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Background: Machine learning (ML) algorithms offer some advantages over

traditional scoring systems to assess the influence of cardiovascular risk factors

(CVRFs) on the risk of major cardiovascular event (MACE), and could be useful

in clinical practice. These algorithms can also be trained using a growing body

of real world data (RWD). The aim of the study was to evaluate the MACE risk

applying the XGBoost and Random Forest ML algorithms to RWD, stratifying the

study population by sex, comparing the outcomes of these two algorithms.

Methods: The follow-up period of the study was from 2018 to 2020. For each

algorithm, 3 models were generated, including age and different combinations

of three groups of variables: blood test and blood pressure measurements;

CVRFs; and medication adherence.

Results: In this study, 52,393 subjects were included, of whom 581 suffered a

MACE. The incidence of MACE was 1% in women and 1.3% in men. The most

prevalent CVRF was hypertension, followed by hypercholesterolaemia in both

sexes. Adherence to treatment was highest for antihypertensives and lowest

for antidiabetics. In all models age was the greatest relative contributor to the

risk of MACE, followed by adherence to antidiabetics. Adherence to treatment

proved to be an important variable in the risk of having a MACE. Moreover,

similar performance was found for RF and XGBoost algorithms.

Conclusion: These findings support the use of ML to assess cardiovascular risk

and guide personalized prevention strategies in primary care settings.

KEYWORDS

machine learning, cardiovascular disease, adherence to treatment, random forest,

XGBoost

1 Introduction

Cardiovascular disease (CVD) is one of the leading causes of death and disability. It is

estimated that CVD accounts for approximately 17.9 million deaths per year worldwide,

and one-third of these deaths occur prematurely in people under the age of 70 (1).

Some cardiovascular risk factors (CVRF) can be controlled, and CVD prevention

guidelines highlight the importance of early diagnosis and intervention in high-risk

individuals to prevent CVD mortality and morbidity (2). Lifestyle changes are among
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the most important primary prevention interventions. If these

prove insufficient, pharmacological preventive treatment, selected

according to the individual’s overall cardiovascular risk,

is indicated.

Different risk estimation tools are widely applied and

recommended by CVD prevention guidelines to identify at-risk

individuals who should be targeted for both behavioral and

pharmacological primary prevention. These tools, which

include the Framingham Risk Score and the Systematic

Coronary Risk Evaluation (SCORE), estimate the individual’s

overall cardiovascular risk based on the individual

contributions of multiple CVRFs, but are not without

limitations (3–6). First, these tools have been developed for

specific populations and, therefore, have limited generalizability

for predicting risk in other populations and countries. Second,

methodological limitations of these approaches include (i) the

fact that they are based on simple regression fitting approaches

and cannot assume a nonlinear relationship between predictors

and outcomes; (ii) correlation between variables, and (iii) the

risk of overfitting.

Furthermore, although pharmacological treatment and its

adherence are related to cardiovascular risk (7–9), the

aforementioned tools do not consider whether subjects are being

treated for any CVRF or whether they correctly adhere to their

treatment. While this issue can be addressed thanks to the

growing availability of medical data generated in daily clinical

practice (10), incorporation of these data in this context remains

challenging, and requires an initial data-cleaning process. Finally,

the incidence of CVRFs, and how they interact and are

controlled, differs between men and women (2, 11–14) and

therefore CVRFs should be analysed separately for each sex.

To improve the accuracy of traditional scores to overcome

some of the aforementioned limitations, machine learning (ML)

techniques have been applied and tested in several cohorts to

identify individuals with high cardiovascular risk (3, 6, 15–17).

ML techniques use routinely collected clinical data, as well as

other data such as claims data, to train models to learn patterns

that are later applied to the prediction of other variables. The

techniques used include ensemble methods, which enable a kind

of supervised ML, and include bagging and boosting methods

that combine multiple decision trees to reach a decision (18).

