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University, Tianjin, China

Atrial fibrillation (AF) is a complex arrhythmia driven by intricate

pathophysiological mechanisms, with atrial fibrosis and inflammation emerging

as central players in its initiation and perpetuation. Key pathways, including the

renin-angiotensin-aldosterone system (RAAS), TGF-β/Smad signaling, and pro-

inflammatory cytokine cascades (e.g., TNF-α/NF-κB, IL-6/STAT3), contribute

to fibrotic remodeling and electrophysiological dysfunction. These pathways

promote extracellular matrix deposition, fibroblast activation, and

heterogeneous conduction, creating a substrate for AF maintenance.

Contemporary therapeutic approaches predominantly target rhythm control

via catheter ablation techniques and pharmacological interventions with

antiarrhythmic agents. Nevertheless, the efficacy of anti-inflammatory

approaches, such as corticosteroids and colchicine, remains uncertain due to

limited robust clinical evidence, highlighting the need for further investigation.

Advanced fibrosis quantification modalities, particularly late gadolinium-

enhanced magnetic resonance imaging and electroanatomic mapping, have

emerged as valuable tools for optimizing ablation strategies. Furthermore,

emerging evidence highlights significant sex-based disparities in atrial fibrosis

distribution and electrophysiological substrate characteristics, suggesting the

potential for gender-specific therapeutic approaches. This comprehensive

review systematically examines the pathophysiological roles of atrial fibrosis

and inflammation in AF progression, with particular emphasis on their intricate

bidirectional relationship. Through detailed elucidation of these mechanistic

interactions, we aim to facilitate the development of novel therapeutic

interventions to enhance clinical management of AF.
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1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice,

characterized by irregular atrial electrical activity and ineffective atrial contractions,

leading to decreased cardiac function. More than 37.5 million people worldwide suffer

from AF. In the past 20 years, the global incidence and prevalence of AF have both

increased by more than 30%, and it is expected to continue to increase in the next 30

years (1). In China, there are approximately 7.9 million patients with AF, with a

weighted prevalence of 1.8% (2). AF can significantly increase the risk of death, stroke,

heart failure (HF), cognitive dysfunction, and dementia, seriously affecting the quality

of life of patients (3–5), and causing a huge burden on the health and economy of

patients. Catheter ablation and antiarrhythmic drugs (e.g., amiodarone and flecainide),
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have emerged as cornerstone therapeutic modalities for atrial

fibrillation (AF) management (6).

As a complex heterogeneous arrhythmia, the occurrence,

persistence, and occurrence of complications of AF involve

multiple factors. The main pathogenesis of AF includes the

presence of atrial ectopic electrical activity and reentry,

involving atrial electrophysiological and structural remodeling

(7, 8). Atrial fibrosis is a characteristic change in atrial

structural remodeling, which can cause heterogeneous

conduction in the atrium, leading to unidirectional conduction

block and reentry, thereby triggering AF. At the same time,

long-term AF can exacerbate atrial fibrosis, further promoting

the progression and maintenance of AF, known as “AF

promoting AF” (9, 10). Inflammation is involved in the

pathological process of various cardiovascular diseases and is

the main regulatory factor of repair response after cardiac

injury (11, 12). A large amount of evidence supports the close

relationship between inflammation and AF. The atrial

electrophysiological and structural remodeling mediated by

inflammatory response are important risk factors for inducing

AF, and the activity of AF itself can also induce inflammatory

response, forming the “AF promoting AF” cycle (13, 14). Since

both fibrosis and inflammation play important roles in atrial

remodeling, what is the relationship between the two? The

crosstalk between fibroblasts and immunocytes demonstrates

the interaction between fibrosis and inflammation, which

together promote atrial remodeling, leading to the occurrence

and persistence of AF (15). This article will review the roles of

atrial fibrosis and inflammation in the pathophysiological

mechanisms of AF, their relationship, and corresponding

treatment methods to provide a theoretical basis for the

clinical management of AF.

2 Atrial fibrosis and AF

2.1 Atrial fibrosis

Atrial remodeling plays a central role in the occurrence

and development of AF, and atrial fibrosis is one of the

key factors in atrial remodeling (16). Atrial fibrosis is a

process of cardiac remodeling caused by the interaction of

multiple neurohormonal mediators, characterized by abnormal

activation, proliferation, and differentiation of cardiac

fibroblasts, as well as excessive deposition of extracellular matrix

(ECM) proteins (17). Fibroblasts are the main cells that regulate

the synthesis and composition of ECM. Fibroblasts are the most

numerous cells in the heart, accounting for approximately 75%

of all heart cells (18). When various harmful stimuli cause

myocardial injury, fibroblasts migrate to the damaged area,

proliferate, and transform into the phenotype of myofibroblasts.

The contractility of myofibroblasts is enhanced through the

secretion of contractile proteins such as alpha-smooth muscle

actin (α-SMA), which participate in cardiac injury repair.

However, sustained damage may overactivate fibroblasts,

causing them to continuously synthesize ECM, leading to

excessive deposition of ECM, collagen proportional imbalance,

especially the increase in the proportion of type I and III

collagen, and disordered collagen alignment, ultimately

developing into progressive fibrosis (19–21).

Myocardial fibrosis is divided into two different types, namely

reparative fibrosis and interstitial fibrosis. Reparative fibrosis refers

to the replacement of necrotic cardiomyocytes with fibrosis tissue,

with the most obvious example being myocardial infarction (MI)

scars. Interstitial fibrosis refers to the abnormal accumulation of

ECM around the interstitium and blood vessels without

significant cardiomyocyte loss, which is more common in non-

ischemic cardiomyopathy (22–24).

