
EDITED BY

Pasqualino Sirignano,

Sapienza University of Rome, Italy

REVIEWED BY

Shankar Chanchal,

National Institutes of Health (NIH),

United States

Flavia Del Porto,

Sapienza University of Rome, Italy

*CORRESPONDENCE

Jian Chang

changjiancn@163.com

Shujie Gan

ganshujiedt@163.com

RECEIVED 18 February 2025

ACCEPTED 30 May 2025

PUBLISHED 30 June 2025

CITATION

Chen W, Zhu Y, Niu S, Zhou Y, Chang J and

Gan S (2025) Microarray profile of circular

RNAs identifies CBT15_circR_28491 and T

helper cells as new regulators for deep vein

thrombosis.

Front. Cardiovasc. Med. 12:1578711.

doi: 10.3389/fcvm.2025.1578711

COPYRIGHT

© 2025 Chen, Zhu, Niu, Zhou, Chang and Gan.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Microarray profile of
circular RNAs identifies
CBT15_circR_28491 and
T helper cells as new regulators
for deep vein thrombosis

Weiwei Chen
1
, Ying Zhu

1
, Sihua Niu

1
, Yan Zhou

2
, Jian Chang

1*

and Shujie Gan
3*

1Department of Nursing, Shanghai General Hospital, Shanghai Jiao Tong University School of Nursing,

Shanghai, China, 2Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong

University School of Medicine, Shanghai, China, 3Department of Vascular Surgery, Shanghai General

Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: Deep vein thrombosis (DVT) is the third most common

cardiovascular disorder and can lead to high mortality and morbidity. This

study aimed to clarify the molecular and immune characteristics of circular

RNAs (circRNAs) and messenger RNAs (mRNAs) in DVT progression.

Methods: DVT-associated dataset GSE148333 was downloaded to screen

differentially expressed circRNAs and mRNAs using the limma package. DVT-

related modules/genes were then filtered using WGCNA. Subsequently, key

hub genes associated with DVT were determined using four algorithms: MCC,

MNC, EPC, and DEGREE. A circRNA–miRNA–hub gene network was then

constructed, and the relationship between the DVT-related hub genes and

immunity was analyzed. Finally, a DVT rat model was established to verify the

expression of critical circRNAs and hub genes using real-time quantitative PCR.

Results: A total of 421 circRNAs and 1,082 mRNAs were differentially expressed

in DVT. Among these, 235 circRNAs and 207 mRNAs were identified as DVT-

related and were significantly enriched in signaling pathways including NOD-

like receptor, mTOR, FoxO, p53, and cell cycle. Thereafter, 17 important hub

genes were obtained, including Birc5, Plk4, Dlgap5, Spag5, Cdca2, Ccnb1,

Cdca8, Kif18a, Kif2c, Espl1, Cenpu, Cdc20, Ncapg, Asf1b, Nek2, Aurkb, and

Cenpw. Subsequently, 227 circRNA–miRNA pairs and 84 miRNA–hub gene

pairs were included to construct a circRNA–miRNA–hub gene network,

containing CBT15_circR_28491-rno-miR-139-3p-Kif18a/Cdca8/Nek2. Eight

immune cell types showed differential infiltration levels in DVT and controls,

with T helper cells positively related with all 17 hub genes.

Conclusions: This study offers valuable information about circRNAs and mRNAs

in DVT, identifying CBT15_circR_28491-rno-miR-139-3p-Kif18a/Cdca8/Nek2 as

a potential target for DVT management.
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1 Introduction

Lumen stenosis and venous return obstruction are signs

of deep vein thrombosis (DVT), resulting from abnormal

coagulation of blood in the deep veins (1). According to

statistical data, 90% of venous thromboembolisms (VTEs) are

caused by DVT, which is accepted as the third most common

cardiovascular disorder. Clinically, 90% of VTEs are caused by

DVT (2). Approximately half of DVT cases are linked to

transient risk factors, and these events are often preventable

with prophylaxis, including direct oral anticoagulants and

vitamin K antagonists. However, once VTE is diagnosed,

many patients require long-term anticoagulation. Meanwhile,

25%–40% of DVT patients experience post-thrombotic syndrome,

which significantly impacts their quality of life (3). Further

comprehensive research is needed to improve the prevention and

early diagnosis of DVT.