One of the most commonly used bagging methods is Random

Forest (RF), whereby multiple decision trees are learned in

parallel and the final prediction is based on the most frequent

answer (15, 18). Boosting models, in contrast, train multiple

individual models sequentially, with each model correcting the

errors of its predecessor. Two well-known boosting methods are

AdaBoost and XGBoost.

ML techniques have shown great promise in calculating CVD

risk in different cohorts, improving upon the results obtained

using traditional scoring methods. In this study, we compared

the prediction of cardiovascular risk using ML methods applied

to men and women together vs. separately, and analysed the

influence of different traditional CVRFs together with medication

adherence when included in these algorithms.

2 Materials and methods

2.1 CARhES cohort and data source

This longitudinal cohort study was conducted using the

CArdiovascular Risk factors for hEalth Services research (CARhES)

cohort (19). This dynamic open cohort has been followed since

2017, and includes all individuals aged 16 and above registered as

users of the public health system in Aragón, a Spanish region with

about 1.3 million inhabitants that are overwhelmingly attended to

by the public health system. Participants had at least one of the

following CVRFs: hypertension, hypercholesterolaemia, or diabetes

mellitus (DM). Hypertension was identified based on a medical

diagnosis of hypertension. DM and hypercholesterolaemia were

identified based on a medical diagnosis of DM or

hypercholesterolaemia and/ or a prescription of at least one

antidiabetic, or lipid-lowering drug during the study period. The

CARhES cohort consisted of 446,998 individuals (50.64% female),

of whom 252,508 had hypertension (56.5%); 332,644 had

hypercholesterolaemia (74.4%) and 96,709 had DM (21.6%).

All information necessary to identify patients who met the

inclusion criteria was obtained from BIGAN (20), a health data

hub that gathers data from the Aragon public health service and

makes this information available for research purposes upon

request. Data from this cohort were stored in several databases:

the BDU (health system users database), which provides

information on age and affiliation to the Aragón public health

system; the minimum basic dataset database, which gathers data

on hospital discharge; the primary care database, which records

information from patients who attend a primary health care

centre; GMA (morbidity adjusted groups), which records

information on all medical diagnoses available in primary

healthcare and in the minimum basic dataset database; the

emergency database, which stores diagnostic and procedural

information on patients processed via the hospital emergency

system; the e-prescription database, which records all

pharmacological treatments prescribed to patients; and the

pharmacy claims database, which gathers information about

medication dispensed in pharmacies to each patient. All data in

these databases are pseudonymized using a unique code that

links patient information across the different data sources but

prevents personal identification.

The GMA database was queried to identify subjects with a

medical diagnosis corresponding to any of the 3 CVRFs of interest.

Pharmacological treatments that corresponded to the following

ATC codes and were prescribed to patients were extracted from

the e-prescription database: A10 (diabetes); C02, C03, C07, C08,

and C09 (hypertension); and C10 (hypercholesterolaemia).

2.2 Study design

The present study was conducted within the CARhES cohort

considering all individuals who were in the cohort in 2017. They
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were followed from 2018 until 2020 to identify if they suffered a

major cardiovascular event (MACE).

2.3 Inclusion and exclusion criteria

The process of selecting patients from the CARhES cohort to

participate in the present study is depicted in Figure 1. First, as

we focused on subjects with primary prevention, we excluded

those with a diagnosis of MACE in the minimum basic dataset

database and/or in the GMA before 2018.

Also, they were excluded patients who died during the follow-

up period, for whom MACE was not recorded as the cause of the

death. Next, we identified subjects in primary prevention who

had experienced MACE between 2018 and 2020. Of those who

had, subjects who began treatment corresponding to any of the

three pharmacological groups of interest during the year

preceding the event were excluded. Of those who did not

experience MACE during the follow-up period, we excluded

those who began treatment during 2018. It was done based on

the criteria established for the follow up period, explained

below. Finally, among those who experienced MACE we

included those for whom blood test and blood pressure data

were available for the year preceding the event and, among

those who did not experience MACE, we included those for

whom blood test and blood pressure data were available for the

year 2018.