Atrial fibrosis is typically considered a type of myocardial

fibrosis. But in fact, this view is problematic. The experimental

results on congestive heart failure (CHF) canine model

indicated that the AF substrate of CHF was associated with

widespread cell death (25) and fibrosis disruption of muscle

bundle continuity (26), leading to longitudinal conduction

disorders. Another study has shown that the thicker the left

atrial interstitial collagen strands in patients with AF, the

longer the duration of AF, and the faster the longitudinal

conduction velocity. This suggested that the structure and

severity of AF were related to atrial conduction abnormalities

(27). Therefore, for atrial fibrosis that occurs in AF, these two

different types of fibrosis may coexist.
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2.2 Relationship between atrial fibrosis
and AF

AF is a complex and progressive disease that requires triggering

and susceptible substrates for its occurrence and maintenance. The

current research has found that the triggering sites of AF mainly

include the atrial sleeves of the pulmonary veins (PVs) and long-

standing rotors with fibrillatory conduction. Intracellular Ca2+

handling and autonomic nerve activation can promote early

afterdepolarization (EAD) and delayed afterdepolarization (DAD)

activities, which induce ectopic focal discharges in PVs, leading

to AF (28, 29). And the rotor is another possible trigger site for

AF, which is composed of heterogeneity in the form of spatially

distributed refractory gradients in the atrium. The waves emitted

by the high-speed rotation of the rotor can cause turbulent

electrical activation, manifested as fibrillatory conduction, thereby

triggering AF (28, 30).

In addition, atrial fibrosis, as a susceptible substrate to AF,

plays a crucial role in the sustained development of AF. The

landmark DECAAF study, a multicenter prospective

observational cohort investigation involving 260 patients with

both paroxysmal and persistent AF, demonstrated a significant

correlation between atrial fibrosis extent and AF recurrence risk.

The quantitative assessment of atrial fibrosis in patients showed

that for every 1% increase in fibrosis degree, the risk of AF

recurrence increased by 6%. The degree of atrial fibrosis was an

independent predictor of AF recurrence (31). Additionally,

extensive preclinical studies using various animal models have

further substantiated the pivotal role of atrial fibrosis in AF

initiation and maintenance. Both HF and chronic mitral

regurgitation (MR) dog models exhibited significant interstitial

fibrosis, which induced and maintained AF by causing local

conduction interference (32, 33). In a goat model with cardiac

specific overexpression of transforming growth factor beta 1

(TGF-β1), increased atrial fibrosis, progressive P-wave

prolongation, and slowed atrial conduction were observed,

leading to increased AF susceptibility (34). Meanwhile, a study

on a transgenic mouse model of atrial fibrosis induced by TGF-

β1 overexpression demonstrated that fibrosis could enhance atrial

conduction heterogeneity, making reentry more likely to occur,

thereby promoting the progression and maintenance of AF (35).

The above studies involving patients, large animal models, and

transgenic animal models showed that atrial fibrosis increased AF

susceptibility and the risk of AF recurrence. Atrial fibrosis can

cause and maintain AF by altering the atrial conductibility,

leading to local conduction block and reentry.

In fact, atrial fibrosis may also be a result of AF. Clinical

pathological examinations reveal that approximately 17% of

patients with lone AF demonstrate patchy fibrosis patterns on

atrial biopsy (36). Additionally, experimental investigations

utilizing canine rapid atrial pacing models revealed significantly

augmented interstitial fibrosis in AF-induced animals relative to

control cohorts (37). Similarly, a dog model study aimed at

exploring the impact of AF on electrophysiology showed that AF

without ventricular dysfunction lead to atrial fibrosis and

increased susceptibility to AF, while AF with rapid ventricular

response increased atrial and ventricular fibrosis (38). In

summary, atrial fibrosis is both a triggering factor and a result of

AF, playing a crucial role in its occurrence and

sustained development.

2.3 Profibrotic substrate

Major contributors to advancing atrial fibrosis and their

mechanistic pathways are summarized (Figure 1).

2.3.1 Renin-angiotensin-aldosterone system
(RAAS)

RAAS is a hormone cascade reaction primarily responsible for

regulating blood pressure and water-salt balance, maintaining

homeostasis in the human body (39). RAAS is involved in the

fibrosis process of various diseases, such as hypertension (40),

CHF (41), and MI (42). Angiotensin II (Ang II) is a key

molecule in this system and plays an important role in atrial

fibrosis (39, 43, 44). A study suggested that the occurrence of

atrial fibrosis in CHF dog models was associated with increased

Ang II concentration (44). Moreover, a mouse model

overexpressing angiotensin converting enzyme (ACE) showed

atrial dilation, focal fibrosis, and AF (43). In addition, blocking

the effect of Ang II with ACE inhibitors (ACEIs) can reduce

atrial fibrosis (44, 45). Regarding the mechanism of Ang II

promoting fibrosis, previous studies have confirmed that after

binding to Angiotensin II type 1 receptor (AT1R), Ang II

stimulated fibroblast proliferation and differentiation by

activating the phosphorylation cascade of mitogen-activated

protein kinase (MAPK) (46, 47). After activating the MARK

cascade with Ang II, atrial fibrosis could be mediated by

upregulating the expressions of TGF-β1 (48–52) and connective

tissue growth factor (CTGF) (49, 53, 54).

2.3.2 TGF-β1

TGF-β1 is an important profibrotic cytokine. TGF-β1 can

mediate the differentiation of fibroblasts into myofibroblasts and

promote increased collagen secretion by activating Smad

dependent or independent signaling pathways (7, 9, 55). In the

classic Smad dependent signaling pathway, TGF-β1 binds to type

I and type II receptors, activating downstream Smad2/3/4

proteins and promoting increased collagen secretion (56). TGF-

β1 can also reduce the negative feedback regulation of TGF -β1/

Smad signaling by inhibiting Smad7 (57, 58). The currently

discovered Smad independent signaling pathways mainly include

the MAPK/TGF-β1/tumor necrosis factor receptor associated

factor 6 (TRAF6)/TGF-β activated kinase 1 (TAK1) signaling (59,

60) and TGF-β1/Ras homolog family member A (RhoA)/Rho-

associated kinase (ROCK) (61).