Several risk factors have been reported to contribute to the

development of DVT. In particular, with the advancement of

high-throughput sequencing, more genomic information has

been captured, which was superior to traditional population-

based risk algorithms for identifying patients with different

diagnoses, prognoses, and responses to specific drug treatments

(4, 5). Although the molecular mechanisms underlying DVT

remain unclear, previous evidence suggests that non-coding

RNAs may be involved in its development (6). Circular RNAs

(circRNAs), a class of non-coding RNAs, can regulate gene

expression by acting as microRNA (miRNA) sponges. In recent

years, several studies have reported the roles of circRNAs in the

diagnosis and treatment of cardiovascular disease (7, 8). For

example, hsa_circ_000455 has been identified as an important

biomarker in the pathogenesis of DVT by sponging hsa-miR-

22-3p and subsequently targeting NLRP3 (6). Similarly, Lou et al.

showed that the hsa_circ_0001020/miR-29c-3p/MDM2 axis may

serve as a prospective therapeutic biomarker for DVT (9).

Despite significant progress in identifying molecular biomarkers,

further investigation into high-risk dysregulations is still needed

to improve DVT management.

In addition, we focused on identifying hub genes—key

regulatory molecules that occupy central positions in gene co-

expression or protein–protein interaction (PPI) networks—in our

bioinformatics analysis. Hub genes are characterized by high

connectivity (degree), interacting with numerous other genes or

proteins, and often play crucial roles in modulating biological

pathways (10). In disease studies, hub genes are frequently

implicated as drivers of pathological processes, making them

potential diagnostic markers or therapeutic targets (11–13). For

example, in cardiovascular diseases, hub genes such as F3

(coagulation factor III) and SERPINE1 (plasminogen activator

inhibitor-1) have been linked to thrombotic risk through their

central roles in hemostasis networks (14). In this study, we

applied weighted gene co-expression network analysis (WGCNA)

and degree-based ranking to pinpoint hub circRNAs/messenger

RNAs (mRNAs) associated with DVT.

To achieve this, we downloaded GSE148333 to screen for

differentially expressed circRNAs and mRNAs between

DVT and control samples. The key DVT-related hub genes

were then identified by combining results from four algorithms,

and a circRNA–miRNA–hub gene regulatory network was

constructed. Furthermore, we analyzed the correlation between

the expression levels of hub genes and the infiltration of

immune cells that showed significant differences in DVT.

Finally, a DVT rat model was established to validate the

expression levels of crucial circRNAs and hub genes using real-

time quantitative PCR (RT-qPCR). Our findings will advance

the mechanistic understanding of DVT pathogenesis and

identify promising molecular targets for the development of

innovative therapeutic interventions.

2 Materials and methods

2.1 Data source and pre-processing

To obtain the high-throughput expression profile of DVT, we

searched the National Center for Biotechnology Information

(NCBI) gene expression omnibus (GEO) database (http://www.

ncbi.nlm.nih.gov/geo/) using “Deep Venous Thrombosis” as the

keyword on 11 May 2024. Because our analysis required the

simultaneous detection of circRNAs and mRNAs, only dataset

GSE148333 (15) was selected for further analysis. This dataset

includes both circRNA and mRNA expression levels from blood

samples of three control rats and 12 DVT rats, sequenced using

the Illumina HiSeq 2000 (Rattus norvegicus). The expression

profile was then standardized using the preprocessCore package

(version 19, https://www.bioconductor.org/packages/release/bioc/

html/preprocessCore.html) (16) in R version 4.3.1, based on the

quantile method.

2.2 Screening of differentially expressed
circRNAs and mRNAs

Differentially expressed circRNAs and mRNAs between

DVT and control samples were screened using the limma package

in R version 4.3.1 (version 3.34.7, https://bioconductor.org/

packages/release/bioc/html/limma.html) (17), after standardization.

A significance threshold of P < 0.05 and |log2fold change|>1 was

applied. The differentially expressed circRNAs and mRNAs were

then clustered based on expression levels using the pheatmap

package in R (version 1.0.8, https://cran.r-project.org/package=

pheatmap) (18), and corresponding heatmaps were generated.

The Database for Annotation, Visualization, and Integrated

Discovery (DAVID, version 6.8, https://david.ncifcrf.gov/) (19, 20)

was used for functional annotation. To explore the functions

enriched among the differentially expressed circRNAs and

mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

conducted using DAVID. GO analysis included three categories:

molecular function (MF). which describes activities at the

molecular level; cellular component (CC), which refers to a

location; and biological process (BP), which represents
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molecular activities or processes. P < 0.05 was set to determine

significant enrichment.

