involved in the 

recruitment of transcriptional co-factors and chromatin 

remodelers, thereby in.uencing chromatin architecture and 

gene expression patterns (9). At the post-transcriptional level, 

TET2 can also catalyze RNA 5hmC modification, leading to 

instability and eventual degradation of the target RNA (10). 

Further research should be conducted on the structural and 

mechanistic basis of TET2 function to elucidate its broader 

implications in health and disease, particularly in 

haematological malignancies where TET2 mutations are 

prevalent (11).

2.1.2 Role of TET2 in DNA demethylation
TET2 plays a pivotal role in the active demethylation of 

DNA, which is involved in cellular reprogramming and 

differentiation. The enzyme catalyzes the conversion of 

5-methylcytosine to 5-hydroxymethylcytosine, which can 

subsequently be oxidized to 5-formylcytosine and 

5-carboxylcytosine, leading to the removal of methyl groups 

through base excision repair mechanisms (Figure 1B) (12). 

This activity is particularly important during embryonic 

development and in the maintenance of pluripotency in stem 

cells, requiring precise regulation of DNA methylation patterns 

(13). Moreover, TET2-mediated demethylation has been shown 

to in.uence gene expression in various contexts, including the 

regulation of oncogenes and tumour suppressor genes in 

cancer (14). Additionally, TET2’s involvement in the 

modulation of DNA methylation patterns has implications for 

metabolic processes, as seen in studies linking TET2 activity to 

glucose metabolism and insulin signaling (15). Therefore, 

TET2 assumes multiple functions in DNA demethylation, 

impacting not only gene regulation but also broader 

physiological processes.
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2.1.3 Relationship between TET2 and cell 
proliferation and apoptosis

The TET2 gene often undergoes mutations in malignant 

tumours and solid cancers of the hematopoietic system and is 

one of the most common mutated genes in clonal 

hematopoiesis in the general population (16). The in.uence of 

TET2 on cell proliferation and apoptosis is a critical aspect of 

its biological function, particularly in the context of cancer 

(Figure 1C). A previous study revealed that TET2 exerts 

tumour-suppressive effects by regulating cell cycle progression 

and promoting apoptosis in various cancer types, including 

leukaemia and solid tumours (14). For instance, restoration of 

TET2 function in TET2-deficient cancer cells is associated 

with reduced tumour growth and enhanced sensitivity to 

chemotherapeutic agents (17). Mechanistically, TET2 

modulates the expression of genes involved in apoptosis and 

cell cycle regulation, such as those related to the p53 pathway 

and other apoptotic signalling cascades (18). Additionally, 

TET2 plays a central role in maintaining genomic stability 

and preventing clonal expansion of hematopoietic stem cells, 

which further underscores its importance in regulating cell 

proliferation and apoptosis (19). The interplay between TET2, 

cell proliferation, and apoptosis highlights its potential as a 

therapeutic target in cancer treatment, where modulation of 

TET2 activity could enhance the efficacy of existing therapies 

and improve patient outcomes.

2.2 The role of TET2 in venous thrombosis 
formation

2.2.1 The association between TET2 and platelet 
function

TET2 (Ten-Eleven Translocation 2) plays an essential role in 

regulating platelet function, which is involved in venous 

thrombosis (Figure 2). Research has shown that the absence of 

TET2 can lead to decreased platelet function, which in turn 

impairs platelet activation and aggregation (10). These findings 

highlight its importance in maintaining normal hemostatic 

function. Specifically, TET2 deficiency in mice resulted in 

altered platelet responses to agonists, suggesting that TET2 is 

essential for optimal platelet function. Hence, TET2 deficiency 

may contribute to thrombotic risk. Furthermore, TET2 is 

involved in the epigenetic regulation of genes associated with 

platelet activation, underscoring its role in thrombogenesis. Aref 

et al. observed that platelet counts in TET2 mutant patients 

were higher than those in non-mutant patients (20).In contrast, 

Panuzzo et al. (2020) and Wang et al. (2019) observed that 

FIGURE 1 

Structure and biological functions of TET2. (A) The structure of TET2 protein includes CXXC4 domain, cysteine (Cys)-rich domain, and a double- 

stranded β-helix fold (DSβH), which is characteristic of three Fe2+ binding and one α-Ketoglutarate (α-KG) binding. (B) TET2 plays a pivotal role in 