2.3.3 Cytokines
Inflammatory response is closely linked to the formation of

atrial fibrosis (7, 9, 55). Multiple inflammatory cytokines, such as

tumor necrosis factor alpha (TNF-α), interleukin (IL) -1β, IL-2,

IL-6, etc., can mediate the occurrence of atrial fibrosis. Liew et al.
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found that TNF-α activated fibroblasts and promoted collagen

synthesis by activating the TGF-β signaling pathway and

promoting the secretion of matrix metalloproteinases (MMP),

thereby mediating the occurrence of atrial fibrosis in mice (62).

Inhibition of the TNF-α/nuclear factor-kappaB (NF-κB)/TGF-β

signaling pathway can effectively suppress myocardial fibrosis

and cardiac remodeling, thereby attenuating the progression of

AF (63). Meanwhile, the activation of signal transducer and

activator of transcription 3 (STAT3) signaling pathway by IL-6

contributes to AF development through stimulating cardiac

fibroblast activation (64). Chen et al. found that IL-6-miR-210

promoted the expressions of α-SMA, type I collagen, and type III

collagen by targeting Foxp3, leading to atrial fibrosis (65). Studies

have shown that epicardial adipose tissue (EAT) could secrete

pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, and

monocyte chemoattractant protein-1 (MCP-1), which could

trigger inflammation in adjacent atrial tissue through paracrine

action, leading to atrial fibrosis (66–69).

2.3.4 PDGF
The platelet-derived growth factor (PDGF) family proteins are

encoded by four genes, namely PDGF-A, PDGF-B, PDGF-C, and

PDGF-D (70). PDGF can promote proliferation and

differentiation of fibroblasts, and regulate ECM synthesis via

various pathways, such as MAPK, Janus kinase (JAK)/STAT, and

Ras/extracellular regulated protein kinase 1/2 (ERK1/2) (55).

Different subtypes of PDGF are involved in the development of

myocardial fibrosis. Studies have shown that PDGF-D promoted

the proliferation and differentiation of rat cardiac fibroblasts, as

well as the secretion of type I collagen, by mediating the

activation of TGF-β1 signaling pathway, exerting a profibrotic

effect (71). Cardiac fibrosis was observed in mice with cardiac

specific overexpression of PDGF-A and PDGF-B (72). Liao et al.

found that the expression of PDGF-A increased in mast cells in

the atrium of mice with pressure-overloaded heart, promoting

fibroblast proliferation and collagen synthesis, thereby promoting

atrial fibrosis and enhancing susceptibility to AF (73). In the HF

dogs induced by rapid ventricular pacing, the mRNA levels of

PDGF subtypes A, C, and D in the left atrial (LA) fibroblasts

increased, activating the JAK-STAT pathway, promoting ECM

synthesis and LA fibrosis (74). In addition, in rat cardiac

allografts, these PDGF subtypes mediated profibrotic effects by

regulating the TGF-β1 signaling (75).

2.3.5 miRNA

Micro-ribonucleic acids (microRNAs, miRNAs or miRs) are a

class of evolutionarily conserved non-coding small molecule RNAs,

typically between 21 and 23 nucleotides in length, that can regulate

gene expression at the translation level (76). Multiple studies have

shown that miRNA plays an important role in atrial fibrosis and

AF (22, 55, 77). Among them, miR-21 is a promising target that

regulates AF and atrial fibrosis through multiple mechanisms. In

FIGURE 1

Molecular mechanisms underlying atrial fibrosis. Created using Figdraw, www.figdraw.com.
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a rat model of HF induced AF, the expression of atrial miR-21 was

upregulated, and knocking it out could inhibit atrial fibrosis and

AF development (78). The research of Adam et al. showed that

compared with sinus rhythm (SR) population, miR-21 expression

was upregulated in LA of AF patients. After Rac1 was activated

by Ang II, the expressions of CTGF and lysyl oxidase increased,

mediating the increase in miR-21 expression and the decrease in

its downstream molecule Sprouty 1 (Spry 1, a protein that

inhibits fibroblast proliferation) expression, leading to an increase

in atrial collagen content and promoting fibrosis (79). Another

study has shown that miR-21 was upregulated in fibroblasts of

failing hearts and activated the ERK-MAPK signaling pathway by

inhibiting Spry1, thereby promoting fibroblast proliferation and

interstitial fibrosis (80). He et al. found that in a rabbit model of

AF induced by rapid atrial pacing, miR-21 could also reduce the

inhibitory feedback regulation of TGF-β1/Smad signaling by

mediating Smad7 specific degradation, thereby promoting the

development of atrial fibrosis in AF (81). In addition, in a rat

model of sterile pericarditis, STAT3 and miR-21 formed a

feedback loop, promoting fibroblast proliferation and increasing

ECM synthesis, thereby increasing AF susceptibility (64). Other

miRNAs are also involved in the process of atrial fibrosis.

For example, elevated miR-486-5p levels were detected in AF

patients and correlated with increased left atrial fibrosis

occurrence (82). The downregulation of miR-26 regulated the

inward-rectifier potassium current in fibroblasts by increasing

KCNJ2 expression, thereby promoting fibroblast proliferation and

AF (83, 84). Wang et al.’s study showed that downregulation of

miR-27b inhibited the Smad2/3 signaling by targeting ALK5,

thereby improving Ang II induced atrial fibrosis and AF (85).

MiR-29b may be involved in atrial fibrosis. In a canine model of

CHF induced by rapid ventricular pacing, miR-29b expression

was reduced in atrial tissue and atrial fibroblasts, accompanied by

increased ECM expression in fibroblasts (86). MiR-30 and miR-

133 could reduce collagen production and inhibit cardiac fibrosis

by downregulating CTGF (87).