2.3 Screening of DVT-related genes based
on the WGCNA algorithm

WGCNA is a bioinformatics algorithm used to build co-

expression networks, identify disease-associated modules, and

screen for important pathogenic mechanisms or potential

therapeutic targets. Modules associated with disease states were

identified using the WGCNA package (version 1.61) (21) in

R version 4.3.1, based on circRNA and mRNA expression levels.

The module partitioning thresholds were set as follows: each

module contained at least 200 genes, with a cutHeight of 0.995.

Modules showing an absolute correlation with disease status

greater than 0.3 were retained, and the genes within these

modules were considered candidate disease-related genes. Next,

overlapping circRNAs and mRNAs between the retained disease-

related modules and the differentially expressed circRNAs and

mRNAs identified in DVT were defined as DVT-related genes.

The cor function in R version 4.3.1 was then used to calculate

the correlation between the expression levels of DVT-related

circRNAs and mRNAs. Correlation pairs with P < 0.05 and an

absolute correlation value greater than 0.3 were retained. Finally,

a co-expression network of DVT-related circRNAs and mRNAs

was constructed and visualized using Cytoscape (version 3.9.0,

http://www.cytoscape.org/) (22).

2.4 Construction of the PPI network and
identification of hub genes

The STRING database (version: 11.0, http://string-db.org/) was

used to identify interactions among the protein products of the

DVT-related genes (23), and the resulting PPI network was

visualized using Cytoscape (version 3.9.0) (22). The constructed

PPI network was then analyzed using cytoHubba (version 0.1)

(24), a module detection plug-in for Cytoscape3.9.0. Hub genes

were identified based on four topological analysis algorithms:

Matthews correlation coefficient (MCC), maximum

neighborhood component (MNC), edge percolated component

(EPC), and DEGREE. After comparing the obtained hub genes

by the four respective algorithms, the overlapping ones were

defined as important hub genes related to DVT. Furthermore, a

principal component analysis (PCA) (25) was performed using

the psych package (version 1.7.8, https://cran.r-project.org/web/

packages/psych/index.html) in R version 4.3.1, based on the

expression levels of the selected important DVT-related hub genes.

2.5 Construction of the regulatory network
based on the key DVT-related hub genes

First, the sequences of DVT-related circRNAs were extracted,

and rat miRNA sequences were downloaded from the miRBase

database (https://www.mirbase.org/) (26). The potential

interactions between circRNAs and miRNAs were then predicted

using the miRanda tool (http://cbio.mskcc.org/miRNA2003/

miranda.html), with the following alignment parameters: gap

extend = 0, score threshold = 80, energy threshold =−20, and

matched sequence percentage threshold = 80% (27).

Next, the target genes of the identified miRNAs were predicted

using the miRWalk 3.0 database (http://129.206.7.150/) (28). These

were compared with the previously identified DVT-related hub

genes, and the overlapping genes were defined as regulatory hub

genes (29). Finally, a circRNA–miRNA–hub gene regulatory

network was constructed based on the circRNA–miRNA and

miRNA–hub gene interactions and was visualized using

Cytoscape (version 3.9.0) (22).

2.6 Correlation analysis of the key DVT-
related hub genes and immunity

Using the single-sample gene set enrichment analysis

algorithm in R version 4.3.1, immune cell infiltration in the

TCGA dataset was analyzed with the Gene Set Variation

Analysis for microarray and RNA-Seq data (GSVA, version

1.36.3, http://www.bioconductor.org/packages/release/bioc/html/

GSVA.html) (30). The correlations between immune cell types

across samples were then calculated. Later, the Kruskal–Wallis

test in R version 4.3.1 was used to compare differences in

immune cell infiltration between the DVT and control groups.

Finally, the correlation between the expression levels of

important hub genes and the infiltration levels of immune cells

showing significant differences in DVT was assessed.

2.7 Experimental validation of expression
levels of the identified crucial circRNAs
and mRNAs

Four key circRNAs (CBT15_circR_28491, CBT15_circR_6215,

CBT15_circR_10888, and CBT15_circR_40191) and four

important hub genes (Kif18a, Cdca8, Nek2, and Ncapg) were

randomly selected for RT-qPCR in a DVT rat model.