2.4 Study variables

Variables included in the present study were age, blood test-

and blood pressure-related parameters, CVRFs, and adherence

to medication taken for CVRFs. The variables included and

the corresponding data sources are summarised in

Supplementary Table S1.

Adherence to antihypertensive, antidiabetic, or lipid-lowering

drugs was calculated separately for each subject using the

Proportion of Days Covered (PDC). Adherence was calculated as

a percentage using data from the year 2018 for those who did

not experience an event, and using data from the year preceding

the event in all other cases. PDC is an index calculated as the

number of days covered by the medicines dispensed by the

pharmacy divided by the number of days that the subject should

have had covered. In this study, the denominator for PDC was

365 days. The number of days covered were calculated based on

the Defined Daily Dose (DDD) dispensed to each subject.

However, a previous study by our group (9) showed that the use

of a surrogate value for the daily dose of each drug, calculated

based on the median time between prescriptions of the same

drug in users classified as persistent, provided more accurate

results. Therefore, in the present study surrogate values for daily

doses were used. For example, for statins we always used a DDD

of 28 rather than the value of 37.3 used in other studies.

The primary outcome in this study was MACE incidence

during follow up, from 2018 to 2020. Episodes were identified in

FIGURE 1

Study population selection and model development.
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the minimum basic dataset database and the emergency database.

An episode was considered a MACE if the first diagnosis in the

minimum basic dataset database corresponded to one of the

following ICD-10 codes: I21, I60-I63, corresponding to

myocardial infarction, nontraumatic subarachnoid haemorrhage,

nontraumatic intracerebral haemorrhage, other nontraumatic

intracranial haemorrhage, and acute ischemic stroke, respectively.

In the emergency database, episodes considered MACE were

those with the same diagnosis, corresponding to ICD-9 codes

410 and 430–433, and that caused death.

2.5 Analysis

Random Forest (RF) and XGBoost were used to determine the

utility of different variables to predict the risk of MACE. Random

Forest is an ensemble learning method that builds multiple

decision trees and combines their predictions to improve

accuracy and prevent overfitting. XGBoost (Extreme Gradient

Boosting) is a powerful machine learning algorithm that uses

boosting, a technique where models are trained sequentially to

correct errors made by previous ones, leading to better

performance and generalization. Both were applied stratified by

sex to age plus 3 different groups of variables:

• Model 1: Age, blood test and blood pressure measurement,

cardiovascular risk factors, and medication adherence.

• Model 2: Age, blood test and blood pressure measurement, and

medication adherence.

• Model 3: Age, cardiovascular risk factors, and

medication adherence.

As shown in Figure 1, and as usually done when using these

techniques, the study population was randomly split into two

groups: 80% of the sample was assigned to the training group

and the remaining 20% to the testing group. To train and tune

the models 10-fold cross validation was applied to the training

dataset to avoid overfitting. For both algorithms,

hyperparameters were determined using a grid search in the

10-fold cross validation of the training set to identify values that

led to optimal performance.

When event incidence is low, data are considered to be

imbalanced. We observed a MACE incidence of 1.12%, indicating

that the data were highly imbalanced. To solve this problem, the

Random Over Sampling Examples (ROSE) method with

replacement was used to oversample the minority class and balance

the data in the training set (21–24). To avoid poor estimates of

model performance, the resampling process was applied to each of

the 10 subsamples created during the cross-validation process

irrespective of the other subsamples. Other resampling methods

were applied, but the results obtained with ROSE were the best,

therefore, only these results are presented in this article.