DNA demethylation. DNA methyltransferases (DNMT) convert cytosine (C) to form 5-methylcytosine (5mC), then TET2 and thymine DNA 

glycosylase (TDG) convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5cac). (C) TET2 plays a 

central role in regulating cell proliferation, cell cycle, and cell apoptosis.
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platelet counts in TET2 mutant patients were lower than those in 

non-mutant patients (21, 22). Veninga et al. (2020) explained 

higher platelet count in TET2 mutated patients as the TET gene 

product represses the transcription of in.ammatory molecules, 

such as interleukin-6 and -8, which are known as pro- 

atherogenic mediators (23). So, somatic loss-of-function 

mutations in TET2 are associated with an increased 

in.ammation tendency that subsequently up-regulates the 

thrombopoietin production by the liver resulting in higher 

platelet count. This regulatory function suggests that TET2 

mutations or dysregulation could predispose individuals to 

thrombotic events, particularly in conditions such as 

myeloproliferative neoplasms, where thrombosis risk is notably 

elevated (24). Clinical data shows that CMML patients with 

TET2 mutations have lower platelet levels compared to wild- 

type TET2 patients (25, 26). In addition, previous studies using 

a genetically engineered TET2 deletion mouse model have found 

that the absence of TET2 results in a decreased proportion of 

megakaryocyte-erythroid progenitor cells and hyperploid 

megakaryocytes (10). This may be the mechanism by which 

TET2 affects platelet numbers and function.

2.2.2 The role of TET2 in endothelial cells

TET2 also plays a pivotal role in endothelial cell function, 

in.uencing angiogenesis and vascular homeostasis (Figure 2). 

Research indicates that loss of TET2 impairs endothelial cell 

FIGURE 2 

The role of TET2 in venous thromboembolism (VTE). TET2 plays an essential role in regulating platelet function (①), endothelial cell function (②), 

vascular smooth muscle cells (VSMCs) differentiation (③), coagulation factor expression (④), and inflammatory response (⑤).
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angiogenesis by downregulating key target genes associated with 

the STAT3 signalling pathway, which participates in endothelial 

cell proliferation and survival (27). Another study revealed that 

TET2 overexpression increases CSE expression by promoting 

demethylation of the CSE (cystathionine gamma-lyase) 

promoter, thereby upregulating the CSE/H2S system to protect 

endothelial function (28). Additionally, TET2 has been 

implicated in the endothelial mesenchymal transition (EndMT), 

a process that can contribute to vascular remodelling and 

thrombosis. Moreover, low shear stress conditions have been 

shown to downregulate TET2, thereby promoting endothelial- 

mesenchymal transition (EndMT) or inducing pyroptosis in 

endothelial cells, which may further exacerbate the risk of 

thrombosis (29, 30). This indicates that TET2 not only 

maintains endothelial integrity but may also represent a novel 

therapeutic target for endothelial dysfunction-related vascular 

diseases. Given the crucial role of endothelial function in the 

process of thrombosis, we speculate that TET2 may in.uence 

thrombus formation by modulating endothelial function.

2.2.3 The role of TET2 in smooth muscle cells
In vascular smooth muscle cells (VSMCs), TET2 has been 

identified as a key epigenetic regulatory factor for VSMC 

differentiation and phenotype transition to pro-proliferative 

and migratory phenotypes (31, 32). TET2 regulates cellular 

plasticity and differentiation, which are vital for maintaining 

vascular homeostasis. High levels of TET2 are associated with 

mature and differentiated SMC phenotypes, while 

dedifferentiated SMCs show a significant loss of TET2 (33). in 

vitro, experiments have confirmed that overexpression of TET2 

increases the level of 5hmC by catalyzing demethylation of 

5mC, leading to high expression of the pro-contractile gene 

MYOCD, maintaining the contractile phenotype, and 

preventing VSMCs from dedifferentiation and vascular 

remodeling (Figure 2) (33, 34). In addition, Allison C. Ostriker 

et al. reported that overexpression of TET2 inhibited IFN γ- 

induced dedifferentiation of VSMCs. TET2 can inhibit 

apoptosis and abnormal proliferation of VSMCs induced by 

IFN γ and TNF—α signalling pathways, thereby preventing 

intimal thickening (35). These conditions can predispose to 

vascular complications, including thrombosis (36). Moreover, 

the knockdown of TET2 in VSMC leads to changes in DNA 

methylation and results in epigenetic modifications of histones, 

indicating that TET2 may synergistically regulate DNA 

accessibility with other chromatin-modifying enzymes (32). 