A total of 12 male Sprague Dawley rats (10–12 weeks old, 250–

300 g) were purchased from SLAC (Shanghai, China) and housed

under controlled conditions: a 12 h light/dark cycle, mean

ambient temperature of 23 ± 3°C, relative humidity of 55%–60%,

and ad libitum access to food and water. After 7 days of

acclimatization, the rats were randomly divided into sham and

DVT groups (n = 6 per group). The DVT rat model was

established by inferior vena cava (IVC) stenosis (31). Rats were

anesthetized by intraperitoneal injection of 0.3% sodium

pentobarbital (30 mg/kg) and placed in a supine position. After a

midline laparotomy, the intestines were exteriorized and placed

to the animal’s left side, and the IVC was carefully isolated from

surrounding tissues and partially ligated below the renal veins,

with all visible tributaries fully ligated. Rats in the sham group

underwent the same surgical procedure without vascular ligation.
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Postoperatively, all rats were housed under the same environmental

conditions with free access to food and water. At 24 h

postoperatively, all rats were deeply anesthetized with 2%

isoflurane and then euthanized by cervical dislocation. However,

before sacrifice, approximately 2 ml of venous blood were

collected for subsequent RT-qPCR analysis from the suprarenal

IVC under anesthesia induced in a 3%–4% isoflurane chamber

and maintained at 1%–2% via face mask. All animal procedures

were approved by the Animal Care and Ethics Committee of

Shanghai General Hospital (approval no. 2025AW015).

Total RNA was isolated from the blood samples of both groups

using TRIzol (Invitrogen, USA), and reverse transcribed into

cDNA using the PrimeScriptTM RT Master Mix (TAKARA,

Japan). RT-qPCR was then performed using SYBR Green PCR

Master Mix (Thermo Scientific, USA) on an ABI Viia7 real-time

PCR system (Applied Biosystems, CA, USA). The relative

expression levels of the circRNAs (CBT15_circR_28491,

CBT15_circR_6215, CBT15_circR_10888, and CBT15_circR_

40191) and hub genes (Kif18a, Cdca8, Nek2, and Ncapg) were

calculated using the 2−ΔΔCt method, normalized to internal

GAPDH. The primer sequences used are listed in Table 1.

2.8 Statistical analysis

Data are presented as mean ± standard deviation, and statistical

analyses were performed using GraphPad Prism version 9.0.

Comparisons between the two groups were conducted using

an unpaired t-test. A P-value < 0.05 was considered

statistically significant.

3 Results

3.1 Identification and functional analysis of
differentially expressed circRNAs and
mRNAs in DVT

To identify differentially expressed circRNAs and mRNAs, data

standardization was first performed for circRNAs (Figure 1A) and

mRNAs (Figure 1B). After standardization, the expression levels of

circRNAs and mRNAs were consistent within the same group

(Figures 1A,B). Differential expression analysis using the limma

package identified 421 differentially expressed circRNAs (348

downregulated and 73 upregulated circRNAs) (Figure 1C) and

1,082 differentially expressed mRNAs (605 downregulated and

477 upregulated) (Figure 1D) in the DVT group. Hierarchical

clustering heatmaps demonstrated that the identified

differentially expressed circRNAs and mRNAs could clearly

distinguish DVT samples from control samples (Figures 1C,D).

Functional enrichment analysis of the differentially

expressed mRNAs revealed significant involvement in 65 BP

terms (Figure 1F), including “GO:0051301 ∼ cell division,”

“GO:0006364 ∼ rRNA processing,” “GO:0000723 ∼ telomere

maintenance”; 63 CC terms (Figure 1F), including “GO:

0005829∼ cytosol,” “GO:0005654∼ nucleoplasm,” “GO:0005739∼

mitochondrion”; 41 MF terms (Figure 1G), including “GO:

0005515∼ protein binding,” “GO:0005524∼ATP binding,” and

“GO:0003723∼RNA binding”; and 28 KEGG pathways

(Figure 1H), including “hsa01100: Metabolic pathways,” “hsa04142:

Lysosome,” and “hsa04210: Apoptosis.”