The performance of the models was assessed using the test set,

and Youden’s Index used to establish the optimal threshold for

classification. In cases of imbalanced data, certain measures such

as accuracy, positive predictive value, and negative predictive value

can be markedly altered. Therefore, to assess the performance of

the models created we calculated four distinct parameters: (i)

AUC, which evaluates the performance of binary classifiers; (ii) F1

score, which reflects the ability of the model to capture sensitivity

and precision (i.e., to be accurate in the cases that it does capture);

(iii) sensitivity, which indicates the proportion of cases classified as

at high risk of an event; (iv) and specificity, which reflects the

proportion of non-cases classified as such. Finally, the contribution

of each variable to the prediction was extracted and standardized

using a scale of 0–1 for ease of comparability. This was achieved

by calculating the feature importance score for each variable,

which reflects its contribution to reducing the model’s error. In

Random Forest, this is typically done by measuring the decrease

in Gini impurity or entropy, while in XGBoost, the contribution is

calculated through the gain, which indicates the improvement in

prediction accuracy attributed to each variable.

2.6 Ethical approval and consent to
participate

The present study was approved by the Clinical Research Ethics

Committee of Aragon (CEICA) in 2021 (project identification

code PI21/148).

3 Results

3.1 Descriptive analysis of total population
and by sex

Of the 52,393 individuals included in the present study, 57.3%

were women, and the mean age was 70.2 years. Female participants

were older than their male counterparts (mean age, 71.6 and 68.3

years, respectively) (Table 1).

For both sexes, the most prevalent CVRF was hypertension,

followed by hypercholesterolaemia. The proportions of

individuals with 1 and 2 CVRFs were similar in both sexes.

Around 40% of participants had just one CVRF.

Mean values of total, HDL, and LDL cholesterol were higher in

women than men, and mean blood glucose, systolic blood pressure

(SBP), and diastolic blood pressure (DBP) were slightly higher in

men than women.

Adherence to treatment was highest for antihypertensives and

lowest for antidiabetics, both in the total population and after

stratifying by sex. For antidiabetics and lipid-lowering drugs,

men showed higher mean adherence, but also greater dispersion.

For antihypertensives, mean adherence was higher in women but

dispersion higher in men.

A MACE was experienced by 581 (1.1%) participants: 282 men

and 299 women (Table 1), in 3 years of follow up. In 12 cases

(8 men, 4 women) the event resulted in death. The most

common MACE was stroke, representing 57.5% of all events,

followed by myocardial infarction (MI) (26.2%). Stratifying by

sex, stroke was more frequent in women than men (61.5% and

53.2%, respectively), while MI was more frequent in men than

women (32.3% and 20.4%, respectively).
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3.2 Characteristics of individuals with MACE

Of the total number of MACEs, 51% were experienced by

women, although the incidence of MACE was higher in men.

Mean age was higher among individuals who experienced a

MACE: 78.9 and 70.1 years in individuals who did and did not

experience MACE, respectively (Table 2).

The frequencies of DM and hypertension were higher among

individuals who experienced a MACE. There were no significant

differences in the proportion of patients with hypercholesterolaemia

between individuals with or without MACE. Moreover, those who

experienced MACE more frequently presented 2 or 3 CVRFs, and

those who did not more frequently presented 1 CVRF.

We observed no difference in adherence to lipid-lowering

drugs between individuals with or without a MACE. Those who

did experience a MACE were more adherent to antihypertensive

and antidiabetic drugs.

3.3 Cardiovascular risk prediction

3.3.1 Models built with random forest
After stratifying by sex using the RF method, model

performance (measured by AUC) was higher in women than in

men (Table 3). For women, the highest performance was

obtained for model 3, when using CVRF variables together with

adherence. In contrast, for men, performance was slightly higher

for models 1 and 2 than for model 3. Differences in performance

between models were higher in women than in men.

Of the models built for men, model 3 provided the highest F1

score, sensitivity, and specificity, although it had the lowest AUC.

For women, the highest F1 score and sensitivity were achieved

with model 3, while all models reached a specificity of 0.75. As

also observed with AUC, differences between F1 score,

sensitivity, and specificity were smaller in the male population

compared to the female population.