3 Inflammation and AF

3.1 Relationship between inflammation and
AF

Numerous studies have shown that inflammation is involved in

the occurrence and development of various cardiovascular diseases

(88, 89). Regarding the link between inflammation and AF, Bruins

et al. first discovered that C-reactive protein (CRP) level in patients

with coronary artery disease (CAD) was associated with

arrhythmia after revascularization (90). Afterwards, Chung et al.

also found that serum CRP levels in patients with AF were

higher than those in patients with SR, and CRP levels in patients

with persistent AF were higher than those in patients with

paroxysmal AF (91). Both studies suggest that inflammatory

response is closely related to AF. With the continuous

exploration of the relationship between inflammation and AF,

the causal relationship between the two is gradually

becoming clear.

3.1.1 Pathological mechanisms of inflammation

promoting AF
Inflammatory response triggers and maintains AF by altering

the electrophysiology and structure of atrial tissue, leading to

atrial electrical and structural remodeling (13, 14, 92).

3.1.1.1 Electrical remodeling mechanisms

Regarding atrial electrical remodeling, multiple studies have

shown that various inflammatory factors, such as TNF (93–96)

and PDGF (97), as well as NLRP3 inflammasome (98–100), can

induce atrial electrical remodeling by inducing abnormal calcium

processing, triggering abnormal PV electrical activity, shortening

the atrial action potential duration, leading to inflammation

related AF. Moreover, the abnormal expression and distribution

of atrial connexin 40 (Cx40) and Cx43 caused by inflammatory

response can induce atrial heterogeneous conduction, which is an

important factor in increasing susceptibility to AF (101). Studies

have shown that TNF-α (102) and IL-6 (103) can cause

downregulation of Cx40 and Cx43 expression, leading to

abnormal atrial conduction and inducing atrial electrical

remodeling. In addition, NF-κB, a transcription factor that

regulates the expression of multiple inflammatory cytokines, can

induce downregulation of Na+ channel expression by binding to

Na+ channel promoter region, leading to atrial electrical

remodeling in AF (104).

3.1.1.2 Structural remodeling mechanisms

In terms of atrial structural remodeling, various inflammation

associated cytokines, such as TNF-α (62), IL-6 (65), PDGF (73,

105), galectin-3 (106), etc., can also induce the occurrence and

development of AF by promoting atrial fibrosis. TNF-α induces

atrial fibrosis and alters Cx40 expression by regulating the TGF-

β/Smad signaling, activating fibroblasts, and promoting MMP

secretion, thereby promoting the development of AF in mice

(62). IL-6 can also activate the TGF-β/Smad signaling pathway,

leading to cardiac fibrosis (107). In addition, a large number of

immunocytes in atrial tissue can also mediate the profibrotic

process (7, 108). After cardiac injury, macrophages can induce

the migration, proliferation, and activation of fibroblasts, and

promote ECM synthesis by producing various pro-inflammatory

cytokines (such as TNF-α and IL-6), profibrotic cytokines (such

as TGF-β and PDGF), and profibrotic proteases (such as MMP

and chymase), thereby exerting profibrotic effects (109–111).

Similarly, studies have shown that neutrophils, T cells, and mast

cells also participate in the profibrotic process (108, 110).

3.1.2 Feedback mechanisms by which AF
exacerbates inflammation

Conversely, AF can also induce inflammation, thereby further

promoting the development of AF (13, 14, 112). A prospective

study on patients with persistent AF found that after restoring

and maintaining SR, the levels of high-sensitivity CRP (hs-CRP)

in AF patients were significantly reduced [0.10 (SD 0.06) mg/dl
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vs. 0.29 (SD 0.13) mg/d1, p < 0.001] (113). Another case-control

study of AF patients also showed that the levels of CRP (3.1 mg/dl

vs. 1.7 mg/dl) and IL-6 (2.3 ng/ml vs. 1.5 ng/ml) were higher

during AF than during SR (114). In addition, a prospective study

on patients with atrial flutter also found that after radical ablation,

the levels of CRP (6.28 mg/L vs. 2.92 mg/L, p = 0.028) and IL-6

(p = 0.002) in patients with atrial flutter significantly decreased

(115). The above clinical studies all indicate that AF is the cause

of inflammation, not the result.

In a rapid atrial pacing induced AF dog model, we observed

elevated levels of TNF-a, IL-6, and CRP, shortened effective

refractory period, and increased AF susceptibility (116, 117). The

anti-inflammatory effect of prednisone could effectively reverse

this process and significantly shorten the AF duration (118).

However, the specific mechanism by which AF leads to

inflammation is currently unclear. Some studies suggested that

AF may trigger calcium overload in atrial myocytes, leading to

programmed cell death and the release of danger-associated

molecular patterns (DAMPs) to activate low-grade inflammatory

responses to repair cell damage (112, 119). A study evaluating

the relationship between cell free DNA (cfDNA) and AF found

that in the AF HL-1 cell model, unmethylated mitochondrial

cfDNA (mt-cfDNA) promoted the expression of IL-1β and IL-6,

indicating that AF could induce systemic inflammation through

cfDNA (120). Further in-depth research is needed on the

molecular mechanisms underlying AF induced inflammation.

From this, it can be concluded that inflammation may lead to

AF, and AF can also promote inflammation, forming a

vicious cycle.

3.2 Systemic inflammation and AF

Many systemic diseases are associated with low-grade

inflammation, which may be the source of AF associated

inflammation (5, 7, 112).

3.2.1 Severe sepsis
The incidence rate of AF in sepsis patients is high (121–123).

Meierhrich et al. found that CRP levels in septic shock patients

remained consistently and significantly elevated before the onset

of AF, which can prove that systemic inflammation is an

important factor in triggering AF (122).