3.2 Determination and functional analysis
of the DVT-related circRNAs and mRNAs
using WGCNA

For mRNAs, when the power was set to 16, the average node

connectivity of the constructed co-expression network was 1

(Figure 2A). The minimum number of genes for each module

was set to 200 and the cutHeight to 0.995, resulting in the

identification of 10 modules (Figure 2B). Furthermore, four

modules (blue, magenta, brown, and red, involving 939 mRNAs)

showed an absolute correlation value higher than 0.3 and were

retained (Figure 2C).

For circRNAs, when the power was set to 9, the average node

connectivity of the constructed co-expression network was 1

(Figure 2D). The minimum number of genes for each module was

set to 200 and the cutHeight to 0.995, resulting in the

identification of nine modules (Figure 2E). Of these, three modules

(blue, brown, and red, involving 910 circRNAs) with an absolute

correlation value higher than 0.3 were retained (Figure 2F).

Next, the selected DVT-related circRNAs and mRNAs were

compared with the aforementioned differentially expressed

circRNAs and mRNAs, resulting in 235 overlapping circRNAs

TABLE 1 The sequences of all primers.

Primer Forward sequences (5′−3′) Reverse sequences (5′−3′)

CBT15_circR_28491 GGTATTCTTTGGTTCTTGCCTCG ATCCTCCTGCCTCAGCCTCC

CBT15_circR_6215 GCAAGACCCAAAGCCAAGCA CAAGGGCATCATCCCAGCAT

CBT15_circR_10888 CCCTGGAAATCTGGACACTCT GGTCTGGGCTGACTTCTGGT

CBT15_circR_40191 TCGCATACATGATGTAATTG GTGCTTGAGAAGAAGAGGAA

Kif18a ATCTTACCACTGGCTCTTCT GACACGGACAACTACTTTCA

Cdca8 AAGCAAATTGAGTCCGACAG TTTATGGCTTCATCCACCTC

Nek2 TTCCTGGACAGCAAGCACAA TTCAAGCCATCAGAGTAGCG

Ncapg TCCGTTCTCCATTCCTTATT CTTCACCTTCATCTCCCTTT

GAPDH AGACAGCCGCATCTTCTTGT CTTGCCGTGGGTAGAGTCAT
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(Figure 2G) and 207 overlapping mRNAs (Figure 2H), which were

used for subsequent analysis.

Functional analysis of the 207 overlapping mRNAs showed

significant enrichment in 14 BP terms (Figure 3A), including

“GO:0007059∼ chromosome segregation,” “GO:0051301∼ cell

division,” and “GO:0090307∼mitotic spindle assembly”; 20 CC

terms (Figure 3B), including “GO:0005829∼ cytosol,” “GO:

0000776∼ kinetochore,” and “GO:0005739∼mitochondrion”; 12

MF terms (Figure 3C), including “GO:0005515∼ protein binding,”

“GO:0008017∼microtubule binding,” and “GO:0003777∼

microtubule motor activity”; and 16 KEGG pathways (Figure 3D),

including “hsa04110: Cell cycle,” “hsa01100: Metabolic pathways,”

“hsa04814: Motor proteins,” “hsa04621: NOD-like receptor signaling

pathway,” “hsa04150: mTOR signaling,” “hsa04068: FoxO signaling

pathway,” and “hsa04115: p53 signaling pathway.”

3.3 Construction of a PPI network and
screen of the hub genes

The 207 overlapping DVT-related mRNAs were submitted

for the construction of a PPI network. From this PPI

network, 205 overlapping mRNAs and 573 protein pairs were

obtained (Figure 4A). To identify key hub genes, four

algorithms—MCC, MNC, EPC, and DEGREE—were applied.

After comparing these results, 17 overlapping hub genes were

identified: Birc5, Plk4, Dlgap5, Spag5, Cdca2, Ccnb1, Cdca8,

Kif18a, Kif2c, Espl1, Cenpu, Cdc20, Ncapg, Asf1b, Nek2,

Aurkb, and Cenpw (Figure 4B). The PCA analysis showed that

these hub genes could effectively distinguish between the two

groups (Figure 4C).

3.4 Establishment of a regulatory
circRNA–miRNA–hub gene network

Based on the miRbase database, 227 circRNA–miRNA interaction

pairs were identified. In addition, 84 miRNA–hub genes pairs were

obtained based on the miRWalk 3.0. Based on the relationship

between the circRNA–miRNA and miRNA–hub gene pairs, a

regulatory circRNA–miRNA–hub gene network for DVT-related

hub genes was constructed, including CBT15_circR_28491-rno-miR-

139-3p-Kif18a/Cdca8/Nek2 axis (Figure 5). The 17 hub genes within

the network revealed significant involvement in three KEGG

pathways: “rno04110: Cell cycle,” “rno04114: Oocyte meiosis,” and

“rno04814: Motor proteins” (Table 2).