3.3.1.1 Relative contributions of variables

In all RF models, for both men and women, age was the variable

that contributed most to the risk of MACE (Figure 2a).

For men, age was the variable for which the greatest

contribution to risk of MACE was observed, followed by

antidiabetic adherence. The contribution of antidiabetic

treatment adherence in models 1 and 2 was much smaller than

the contribution of age. Furthermore, the contribution of

antidiabetic treatment adherence in model 3 was higher than in

models 1 and 2, but not as high as observed for women.

For women, in terms of relative contributions to the risk of

MACE, age was closely followed by antidiabetic treatment

TABLE 1 Descriptive statistics for study population.

Variables Units Total
N= 52,393

MEN
N= 22,383

WOMEN
N= 30,010

P value

Age mean (SD) 70.2 (12.8) 68.3 (12.6) 71.6 (12.8) <0.001

Cardiovascular risk factors

DM N (%) 14,181 (27.1) 7162 (32.0) 7019 (23.4) <0.001

Hypertension N (%) 38,253 (73.0) 15,964 (71.3) 22,289 (74.3) <0.001

Hypercholesterolaemia N (%) 37,316 (71.2) 15,877 (70.9) 21,439 (71.4) 0.209

Number of CVRFs N (%) <0.001

1 22,508 (43.0) 9406 (42.0) 13,102 (43.7)

2 22,413 (42.8) 9334 (41.7) 13,079 (43.6)

3 7,472 (14.3) 3,643 (16.3) 3,829 (12.8)

Blood test and blood pressure measurements

Total cholesterol levels (mg/dl) mean (SD) 195 (36.1) 186 (35.5) 201 (35.1) 0.000

HDL cholesterol levels (mg/dl) mean (SD) 53.7 (13.4) 48.8 (11.6) 57.3 (13.5) 0.000

LDL cholesterol levels (mg/dl) mean (SD) 118 (31.5) 114 (31.7) 121 (31.1) <0.001

Blood glucose levels (mg/dl) mean (SD) 104 (24.8) 107 (26.5) 101 (23.1) <0.001

Systolic blood pressure (mm Hg) mean (SD) 133 (15.8) 134 (15.4) 133 (16.2) <0.001

Diastolic blood pressure (mm Hg) mean (SD) 76.8 (13.9) 77.8 (16.5) 76.0 (11.4) <0.001

Medication adherence, PDC

Antihypertensives mean (SD) 58.3 (44.0) 57.5 (44.7) 58.9 (43.6) <0.001

Antidiabetics mean (SD) 17.3 (33.4) 21.0 (36.1) 14.5 (31.0) <0.001

Lipid-lowering drugs mean (SD) 38.5 (42.0) 40.1 (42.5) 37.3 (41.5) <0.001

MACE characteristics

Incidence N (%) 581 (1.1) 282 (1.3) 299 (1.0) 0.005

Diagnosis N (%) 0.011

Acute Ischemic stroke 334 (57.5) 150 (53.2) 184 (61.5)

Myocardial infarction 152 (26.2) 91 (32.3) 61 (20.4)

Nontraumatic subarachnoid haemorrhage 14 (2.4) 4 (1.4) 10 (3.3)

Nontraumatic intracerebral haemorrhage 57 (9.8) 24 (8.5) 33 (11.0)

Other nontraumatic intracranial haemorrhage 24 (4.1) 13 (4.6) 11 (3.7)

SD, standard deviation; N, number; DM, diabetes mellitus; HDL, high density lipoprotein; LDL, low density lipoprotein; MACE, major cardiovascular event; PDC, proportion of days covered.
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adherence. All other variables contributed less. For model 1, blood

test and pressure measurements variables were greater contributors

than a diagnosis of hypertension, DM, or hypercholesterolaemia,

and than adherence to lipid-lowering drugs or hypertension.