3.2.2 Chronic inflammatory diseases

The risk of AF was significantly increased in patients with

rheumatoid arthritis (RA) (124–126). Although the underlying

mechanism of RA induced AF is complex, the key factor is still

systemic inflammatory response. Systemic inflammation

activation can not only produce substrates for promoting AF by

accelerating the development of ischemic heart disease (IHD)

and CHF, but also directly trigger AF by altering atrial

electrophysiology (127). A clinical study involving over 20,000

patients with autoimmune rheumatic disease (ARD) showed that

high CRP level was an independent predictor of AF in ARD

patients (HR 1.75, 95%CI 1.07–2.86, p = 0.04), indicating that the

risk of AF in ARD patients was influenced by inflammatory

responses (128). In addition, it was found in a rat model of RA

that the inducibility and duration of AF were obviously

increased, and the AF duration was significantly positively

correlated with serum IL-6 and TNF-α levels, indicating that RA

related systemic inflammation was associated with increased

susceptibility to AF (129). Psoriatic patients, especially those with

psoriatic arthritis, have an increased risk of developing AF (130,

131). The risk of AF was also significantly increased in patients

with inflammatory bowel disease (IBD) (132, 133). A study has

found that the P-wave dispersion in IBD patients, a risk factor

for the development of AF, was significantly higher than that in

healthy individuals (134). Another study has shown that atrial

electrical conduction was delayed in IBD patients, and chronic

inflammation activation might induce electrophysiological and

structural changes in atrial tissue, which is the main factor

leading to slowed atrial conduction velocity (135).

3.2.3 Hypertension

Hypertension is an independent risk factor for AF (136–138).

Ang II is a key molecule in the RAAS system and a major

mediator of hypertensive vasoconstriction. It can trigger systemic

inflammatory response by stimulating the production of

inflammatory cytokines, activating immunocytes, and promoting

immunocyte recruitment (139). Hypertension related

inflammation can induce atrial electrical and structural

remodeling, thereby triggering and maintaining AF. In

hypertensive sheep and rat models, an increase in atrial

inflammatory infiltration was observed, which was associated

with the occurrence of atrial fibrosis and remodeling (140, 141).

The pathogenesis of hypertension related inflammation induced

AF needs further clarification.

3.2.4 Metabolic disorders
Obesity is an important risk factor for new-onset AF in the

general population and patients after cardiac surgery (142–144).

Obesity can not only induce immunocyte activation and

infiltration into adipose tissue (145–147), but also promote the

secretion of a large number of inflammatory cytokines (148,

149). The resulting low-grade systemic inflammatory response

may lead to the occurrence and development of AF (150, 151).

Diabetes is also an important risk factor for AF (152, 153).

Inflammation in the context of diabetes can participate in atrial

electrical and structural remodeling, thus inducing AF (152, 154).

3.2.5 CAD
CAD is an important risk factor for AF (155). Some studies

suggested that chronic low-grade inflammatory response caused

by CAD may be a triggering factor for AF. Stellos et al. found

that there were differences in the expressions of platelet-bound

stromal cell-derived factor-1 (SDF-1) and plasma SDF-1 between

AF patients and SR population in CAD patients, and SDF-1 was

associated with inflammatory cell recruitment (156). A clinical

study found that IL-6 upregulation was significantly associated

with the occurrence of AF in CAD patients, indicating that IL-6

is an important biomarker for CAD associated AF (157).
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3.2.6 Cardiac surgery and ablation

The systemic inflammatory response after cardiac surgery and

radiofrequency catheter ablation is associated with the occurrence

and recurrence of AF (158). The ARMYDA-3 study showed that

postoperative high CRP level in patients receiving cardiac surgery

was associated with an increased risk of AF (159). Another

clinical study showed that IL-2 level in patients undergoing

coronary artery bypass grafting (CABG) was associated with

early postoperative AF (160). In a dog model of cardiac surgery

induced inflammation, it was observed that the degree of atrial

inflammation was associated with the inhomogeneity of atrial

conduction and increased AF duration, which may be a factor in

the early postoperative AF (161). In addition, multiple studies on

the recurrence of AF after catheter ablation have confirmed that

inflammatory biomarkers can serve as predictive factors for early

recurrence of AF (162–164).

3.3 Inflammatory markers and AF

Inflammatory markers can predict the risk of AF and the

prognosis of AF after cardioversion or ablation (165–167).

3.3.1 CRP
CRP is an acute inflammatory protein commonly used as a

biomarker for infection and inflammation in clinical practice

(168, 169). CRP, including hs-CRP, is currently one of the most

extensively studied inflammatory biomarkers for AF. Chung et al.

found that compared to individuals with SR, CRP levels were

elevated in patients with AF, and CRP levels were higher in

patients with persistent AF than in patients with paroxysmal AF

(91). Another study by Chung et al. showed that CRP is not only

associated with the presence of AF, but can also predict the risk

of AF in the future (170). Studies have shown that elevated CRP

was significantly associated with an increased risk of mortality in

patients with AF (171). CRP can also predict the risk of

recurrence of AF after electrical cardioversion, catheter ablation,

or cardiac surgery (166, 167, 172–174). In addition, hs-CRP is

also associated with the occurrence and persistence of AF.

Studies have shown that hs-CRP level is an independent

predictor of successful AF cardioversion and SR maintenance

after cardioversion (175, 176).

3.3.2 Interleukins

Interleukin is a type of cytokine secreted by lymphocytes,

macrophages, and other cells, which plays an important role in

inflammatory responses (177). Among them, IL-6 has been

relatively extensively studied in the field of AF. It was found that

the increase of IL-6 was related to the increase of incidence of

AF (157). Elevated IL-6 was significantly associated with

increased risk of mortality in patients with AF (171). In addition,

an increase in IL-6 was also associated with the prothrombotic

state of AF (178). There is evidence to suggest that IL-6 could be

used to predict the risk of AF after CABG (179) and the risk of

AF recurrence after catheter ablation (166). Amdur et al. also

found that plasma IL-6 level was an independent predictor of AF

in patients with chronic kidney disease (CKD) (180). Other

interleukins have also been shown to be associated with the

occurrence and development of AF. Hak et al. found a direct

correlation between serum IL-2 levels and AF after CABG, and

IL-2 could serve as a predictive indicator for early AF after

CABG (160). Moreover, serum IL-2 level could be used to

predict the risk of AF recurrence after cardioversion or ablation

(181, 182). Li et al. found that the level of IL-8 in the serum of

patients with AF was elevated (183). Liuba et al. found that

plasma IL-8 levels in the femoral vein, right atrium, and

coronary sinus were elevated in patients with permanent AF

compared to those with paroxysmal AF (184). Studies have

shown that IL-8 was a predictive factor for new-onset AF in

CAD patients after CABG (185–187). In addition, there is

evidence to suggest that IL-1, IL-10, IL-18, etc. are also

associated with AF (92, 112).