Furthermore, TET2 modulates the epigenetic landscape of 

VSMCs, in.uencing their response to various stimuli and their 

ability to adapt to changes in the vascular environment. For 

instance, studies have shown that TET2 is involved in the 

differentiation of VSMCs from pluripotent stem cells, 

underscoring its role in vascular development and repair (37). 

Thus, the TET2 gene plays an integral role in the proliferation 

of vascular endothelial cells, ensuring that growth remains 

within normal limits. This regulatory mechanism is important 

in maintaining the structural integrity of the vasculature, which 

is crucial in the prevention of thrombus formation.

2.2.4 The interaction of TET2 with coagulation 

factors
The TET2 gene serves as a critical regulator in venous 

thrombosis by modulating the interaction of coagulation factors. 

Accumulating evidence indicates that TET2 epigenetically 

regulates the expression of both procoagulant and anticoagulant 

factors, thereby maintaining the dynamic balance of the 

coagulation cascade. Experimental studies have demonstrated 

that loss of TET2 function leads to aberrant platelet activation 

and enhanced thrombin generation, ultimately increasing 

thrombotic risk (38). Furthermore, TET2 plays a pivotal role in 

preserving the coagulation-anticoagulation equilibrium by 

modulating the expression of coagulation-related genes. 

Dysfunction of TET2 can induce a hypercoagulable state, which 

is particularly prominent in patients with myeloproliferative 

neoplasms (MPNs), where TET2 mutations are frequently 

observed. Clinical studies have confirmed that these patients 

exhibit a higher incidence of thrombotic and thromboembolic 

events, further underscoring the essential role of TET2 in 

coagulation regulation (39, 40).

2.2.5 TET2 and inflammatory response

It is well established that in.ammatory responses play a 

pivotal role in thrombogenesis. Current evidence suggests that 

TET2 plays a role in regulating in.ammation through epigenetic 

mechanisms (41, 42). Experimental studies by Fuster et al. 

demonstrated that TET2 deficiency in macrophages enhances 

NLRP3 (NOD-like receptor protein 3, LRR-, and pyrin domain- 

containing protein 3) in.ammasome-mediated interleukin-1β 
(IL-1β) secretion (43). Clinical investigations further revealed 

elevated plasma levels of the proin.ammatory cytokine 

interleukin-8 (IL-8) in human subjects carrying TET2 mutations 

(44). These findings collectively suggest that TET2 may function 

as a negative transcriptional regulator of in.ammatory 

responses. Moreover, somatic TET2 mutations have been shown 

to promote macrophage in.ammatory polarization through 

clonal hematopoiesis, leading to increased secretion of 

proin.ammatory mediators, including interleukin-6 (IL-6) (43, 

45). Epigenetically, TET2 suppresses the transcriptional 

activation of in.ammatory genes, such as IL-6, in dendritic cells 

and macrophages through histone deacetylation (46). Taken 

together, we hypothesize that TET2 deficiency may disrupt 

in.ammatory homeostasis, resulting in hyperin.ammatory states 

that ultimately elevate the risk of thrombosis.

2.2.6 TET2 and neutrophil extracellular traps
In experimental models of deep vein thrombosis, neutrophil 

extracellular traps (NETs) have been firmly established as crucial 

mediators in the initial stages of thrombus formation (47). By 

creating a chromatin-based scaffold, NETs provide a structural 

foundation that enhances platelet adhesion (48). Given their 

pivotal role, NETs may offer new targets for the development of 

DVT drugs (49). The architecture of NETs is the primary 

feature disrupted by TET2 mutations. Neutrophils with TET2 

mutations produce smaller and more compact NETs, and the 

chromatin from these mutated cells exhibits decreased 
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endonuclease accessibility (50). Moreover, NETs produced by 

TET2-mutated neutrophils are more resistant to degradation by 

circulating nucleases, suggesting that they may persist longer 

and drive in.ammation. Therefore, TET2 mutations can 

in.uence thrombus formation by affecting the structure and 

function of NETs.