3.3.2 Models built with XGBoost

Models developed for the male population using XGBoost

achieved AUC levels comparable to those of the RF models. F1

score and sensitivity were higher than those obtained with RF

TABLE 2 Descriptive statistics for patients with MACE.

Variables Units No MACE
N= 51,812

MACE
N= 581

P value OR [95% CI]

Age mean (SD) 70.1 (12.8) 78.9 (9.92) <0.001 1.07 [1.07;1.08]

Sex N (%) 0.005

Men 22,101 (42.7) 282 (48.5) Ref.

Women 29,711 (57.3) 299 (51.5) 0.79 [0.67;0.93]

Cardiovascular risk factors

Diabetes N (%) 13,952 (26.9) 229 (39.4) <0.001 1.77 [1.49;2.09]

Hypertension N (%) 37,767 (72.9) 486 (83.6) <0.001 1.90 [1.53;2.38]

Hypercholesterolaemia N (%) 36,906 (71.2) 410 (70.6) 0.761 0.97 [0.81;1.16]

Number of CVRF N (%) <0.001

1 22,330 (43.1) 178 (30.6) Ref.

2 22,151 (42.8) 262 (45.1) 1.48 [1.23;1.80]

3 7,331 (14.1) 141 (24.3) 2.41 [1.93;3.01]

Blood test and blood pressure tests

Total cholesterol levels (mg/dl) mean (SD) 195 (36.1) 187 (35.2) <0.001 0.99 [0.99;1.00]

HDL cholesterol levels (mg/dl) mean (SD) 53.7 (13.4) 50.9 (12.9) <0.001 0.98 [0.98;0.99]

LDL cholesterol levels (mg/dl) mean (SD) 118 (31.5) 111 (30.6) <0.001 0.99 [0.99;1.00]

Blood glucose levels (mg/dl) mean (SD) 104 (24.6) 109 (38.0) <0.001 1.01 [1.00;1.01]

Systolic blood pressure (mm Hg) mean (SD) 133 (15.8) 137 (16.6) <0.001 1.02 [1.01;1.02]

Diastolic blood pressure (mg Hg) mean (SD) 76.8 (13.9) 75.0 (10.7) <0.001 0.98 [0.98;0.99]

Medication adherence, PDC

Antihypertensives mean (SD) 58.2 (44.1) 66.2 (40.9) <0.001 1.00 [1.00;1.01]

Antidiabetics mean (SD) 17.2 (33.4) 27.0 (39.2) <0.001 1.01 [1.01;1.01]

Lipid-lowering drugs mean (SD) 38.5 (42.0) 38.7 (42.0) 0.908 1.00 [1.00;1.00]

MACE, major cardiovascular event; SD, standard deviation; N, number; DM, diabetes mellitus; HDL, high density lipoprotein; LDL, low density lipoprotein; PDC, proportion of days covered.

TABLE 3 Performance metrics for random forest and XGBoost models.

Model AUC Youden’s index F1 score Sensitivity Specificity

Random forest

Men

MODEL 1 0.70 0.50 0.77 0.62 0.69

MODEL 2 0.70 0.52 0.76 0.61 0.71

MODEL 3 0.69 0.54 0.77 0.62 0.71

Women

MODEL 1 0.77 0.64 0.71 0.66 0.75

MODEL 2 0.76 0.62 0.81 0.69 0.75

MODEL 3 0.79 0.53 0.84 0.72 0.75

XGBOOST

Men

MODEL 1 0.70 0.53 0.78 0.64 0.71

MODEL 2 0.70 0.51 0.79 0.65 0.68

MODEL 3 0.69 0.52 0.79 0.65 0.66

Women

MODEL 1 0.74 0.58 0.89 0.80 0.56

MODEL 2 0.76 0.54 0.80 0.67 0.81

MODEL 3 0.79 0.50 0.81 0.69 0.78

Model 1 includes the variables age, CVRFs, adherence, and blood test and blood pressure measurements. Model 2 includes age, adherence, and blood test and blood pressure measurements.