3.3.3 TNF-α

TNF-α is a multifunctional pro-inflammatory cytokine that

plays an important role in local and systemic inflammatory

responses (188). Compared with individuals with SR, patients

with AF had elevated levels of TNF-α (189), and the same

phenomenon has also been observed in the context of valvular

disease (190). In addition, the levels of TNF-α increased

sequentially in patients with paroxysmal, persistent, and

permanent AF (183). The above studies all indicate a close

correlation between TNF-α levels and AF.

3.3.4 Immunocyte population
White blood cell (WBC) count and neutrophil-to-lymphocyte

ratio (NLR) are also common biomarkers of AF inflammation.

Weymann et al. found that both WBC count and NLR were

potential predictors for new-onset and recurrent AF (191). The

Framingham Heart Study results showed a significant correlation

between an increase in WBC count and AF events (192). Studies

have shown that an increase in WBC count was an independent

predictive factor of AF after cardiac surgery (193–195). In

addition, after electrical cardioversion for persistent AF, the

WBC count of patients maintaining SR was significantly reduced

compared to those with early AF recurrence (196). And NLR can

not only predict the risk of new-onset AF, but also predict the

risk of recurrence of AF after cardiac surgery, radiofrequency

ablation, and cardioversion (197–199).

3.3.5 Others
MCP-1 is also an important pro-inflammatory cytokine that

plays a crucial role in the occurrence and development of

inflammation (200). Studies have shown that MCP-1 level was

significantly increased in patients with AF (183, 201).

Myeloproxidase (MPO) is a heme-containing protease secreted

by neutrophils, which can participate in regulating the body’s

inflammatory response (202). There were studies confirming that

patients with high MPO levels in paroxysmal AF had an

increased risk of AF recurrence after catheter ablation (164, 203).

Heat shock protein (HSP) is an important molecular chaperone
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protein in the body that can exert anti-inflammatory effects to

protect the body from inflammatory damage (204). Currently,

research has found that HSP27 and HSP70 can predict

postoperative AF recurrence, and their mechanisms may be

related to inflammation (205–207).

4 Relationship between atrial fibrosis
and inflammation

As the two main factors that induce and maintain AF, atrial

fibrosis and inflammation are closely related (208, 209). As

mentioned earlier, various pro-inflammatory cytokines and

activated immunocytes can mediate the occurrence of atrial

fibrosis through multiple mechanisms (7, 62, 108). Activated

cardiac fibroblasts during fibrosis can also enhance local

inflammatory responses by releasing inflammation associated

cytokines and growth factors, and recruiting and activating more

immunocytes (210, 211). At the level of molecular mechanism,

the crosstalk between fibroblasts and immunocytes provides a

good explanation for the self-sustaining relationship between

fibrosis and inflammation: in damaged hearts, inflammatory cells

can trigger the proliferation and differentiation of fibroblasts into

myofibroblasts by releasing a large amount of inflammatory

mediators; Conversely, myofibroblasts can also produce a large

amount of collagen and chemokines, which further activate

inflammatory cells and attract other immunocytes to enhance

cardiac inflammatory response (15, 212, 213). In addition, there

is clinical evidence supporting the view that there is a link

between atrial fibrosis and inflammation. A study on evaluating

left atrial remodeling in non-valvular AF showed that compared

with SR patients, AF patients had significantly higher levels of NLR

and hs-CRP, and NLR showed a highly significant correlation with

LA volume index, indicating that AF inflammatory markers were

associated with atrial remodeling (214). From this, it can be seen

that inflammation leads to atrial fibrosis, and atrial fibrosis

enhances local inflammatory response, forming a vicious cycle that

synergistically increases the risk of AF (Figure 2).

Current studies have demonstrated that both atrial fibrosis and

inflammatory responses are significantly associated with the risk of

FIGURE 2

The malignant cycle between fibrosis and inflammation. In damaged heart, inflammatory cells trigger the phenotypic transformation of FBs into

myofibroblasts by releasing a large amount of pro-inflammatory cytokines; Conversely, myofibroblasts produce a large amount of collagen and

chemokines, which further activate inflammatory cells, and recruit and activate more immunocytes to enhance the cardiac inflammatory

response. The malignant cycle between fibrosis and inflammation jointly triggers and maintains AF.
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AF recurrence after ablation therapy (215, 216). From a

pathophysiological perspective, the vicious cycle formed between

inflammatory mediators and fibrotic progression may serve as a

critical underlying factor contributing to poor clinical outcomes.

A deeper understanding of this interaction mechanism may hold

important clinical significance for the future development of

multi-target combination therapeutic strategies (such as

combined anti-inflammatory and anti-fibrotic therapies),

potentially offering novel treatment approaches to improve long-

term prognosis in patients with AF.

5 Detection tool for atrial fibrosis

We have previously pointed out that atrial fibrosis is the core

pathophysiologic basis for the occurrence and maintenance of

AF. Mechanistically, atrial fibrosis constitutes a potential

substrate for arrhythmogenesis in AF, which leads to slowing and

blocking of electrical conduction, increasing conduction

heterogeneity, and formation of reentrant circuits, creating

conditions for arrhythmia (217, 218). The triggered activities and

arrhythmogenic substrates may interact to jointly promote the

occurrence and persistence of AF (9, 55). Clinical evidence also

demonstrated that the presence and severity of atrial fibrosis are

closely related to poor clinical outcomes in AF patients.

A retrospective study found that more severe LA fibrosis

significantly increased the risk of stroke and transient ischemic

attack in AF patients (219). Moreover, for AF patients

undergoing catheter ablation, the degree of LA fibrosis was

positively correlated with increased risk of recurrent arrhythmia

and increased demand for repeat ablation (31, 220–222).