FIGURE 1

A total of 421 circRNAs and 1082 mRNAs were screened in the deep vein thrombosis (DVT) and control groups. (A) Box plot of expression level before

and after circRNA standardization; (B) box plot of expression level before and after mRNA standardization; (C) the expression data of circRNAs showed

in a volcano map and heatmap; (D) mRNA expression data shown in a volcano map and heatmap. In the volcano map, the horizontal axis is

log2FoldChange and the vertical axis is –log10 (p-value). The red nodes represent upregulated genes, the blue nodes represent downregulated

genes, and the gray nodes represent non-significant differentially expressed genes. (E) Top 15 biology processes enriched by 1082 mRNAs; (F) top

15 component cellular enriched by 1082 mRNAs; (G) top 15 molecular functions enriched by 1082 mRNAs; (H) top 15 KEGG pathways enriched

by 1082 mRNAs.
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3.5 Correlation analysis of hub genes and
immune characteristics

Further, we evaluated the correlation between immune

infiltration and the identified hub genes. Analysis revealed eight

immune cell types with differential infiltration levels between

DVT and control groups, including activated CD4 T cells,

effector memory CD4 T cells, T follicular helper cells, type 17

T helper cells, type 2 T helper cells, natural killer cells, activated

dendritic cells, and macrophages (Figure 6A). Correlation

heatmap analysis showed that type 2 T helper cells were

significantly and positively correlated with all 17 hub genes. In

contrast, natural killer cells showed significant negative

correlations with Ccnb1, Asf1b, Aurkb, Birc5, and Cdca2

(Figure 6B). Moreover, macrophages were negatively associated

with Ccnb1, Asf1b, and Aurkb (Figure 6B).

3.6 RT-qPCR verification of the selected
crucial circRNAs and hub genes

Finally, the expression levels of key circRNAs

(CBT15_circR_28491, CBT15_circR_6215, CBT15_circR_10888,

and CBT15_circR_40191) and important hub genes (Kif18a,

FIGURE 2

Among differentially expressed genes, 207 DVT-related mRNAs and 235 DVT-related circRNAs were selected by WGCNA. For mRNAs: (A) right:

selection diagram of the adjacency matrix weight parameter power. The horizontal axis represents the weight parameter power and the vertical

axis represents the square of the correlation coefficients between log (k) and log (p (k)) in the corresponding network. The red line represents the

standard line where the square value of the correlation coefficient reaches 0.9. Left: a schematic diagram of the average connectivity of genes

under different power parameters. The red line represents the value of the average connectivity of network nodes (1) under the weight parameter

power of the adjacency matrix in the left figure; (B) module partitioning tree diagram with each color representing a different module;

(C) module-trait correlation heatmap. For circRNAs: (D) right: selection diagram of the adjacency matrix weight parameter power. The horizontal

axis represents the weight parameter power and the vertical axis represents the square of the correlation coefficients between log (k) and

log (p (k)) in the corresponding network. The red line represents the standard line where the square value of the correlation coefficient reaches

0.9. Left: a schematic diagram of the average connectivity of genes under different power parameters. The red line represents the value of the

average connectivity of network nodes (1) under the weight parameter power of the adjacency matrix in the left figure; (E) module partitioning

tree diagram with each color representing different module; (F) module-trait correlation heatmap; (G) Venn diagram of circRNA; (H) Venn diagram

of mRNA.
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Cdca8, Nek2, and Ncapg) were validated in the sham and DVT

groups using RT-qPCR. Compared to the sham group, the

expression levels of CBT15_circR_28491 and CBT15_circR_6215

were significantly lower, whereas the expression levels of

CBT15_circR_10888 and CBT15_circR_40191 were evidently

higher in the DVT group (p < 0.05) (Figure 7A). As for the hub

genes, the expression levels of Kif18a, Cdca8, Nek2, and Ncapg

were significantly upregulated in DVT rats compared with sham

rats (p < 0.05) (Figure 7B). Overall, the RT-qPCR results were

consistent with the bioinformatic analyses for circRNAs and

mRNAs, which were both 100% and 100%, showing the high

reliability of our bioinformatic analyses.