Model 3 includes age, CVRFs, and treatment adherence.

AUC, area under the curve; CVRF, cardiovascular risk factor.
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FIGURE 2

Relative contributions of variables in random forest (a) and XGBoost (b) models for men and women. Model 1 includes the variables age, CVRFs,

adherence, and blood test and blood pressure measurements. Model 2 includes age, adherence, and blood test and blood pressure

measurements. Model 3 includes age, CVRFs, and treatment adherence. SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-

cholesterol, high density lipoprotein cholesterol; CVRF, cardiovascular risk factor.
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models, while specificity was lower for models 2 and 3, but higher

for model 1.

In models developed for the female population using XGBoost

(Table 3), AUC was comparable to that of the RF models for

models 2 and 3, while it was lower for model 1 compared to the

corresponding RF model. F1 score and sensitivity were highest

for model 1, while specificity was highest for model 2. Compared

with the corresponding RF model, model 1 in XGBoost showed

higher F1 score and sensitivity, but not specificity.

3.3.2.1 Relative contributions of variables

In models built using XGBoost, for both men and women, the

variables that contributed most to a predicted high risk of MACE

were age followed by antidiabetic treatment adherence (Figure 2b).

For men, in XGBoost model 1, similar contributions were observed

for DM and hypercholesterolaemia and for blood glucose and SBP.

For women, contrary to that which was observed for RF models, in

XGBoost model 1 DM was a much more important contributor

than blood tests and blood pressure measurements, with an effect

similar to that of antidiabetic adherence.

4 Discussion

In the present study we performed a descriptive analysis of

CVRFs and MACE incidence using real-world data (RWD) from

users of the Aragonese public health system. Using different

combinations of predictive variables, we evaluated the abilities of

two ML algorithms to predict MACE risk, and analysed the

relative contributions of distinct CVR-related variables, stratifying

the study population by sex.

The study population consisted of more women than men. The

most prevalent CVRF was hypertension, and incidence of MACE

was higher in men. The most frequent MACE in both sexes was

stroke. The prevalence of DM and hypertension were higher among

those who had experienced a MACE than those who had not. It was

also found that medication adherence was higher in those with

MACE than in those without. This could be explained by the fact

that individuals with a worse health status may be more aware of

their risk and show higher medication adherence (25).

Because the incidence, interactions, and control of CVRFs

differ in men vs. women (11–14), we generated and evaluated

three models for each sex using RF and XGBoost algorithms. In

all models, for both sexes, age was the parameter that

contributed most to a predicted high risk of MACE, followed

closely by adherence to antidiabetics. Adherence to antidiabetics

was a greater contributor to MACE in women than in men.

For both men and women, the contributions of individual

variables to a predicted risk of MACE differed across models. In

most models, age and adherence to antidiabetics were the main

contributors, with the exception of XGBoost models for men, in

which antidiabetic adherence was closely followed by DM in

models 1 and 2, and by blood glucose in model 3.

Previous studies that include age as a predictive variable have

consistently shown that this parameter has the greatest predictive

power, suggesting that age is a key CVRF (3, 6, 17, 26). To the

best of our knowledge, no studies based on ML methods

published to date have considered cardiovascular treatment as a

predictive variable, while those that consider adherence either

measured this variable using questionnaires or did not consider

adherence to antidiabetic treatments (3, 6, 22).

Our study identified adherence to antidiabetics as a key

determinant of MACE in both sexes. Conversely, adherence to

antihypertensives and lipid-lowering drugs showed little predictive

power. Multiple studies have reported associations between

adherence to antihypertensives and lipid-lowering drugs and the

incidence of cardiovascular events (CVE) and all-cause mortality

risk (27–30). In terms of influence on the risk of different types of

CVE, adherence to antidiabetics is less well studied than adherence

to lipid-lowering drugs and antihypertensives (23). In their

systematic review, Mengying et al. (27) considered antidiabetics,

antihypertensives and lipid-lowering drugs adherence, and found

that all three were associated with a higher risk of CVE.