Therefore, how to accurately detect and quantify atrial fibrosis

has become an important issue in clinical diagnosis and

treatment of AF. Currently, the main means used in clinical

practice to detect atrial fibrosis include direct detection of fibrosis

using late gadolinium enhancement (LGE) displayed by cardiac

magnetic resonance (CMR), as well as indirect detection of

fibrosis using low voltage areas (LVA) on electroanatomic

mapping (EAM) and LA strain measured by speckle tracking

echocardiography (STE) (9, 223).

5.1 LGE magnetic resonance imaging (LGE
MRI)

The LGE displayed by CMR has long been proven to be useful

for quantifying the degree of LA fibrosis in AF patients (224, 225).

The visualization principle of atrial fibrosis area is based on altered

washout kinetics of gadolinium. Compared with normal

myocardial tissue, gadolinium accumulates in the fibrotic area,

resulting in high enhancement in this area, while healthy tissue

appears as non-enhanced images (226). The degree of atrial

fibrosis was quantified using the Utah classification system

proposed by Marrouche et al., and divided into four stages based

on the proportion of gadolinium enhancement amount to

LA wall volume: stage 1 (<10%), stage 2 (≥10% ≤20%), stage 3

(≥ 20% ≤30%), and stage 4 (≥30%) (31). As an evaluation

indicator of atrial fibrosis, LGE detected by CMR and LVA on

EAM have mutually confirmed (224, 227). Compared with

echocardiography and EAM, CMR exhibits unique advantages in

evaluating LA fibrosis. It is less likely to be affected by wall

tracing errors (strain and strain rate obtained through

echocardiography) and tissue contact (EAM), and can more

comprehensively capture potential fibrotic lesions (228, 229).

However, the clinical popularization of CMR technology faces

practical obstacles. Some medical institutions lack MRI

equipment or physicians with CMR expertise, greatly limiting the

widespread application of this technology (230). Therefore, under

limited conditions, applying indirect evaluation methods such as

echocardiography and EAM to detect LA fibrosis is a more

clinically feasible alternative.

5.2 EAM

The presence of LVA on EAM is considered as a surrogate for

the detection of LA fibrosis (9, 223). LA voltage maps are created

through thousands of voltage points mapped onto the atrial

endocardium’s geometric model.LA bipolar voltage amplitude

measured by voltage maps is taken to define LVA, characterizing

LA fibrosis (231). LVA is usually defined as a bipolar voltage

amplitude of less than 0.5 mV (232, 233). However, the voltage

threshold of LVA has not been histologically validated (231).

Although there is a lack of histological evidence linking LVA to

LA fibrosis, previous studies have revealed a high consistency

between LVA displayed on EAM and fibrosis areas quantified by

LGE MRI (224, 234, 235). It is known that the voltage mapping

collected by EAM has some limitations, mainly because the

voltage signals change with changes in cycle length and direction

of wavefront caused by electrode position, size, and spacing, as

well as tissue contact (229, 236).

Substrate mapping based solely on LA LVA measured by EAM

cannot fully and accurately quantify LA fibrosis. Regarding this,

some scholars have proposed the concept of LA spatial entropy

(LASE) measured by EAM, attempting to further characterize LA

fibrosis. In the field of cardiac research, entropy can be used to

analyze the homogeneity of cardiac tissue and predict related

cardiac events (237). There are currently research reports on

Shannon entropy, a signal amplitude distribution index, which

can be used to measure signal complexity of atrial electrograms,

assist AF rotor mapping, assess the nature of AF rotors

(238–240). The concept of entropy can also be applied to LA

electrical activities. If the amplitude range of atrial voltage is

uniform, then entropy will be high. On the contrary, if there is

fibrosis present, the distribution of electrical activities will be

uneven, leading to skewed probability distribution and a decrease

in entropy (237). Gigli et al. demonstrated on this basis that

LASE can clearly distinguish between paroxysmal and persistent

AF, as well as normal and abnormal LA fibrotic substrates, and

is independent of heart rhythm during map collection (241).

LASE is a highly sensitive and specific measurement tool that
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can serve as an auxiliary tool for predicting fibrosis substrates based

on EAM.

5.3 Two-dimensional (2D) STE

LA strain has been widely recognized as a key indicator for

evaluating LA myocardiac deformation (242), and its

measurement can be achieved through feasible and reproducible

2D STE (243). In recent years, further research has found that

LA strain can also serve as an emerging tool for evaluating LA

function (244, 245). Scholars have confirmed that in AF patients,

the degree of LA wall fibrosis displayed by LGE MRI was

negatively correlated with LA longitudinal strain and strain rate

measured by 2D STE (246, 247). In addition, studies have

pointed out that cine CMR can also be used for myocardiac

feature tracking to quantify LA longitudinal strain and strain rate

(248, 249). It should be noted that LA strain and strain rate as

alternative indicators for evaluating LA fibrosis also has some

drawbacks, such as vendor dependence in LA strain

measurement, lack of recognized LA strain reference values,

technical bottlenecks in STE image acquisition, etc. (226, 250–252).

6 Strategies for treating AF

Targeted intervention in fibrosis and inflammation is a

promising treatment strategy for AF, mainly including catheter

ablation, RAAS inhibition, anti-inflammatory therapy, lifestyle

changes and risk factor management.

6.1 Catheter ablation

In recent years, catheter ablation has been increasingly used in

the clinical treatment of AF and is the most effective means of

rhythm control for AF (253). Pulmonary vein isolation (PVI) is

the foundation of catheter ablation. Although a simple PVI

strategy can treat most patients with paroxysmal AF, patients

with persistent AF who receive catheter ablation therapy face

problems such as recurrent arrhythmias after ablation, low long-

term success rates, and the need for repeat ablation (254–256).