2.3 TET2 gene mutations and VTE risk

2.3.1 Epidemiological studies of TET2 mutations

Currently, a growing number of epidemiological studies are 

being conducted on the association of mutations in the TET2 

gene with the risk of VTE. The TET2 gene is implicated in 

epigenetic regulation-DNA methylation-which is a crucial 

process in both hematopoiesis and immune function. Recent 

studies identified TET2 mutations as one of the highly prevalent 

among various hematological malignancies and clonal 

hematopoiesis of indeterminate potential (CHIP) (51). These are 

a series of mutation types, the most common being amino acid 

substitution, frameshift mutation, nonframeshift deletions, and 

the creation of premature termination codons. All of these 

mutations interfere with gene function leading to disease. In a 

cohort study of older adults, it was found that TET2 mutation 

was significantly associated with VTE risk (52). The TET2 gene 

mutations have also emerged as a significant contributor to 

thrombosis in myeloproliferative neoplasms-a hematologic 

malignancy (40). Additionally, TET2 gene mutation may 

independently predict thrombosis in patients with polycythemia 

vera (53, 54). TET2 gene mutations confer enhanced 

cardiovascular events; to date, this has been associated with 

VTE, especially in clonal hematopoiesis amongst elderly subjects 

(55). Further study has recorded that TET2 mutations can give 

rise to an in.ammatory predisposition for thrombosis (56). This 

finding identifies a genetic predisposition that may mandate 

testing of populations with a high risk of developing VTE. 

Identification of TET2 mutations will enable clinicians to better 

assess individual risk and implement tailored prevention in a 

bid to reduce the incidence of VTE.

2.3.2 Impact of mutations on VTE pathogenesis

Mutations in TET2 cause the TET2 enzyme to lose its 

function, which in turn results in changes to DNA methylation 

patterns (57). This mutation is expressed in an increased linking 

of LFA and platelet activation and production of thrombin, 

leading to an increased incidence of VTE (58). Here, we found 

that TET2 affects coagulation function. The analysis of a cohort 

of patients made by Wang Z et al. reported that TET2 mutation 

patients had significantly elevated D-dimer, significantly 

decreased AT-III, and increased levels of FDP as compared to 

normal. This may explain why TET2 mutations are a risk factor 

for thrombosis in ET patients (38). In addition, TET2 gene 

mutation was observed to elevate macrophage migration 

inhibitory factor (MIF) that enhances in.ammation and 

promotes coagulation activation (59). This study raises the 

possibility that the genetic changes involved in in.ammation 

may be related to the enhanced susceptibility to VTE for 

patients with mutated TET2 genes. They could also be a part of 

the process of thrombosis in a number of clinical settings such 

as those related to cancer (60).

2.3.3 Interaction between TET2 and other genetic 

factors
Notably, the current study underscores the need for 

understanding the association of TET2 mutations with other 

genetic factors in an effort to predict recurrent VTE risk 

appropriately. Research has indicated the possibility that TET2 

mutations are compatible with other mutations for example the 

FLT3 and JAK2 gene mutations. It is already understood that 

FLT3 is linked with leukaemia and thrombosis (61), whereas 

JAK2 mutations act as significant risk drivers for further disease 

and new VTE events (62). On the other hand, the outcome of 

TET2 gene mutations on the risk of VTE can be skewed by 

lifestyle and other environmental factors indicating a 

reciprocalrogenesis relationship between genotype and 

exogenous factors (63). Both the JAK2V617F and MPL190A 

mutations appear to enhance the risk of thrombotic events and 

the simultaneous presence of both mutations may also enhance 

the risk; however, the JAK2V619F mutation has not been 

associated with an increased risk of VTE in clonal 

haematopoietic individuals, thereby mandating the need to 

systematically assess VTE risk in clonal haematopoietic patients. 

The knowledge of these interactions might contribute toward 

the design of patient patient-tailored therapeutic approach to 

enhance the outcome in TET2-related RARS patient groups at 

risk of VTE.