4 Discussion

DVT, a serious form of venous thromboembolism (VTE), can

lead to high mortality and morbidity. Clinically, causative factors

for DVT include venous stasis and surgical trauma.

Pathologically, thrombosis is caused by activation of exogenous

coagulation pathways and venous endothelial cells. In the present

study, we identified 235 DVT-related circRNAs and 207 DVT-

related mRNAs, which were significantly enriched in signaling

pathways such as NOD-like receptor, mTOR, FoxO, p53, and cell

cycle. The NOD-like receptor (NLR) protein family, a group of

pattern recognition receptors, is known to mediate the initial

innate immune response to cellular stress and damage (32).

A previous study showed that resveratrol can improve DVT-

induced inflammation by inhibiting the HIF-1α/NLRP3 pathway

(33). The mTOR pathway integrates diverse environmental cues,

such as growth factor signaling and nutrient status, to govern

eukaryotic cell growth. By regulating critical cellular processes,

including protein synthesis and autophagy, mTOR controls

biomass accumulation and metabolism, thereby playing a central

role in maintaining cellular and physiological homeostasis (34).

Qiao et al. (35) reported that berberine could relieve the

functions of endothelial progenitor cells and wound healing

in vivo via miR-21-3p/RRAGB (a mTOR-related gene), thereby

having potential for venous ulcers of the lower extremities. The

FoxO signaling pathway determines the fate of cells and is

involved in both mitochondrial-dependent and -independent

processes during apoptosis, triggering the expression of death

receptor ligands [such as Fas ligands and tumor necrosis factor

(TNF) apoptotic ligands] (36). The p53 transcription factor is a

hallmark of nearly every type of tumor and is closely related to

protecting cellular DNA integrity and regulating cell

development, aging, and differentiation (37). In a study by Song

et al. (38), a novel compound Zn(II)-based coordination polymer

FIGURE 3

Functional enrichment analysis of the 207 overlapping mRNAs. (A) Top 15 biology processes enriched by overlapping mRNAs; (F) top 15 component

cellular enriched by overlapping mRNAs; (G) top 15 molecular functions enriched by overlapping mRNAs; (H) top 15 KEGG pathways enriched by

overlapping mRNAs.
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showed positive effects on DVT by reducing p-ERK2 and p53

expression. Furthermore, the cell cycle is a series of events that

occur in a cell that drive cell division and produces two new

daughter cells, which is closely associated with disease

progression (39). These findings, together with our results,

support the hypothesis that the NOD-like receptor, mTOR,

FoxO, p53, and cell cycle pathways may be closely linked to

DVT pathogenesis and development. Nevertheless, further

research is needed to examine the intricate roles and detailed

mechanisms of these pathways in the pathogenesis of DVT.

In addition, we identified 17 hub genes associated with DVT

development. RT-qPCR results showed that CBT15_circR_28491

and CBT15_circR_6215 were significantly downregulated,

whereas CBT15_circR_10888, CBT15_circR_40191, Kif18a,

Cdca8, Nek2, and Ncapg were evidently upregulated in the DVT

group. Moreover, in our established circRNA–miRNA–hub gene

regulatory network, the CBT15_circR_28491-rno-miR-139-3p-

Kif18a/Cdca8/Nek2 axis may play a critical role in DVT

development. DVT, a type of endothelial injury, is associated

with circulating endothelial progenitor cells and mature

circulating endothelial cells (CECs). After thrombus induction,

CEC counts increase significantly and remain elevated in DVT

patients compared to healthy individuals (40). Therefore, genes

involved in cell activity, including cell cycle regulation and cell

proliferation, may be important targets for DVT. Previous data

have shown that proliferation, invasion, and migration of various

kinds of tumor cells were related to miRNA-139-3p (41).

KIF18A, a member of the kinesin family, is essential for

FIGURE 4

PPI network construction and hub genes selection. (A) PPI network based on overlapping mRNAs; color indicates the degree of significant difference;

(B) Venn diagram for selecting hub genes based on four algorithms, including MCC, MNC, EPC, and DEGREE. (C) Principal Component Analysis (PCA)

based on 17 hub genes.
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regulating chromosome arrangement during mitosis (38, 39).

The gene is a motile microtubule depolymerase essential for

chromosome congression, is widely recognized as an oncogene,

and is implicated in the progression of various tumors (42).