Atrial fibrosis is an important predictor of poor response to

PVI ablation for AF (31, 257). There are significant differences in

the localization and degree of LA fibrosis among AF patients,

which can serve as individual fingerprints reflecting potential

arrhythmogenic substrates. Therefore, accurate localization and

quantification of atrial fibrosis may provide strong support for

personalized ablation strategies in AF patients (258). We have

previously described in detail the techniques used clinically to

detect atrial fibrosis, including LGE MRI, EAM, and STE. These

tools can be used to supplement PVI strategies to improve the

effectiveness of catheter ablation. Some research reported that

targeted therapy for atrial fibrosis detected by LGE MRI is a

novel custom-tailored ablation strategy for treating recurrent

arrhythmia after AF ablation (258, 259). Many researchers have

demonstrated that fibrotic substrate modification based on LA

LVA detected by EAM is a new assistant technology for PVI

ablation. Compared with AF patients who only received PVI

ablation, patients who received further LVA guided substrate

modification had a significantly lower recurrence rate of AF (260,

261). This indicates that this personalized arrhythmogenic

substrate modification can effectively improve the prognosis of

PVI ablation in AF patients. Kottkamp et al. applied a patient-

tailored modification strategy targeting fibrotic substrates to AF

patients undergoing catheter ablation: box isolation of fibrotic

areas. This strategy provides a new treatment option for AF

patients undergoing simple PVI ablation by performing

circumferential isolation on EAM characterized fibrotic substrates

(LVA: <0.5 mV) (262). Clarifying the individual distribution and

quantity of LA fibrotic substrates may provide personalized ideas

for the prevention, diagnosis, and treatment of AF patients. For

example, the burden of LA fibrosis in AF patients can be

included in the AF risk stratification and staging system. The

substrate modification targeting LA fibrosis can be applied as a

supplementary strategy for PVI ablation. However, these ideas

need to be confirmed and validated for their effectiveness in

prospective, multi-center, randomized clinical studies.

Interestingly, the clinical outcomes of AF ablation show

significant sex differences. Compared with male AF patients,

women who undergo catheter ablation have a higher risk of

arrhythmia recurrence, lower rates of arrhythmia free survival, and

increased risks of postoperative complications and

rehospitalization (263–265). These observations suggest that the

AF mechanism may vary by gender. LGE MRI showed that

women had a greater burden of atrial fibrosis compared to men

(266). A histological analysis involving fibrosis markers also

showed that women had a higher degree of atrial fibrosis than

men (267). In addition, LA LVA measured by EAM was more

likely to occur in females than males, which was a powerful

predictor of AF recurrence after ablation (268). Based on this,

Wong et al. demonstrated significant sex differences in atrial

electrophysiology in AF patients using high-density EAM,

characterized by female AF patients having more advanced atrial

substrates, including lower voltage, slower conduction velocity, and

a higher proportion of complex fractionated potentials (269). The

above research provides important reference for conducting gender

specific risk stratification and developing personalized ablation

strategies in clinical practice, helping optimize the diagnosis and

treatment protocols for AF patients of different genders.

6.2 RAAS inhibition

As discussed earlier, RAAS activation can promote the

formation of atrial fibrosis (270–272). Multiple studies have shown

that ACEIs, angiotensin II receptor blockers (ARBs), and

mineralocorticoid receptor antagonists (MRAs) reduce the

progression of atrial fibrosis by inhibiting RAAS activation,

thereby treating AF (37, 44, 273–277). In addition, RAAS

activation has also been shown to be closely related to

inflammation (278–280). Studies have shown that ACEI/ARB can
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effectively reduce levels of pro-inflammatory cytokines (281, 282),

which may be a mechanism for treating AF (283). Sacubitril/

valsartan (Sc/Pal) is currently a relatively new drug for treating HF

(284). Sc/Pal can simultaneously antagonize angiotensin receptors

and neprilysins, exerting anti-inflammatory, anti-fibrotic, and anti-

hypertrophic effects by blocking AT1R and inhibiting natriuretic

peptide degradation (285–288). It was showed that Sc/Pal can

improve left atrial and left atrial appendage function in patients

with AF and pressure-overloaded mice, which may be a new

approach for treating atrial remodeling and AF (289).

6.3 Anti-inflammatory therapy

Multiple clinical studies have confirmed that some anti-

inflammatory drugs, such as steroids (290–294), colchicine

(295–299), and statins (300–305), can effectively prevent the

recurrence of AF after ablation or cardioversion, as well as new-

onset AF after cardiac surgery. In addition, drugs targeting

inflammatory cytokines are gradually being applied in

cardiovascular and cerebrovascular diseases (306–309). However,

potential risks in clinical application require vigilance. A case

report documented recurrent AF episodes in a multiple sclerosis

patient following high-dose methylprednisolone (a glucocorticoid)

treatment (310). While colchicine reduces AF recurrence rates, it

increases gastrointestinal adverse effects (311). Although these

anti-inflammatory drugs show promise in cardiovascular disease

treatment, their precise efficacy in AF management requires

further research validation. Clinical practice should incorporate

individualized risk-benefit assessments based on patient

characteristics. Future studies need to further elucidate drug

mechanisms and optimize treatment protocols to achieve safe and

effective personalized therapy.

6.4 Lifestyle changes and risk factor
management

Inflammation related risk factors of AF include obesity, lack of

exercise, hypertension, diabetes, sleep apnea, smoking/drinking

habits (138, 312). Multiple studies have confirmed that managing

the above risk factors can effectively prevent the occurrence of

AF, help AF patients reduce the burden of AF symptoms,

maintain SR, and reduce AF recurrence (313–317).

7 Conclusion

The pathophysiology of AF is very complex, and atrial fibrosis

and inflammation play key roles in it. Atrial fibrosis and

inflammation are simultaneous and mutually reinforcing

processes in the occurrence and development of AF, and they

synergistically promote atrial remodeling, leading to the

occurrence and persistence of AF. A better understanding of the

role, characteristics, and mechanisms of atrial fibrosis and

inflammation during AF may help identify new clinical

biomarkers and develop new, personalized, and more effective

treatments for AF.
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