2.4 The potential of TET2 as a therapeutic 
target

2.4.1 Existing therapeutic strategies targeting 
TET2

TET2 is a key member of the ten-eleven translocation (TET) 

enzyme family and plays a critical role in DNA demethylation. 

Its involvement in several hematological malignancies, 

particularly acute myeloid leukemia (AML), is well documented 

(64). Current therapeutic strategies for TET2-associated diseases 

are aimed at restoring its normal function or mitigating factors 

that reduce its activity. Retinoic acid (RA) and vitamin 

C activate TET2 transcription, enhancing 5hmC production in 

immature embryonic stem cells (65, 66). This TET2 activation 

improves cancer immunotherapy efficacy against renal cell 

carcinoma, regulates hematopoietic stem cell frequency, and 

reduces leukaemia occurrence (67, 68). Ascorbic acid and other 

TET2 modulators play important roles in the treatment of 

TET2-related diseases, such as in.ammatory conditions and 

malignancies (69, 70). Overall, the development of targeted 

therapies aimed at TET2 offers hope for improving treatment 

outcomes in patients with TET2-related malignancies. Therefore, 

we speculate that targeted TET2 therapy could also be applied 

to the prevention and treatment of venous thrombosis.

Bai et al.                                                                                                                                                                 10.3389/fcvm.2025.1577303 

Frontiers in Cardiovascular Medicine 06 frontiersin.org



2.4.2 Prospects for novel drug development

The potential for novel drug development targeting TET2 is 

expanding, particularly in the context of its role in cancer and 

immune response modulation. Recent research has highlighted 

the importance of TET2 in regulating the tumour 

microenvironment and immune evasion mechanisms. For 

example, TET2 deficiency in immune cells has been shown to 

exacerbate tumour progression by increasing angiogenesis in 

lung cancer models (71). This relationship underscores the 

potential for developing drugs that not only target TET2 directly 

but also enhance its function within immune cells to improve 

anti-tumour immunity. Additionally, TET2 has been identified 

as a key player in the resistance mechanisms of various cancers, 

such as non-small cell lung cancer, suggesting that drugs aimed 

at restoring TET2 function could be effective in overcoming 

therapeutic resistance (70). Drug repositioning strategies, where 

existing medications are tested for efficacy against TET2-related 

pathways, may also yield promising results, as evidenced by the 

ongoing investigations into the effects of glucocorticoids on 

TET2 activity (69). As research progresses, the development of 

TET2-targeted therapies could significantly impact cancer 

treatment paradigms.

2.4.3 The relationship between TET2 and 
personalized therapy

The relationship between TET2 and personalized therapy is 

becoming increasingly significant, particularly with the 

increasing application of genomic profiling of tumours. TET2 

mutations and alterations in its expression levels are being 

recognized as critical factors in determining patient prognosis 

and treatment response. For instance, in AML, TET2 mutations 

have been linked to specific therapeutic responses, indicating 

that patients with these mutations may benefit from tailored 

treatment approaches (72). Furthermore, the integration of 

TET2 status into predictive models can enhance the 

stratification of patients, thereby facilitating individualized 

treatment plans that consider the unique genetic landscape of 

each tumour (73). With the evolution of personalized medicine, 

the role of TET2 as a biomarker for therapy selection is likely to 

expand, offering new avenues for optimizing treatment efficacy 

and minimizing adverse effects. The ongoing research into 

TET2’s role in immune modulation and drug resistance further 

emphasizes its potential as a target for personalized therapeutic 

strategies, ultimately aiming to improve outcomes for patients 

with TET2-related malignancies.

2.5 Future research directions

2.5.1 Research gaps between TET2 and VTE

TET2, a member of the ten-eleven translocation (TET) family 

of enzymes, is essential for DNA demethylation and has been 

linked to various blood cancers. However, research has not 

established the definite part played by TET2 in the development 

of VTE. This then may have revealed that mutations in the 

TET2 gene contribute to blood cell formation problems with an 

increased risk of thrombosis. However, strong studies which 

established direct relationships between TET2 abnormality and 

VTE outcomes cannot be demonstrated. In subsequent studies, 

more attention should be paid to understanding how TET2 gene 

mutations can raise the risk of thrombosis: the changes in the 

regulative or mediatory functions of coagulation and 

in.ammatory processes. Furthermore, the study of TET2 gene 

mutation frequency in VTE patients, and the ability of 

mutations to predict thrombosis is necessary. Closing these gaps 

will enhance risk prediction hence enhancing the opportunity 

for designing better tailored approaches to the treatment of 

patients at risk for VTE (74).