The aforementioned findings underscore the importance of

proper pharmacological control of modifiable CVRFs to reduce

the risk of CVE. Clinical guidelines propose controlling CVRFs

in order to decrease this risk (2, 31). Previous research (32–34)

has shown that adherence to these treatments is suboptimal, and

the methods most commonly used to determine the risk of CVE

do not include medication adherence as a predictive variable.

There is also evidence (30) suggesting that a considerable

number of CVEs are due to poor adherence to cardiovascular

preventive treatments. Therefore, measuring adherence could

maximize the efficacy of cardiac therapies in clinical settings.

Of the previously published studies similar to ours, analyses

were performed without stratifying according to sex, and in most

(3, 17, 26) sex was not identified as an important variable, with

the exception of one study (6) in which sex was the second most

important contributor to overall CVE risk. Although each study

considered different variables, including lab results, blood

pressure measurements, and socio-demographic factors, the

importance of each varied across models and studies, as in the

present study. Only in one study was blood glucose identified as

the most important variable (17). Two studies identified SBP as

the second most important variable (3, 26).

Studies have shown that models built using ML techniques

can overcome certain limitations of traditional methods used to

predict cardiovascular risk, as well as offering greater predictive

power (3, 6, 17, 35). The models described in this study could

be applied in clinical practice to assess the individual risk of

MACE based on patient characteristics and medication

adherence, thereby playing an important role in screening

processes. This is particularly important given that primary-

care-based interventions targeting individuals considered to be

at high risk, based on their age or risk factors, appear to be

effective in reducing the risk of CVE (36). Furthermore, these

models can help orient the intervention and identify the most

appropriate measures to take.

In addition to the advantages described above, ML techniques

offer a variety of approaches to process large amounts of data to

predict CVE incidence, thus allowing researchers and clinicians

to select the algorithm that best suits their data or objectives.
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4.1 Limitations and strengths

Some limitations of the present study should be noted. First, the

incidence of MACE during the follow-up period was low, resulting

in class-imbalanced data. This issue was addressed by applying the

ROSE method to subsample the majority class. Second, the follow-

up period was short, owing to the availability of data for the period

2018 to 2020 only. However, we feel that the size of the study

population was sufficient to answer the research question. Finally,

because this study was conducted using data extracted from

administrative databases, some data were unavailable or were of

insufficient quality to be included. Examples include smoking and

physical activity data, which were recorded in very few subjects, and

after quality control were deemed not to be reliable.

A key strength of the study is the fact that it was conducted with

RWD, obtained from multiple data registries, enabling evaluation of

the variables of interest in a real-world context. Our study is

remarkable in that it includes data extracted from different levels

of care from all individuals residing in Aragon, aged 16 and older,

with any CVRF. Moreover, we used two different ML techniques,

which integrate all available data and offer several advantages over

earlier algorithms, as explained above, and compared the results

obtained with each to determine the most accurate method. To

our knowledge, few ML studies have examined the predictive

power of treatment adherence, and those that have typically assess

adherence by asking patients whether they are taking any

medication, without considering whether this medication is

prescribed by a doctor or whether the patient actually collects

their medication from a pharmacy. Finally, our analysis considered

two algorithms and different combinations of predictive variables,

allowing us to identify the model that performed best in this

particular study population and to evaluate the influence of

different variables on MACE occurrence.

5 Conclusions

In the present study we found that, in all models and in both men

and women, age was the variable that most contributed to the risk of

CVE. Although this effect was greater in men than women. The next

greatest contributor was adherence to antidiabetics, the effect of which

was greater in women than in men. Comparison of distinct ML

methods revealed comparable performance for RF and XGBoost

algorithms. Our findings suggest that ML techniques offer a

valuable means of analysing large amounts of data to help accurately

assess the risk of MACE, and could ultimately be applied in CVD

prevention programs in a personalised medicine context.
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