MiRNA-139-3p can bind to KIF18B mRNA 3′UTR. In urothelial

carcinoma of the bladder, the axis of miR-139-3p/KIF18B/

Wnt/β-catenin was demonstrated to be an effective therapeutic

target by inhibiting the malignant progression of the tumor (43).

Ke et al. reported miR-139-3p could suppress gastric cancer

progression by targeting KIF18A (44). Cdca8, a critical regulator

of mitosis (45), has been linked to increased growth of tumor

cells (46). Nek2, a mitotic Ser/Thr kinase, plays a key role in

controlling cell proliferation, growth, and differentiation (47).

Ncapg, overexpressed in many cancers, can serve as a new

diagnostic and therapeutic target and is also a very promising

prognostic marker (48). To date, there is no research on the roles

of CBT15_circR_28491, CBT15_circR_6215, CBT15_circR_10888,

and CBT15_circR_40191 on DVT. A study by Wang et al.

reported that hsa_circRNA_092488 was higher in DVT and may

exacerbate the progression of DVT via the NLRP3/NF-κB

signaling pathway (49). Taken together, the identified circRNAs

and hub genes, as well as the CBT15_circR_28491-miR-139-3p-

Kif18a/Cdca8/Nek2 axis, may be closely linked to the thrombotic

risk associated with neoplasia and play essential roles in the

progression of DVT. However, further in vitro and in vivo

studies are necessary to examine the underlying mechanisms of

the CBT15_circR_28491-miR-139-3p-Kif18a/Cdca8/Nek2 pathway

in DVT.

In addition, our study identified differential infiltration levels of

eight immune cell types in DVT, with type 2 T helper cells showing

a significant positive correlation with all the 17 hub genes. Previous

research by Luo et al. showed that, compared with stable plaques,

unstable plaques exhibited highly negative regulators of

coagulation expressed by T helper cells, including PLAUR,

PLAU, PLG, and PROCR (50). Meanwhile, activated human

T helper cells were found to demonstrate higher fibrinolytic

activity than their non-activated counterparts (50). Further evidence

suggests that T helper cell activity can act either as a risk or

protective factor in various cardiovascular diseases, such as

myocardial infarction, coronary heart disease, and stroke (51, 52).

Our data also showed that T helper cells were positively associated

with all 17 hub genes. Therefore, a close link is suggested between

T helper cell activation and the development of DVT.

FIGURE 5

Establishment of a circRNA–miRNA–hub gene network based on expression levels of 17 hub genes. Squares, triangulars, and circles represent

circRNAs, miRNAs, and hub genes, respectively. The blue represents downregulation and the red represents upregulation. The gradient intensity of

the color bands corresponds to the magnitude of log2FC values. miRNAs, which were derived from public databases without available expression

quantitation, are uniformly displayed in green to distinguish them from experimentally quantified molecules.

TABLE 2 KEGG pathways enriched by 17 hub genes.

Term Count P value Genes

rno04110: Cell cycle 3 0.002668 CCNB1, ESPL1, AURKB

rno04114: Oocyte meiosis 2 0.046157 CCNB1, ESPL1

rno04814: Motor proteins 2 0.04983 KIF18A, KIF2C
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FIGURE 6

Relationships between the immune cells and 17 hub genes in deep vein thrombosis (DVT). (A) The distribution of eight types of immune cells with

significantly different proportions in DVT and control groups; (B) the correlation between the infiltration levels of the eight immune cells with

significant differences and expression levels of 17 hub genes in DVT.
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FIGURE 7

RT-qPCR verification of the selected crucial circRNAs and hub genes. (A) The expression levels of CBT15_circR_28491, CBT15_circR_6215,

CBT15_circR_10888, and CBT15_circR_40191 in DVT and sham rats. (B) The expression levels of Kif18a, Cdca8, Nek2, and Ncapg in DVT and

sham rats. *p < 0.05, **p < 0.01, vs. sham.
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In conclusion, this study provides valuable information about

circRNA and mRNA profiles in DVT. It highlights the valuable

roles of CBT15_circR_28491-miR-139-3p-Kif18a/Cdca8/Nek2 and

T helper cells in DVT. These findings deepen our understanding

of the pathogenesis of DVT and provide novel therapeutic

targets (CBT15_circR_28491-miR-139-3p-Kif18a/Cdca8/Nek2) for

DVT management.
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