2.5.2 Application of multi-omics approaches in 
TET2 research

The advances in genomics, transcriptomics, proteomics, and 

metabolomics present a new opportunity to study the biological 

aspects of TET2 with haematological disorders, especially VTE. 

These integrated strategies provide the researchers with the 

opportunity to study the molecular interfaces that are involved 

in following TET2 mutations and the effects on cellular 

signalling and metabolism. That is, transcriptomics may provide 

information about changes in gene expression consequent to 

TET2 loss-of-function mutations, while proteomics may define 

alterations in the protein interactions responsible for the 

prethrombotic condition. Furthermore, MD could reveal 

metabolomics dysregulation that increases VTE risk. Together 

with the currently available resources, these datasets allow for 

the understanding of molecular mechanisms of the effect of 

TET2 mutations on the risk of thrombosis and open the 

prospect of the discovery of new targets and biomarkers for 

VTE (75).

2.5.3 Recommendations for clinical trial design
However, conducting clinical trials for TET2 gene mutations 

in VTE is full of opportunities as well as challenges. In future 

trials, more emphasis should be given to genetically structured 

cohorts in order to evaluate the contribution of TET2 mutations 

to the risk and outcome of VTE. Multi-centre trials are 

particularly desirable when large numbers of patients from 

different settings and the full range of severities of the condition 

are likely to be enrolled in the trial, so increasing the 

generalisability of its findings. Finally, the design of biomarker- 

oriented endpoints, including the evaluation of TET2 mutation 

and other related molecular markers, will add significant 

information for predicting treatment efficacy and patient 

categorization. Moreover, using adaptive trial designs that enable 

interim changes according to results will enable the exploration 

of therapeutic prospects for manipulating the pathways impacted 

by TET2 mutations. Close cooperation between haematologists, 

geneticists and clinicians will be essential to improving trial 

parameters in an effort to ensure the answers to the key clinical 

inquiries regarding TET2 and VTE are appropriately posed by 

current and future trials (76).
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3 Conclusion

In conclusion, the important role of TET2 in venous 

thromboembolism (VTE) marks it as a key focus of 

haematological and vascular biology research. New information 

indicates that TET2 mutation and its alterations play a role in 

the pathogenesis of VTE mainly through epigenetic and 

in.ammatory signaling pathways. This underlines the necessity 

for more detailed research on the molecular effect of TET2 on 

thrombosis and its interactions with genetic and environmental 

factors. The current literature concerning the association of VTE 

with somatic mutations in the TET2 gene is rather diverse in 

terms of outcomes and, therefore, not completely coherent. 

While some papers propose that TET2 has an antithrombotic 

effect, others point to a prothrombotic effect or a more subtle 

effect of TET2 on the development of thromboembolism. These 

different views must then be integrated in order to create the 

aetiologic narrative of TET2 in VTE that provides a framework 

for understanding the epidemiologic and clinical realities. 

Subsequent research should seek to integrate these various 

sources of information, possibly through very large-scale 

genomic assessments and extensive mechanisms employed to 

identify the TET2 function in the vessels. Secondly, there are 

interesting clinical considerations with regard to TET2 studies. 

The search for a detailed understanding of the TET2 mechanism 

of action provides a chance for target therapy. However, this 

chance faces several specific difficulties such as the absence of 

deep insights into the time and circumstances of TET2 

regulation. Further, understanding the successful rate of 

interventions focusing on TET2 in preclinical studies and 

clinical research is essential for applying said findings clinically.

In conclusion, as the current practice of studying the role of 

TET2 in VTE is enhanced, some questions remain unanswered. 

Consequently, it is required that further investigations and other 

subsequent research aim to define the biological significance of 

TET2 and to define its therapeutic functionality. Understanding 

TET2 in this manner and reconciling the results from the 

present study with the findings of other groups, will allow for 

improved approaches to the primary and secondary prevention 

of VTE.
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