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Background: Atrial fibrillation (AF) is the most common sustained cardiac

arrhythmia and is associated with significant cardiovascular complications.

Recently, artificial intelligence (AI) algorithms have leveraged heart rate

variability (HRV) patterns to enhance the accuracy of AF identification.

Methods: We conducted a systematic review of the literature by searching four

major biomedical databases—PubMed, Web of Science, Embase, and Cochrane

Library—spanning from their inception to December 13, 2024, following the

PRISMA guidelines. We extracted data on true positives, false positives, true

negatives, and false negatives from the included studies, which were then

synthesized to evaluate sensitivity and specificity comprehensively.

Results: Our final analysis included 12 diagnostic studies. Hierarchical summary

receiver operating characteristic modeling revealed excellent discriminative

ability, with a pooled sensitivity of 0.94 and specificity of 0.97. In detecting AF,

the AI model demonstrated exceptional performance (sensitivity = 0.96,

specificity = 0.99, AUC= 1.00). Subgroup analyses revealed that both deep

learning algorithms (sensitivity = 0.95, specificity = 0.98, AUC=0.99) and multi-

database studies (sensitivity = 0.96, specificity = 0.97, AUC=0.99) demonstrated

enhanced accuracy in AF identification compared to other approaches.

Conclusion: Machine learning can effectively identify AF with HRV in ECG,

especially in diagnosis and detection, with deep learning algorithms and

multiple-databases outperforming other diagnostic methods.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

PROSPERO (CRD42025634406).
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1 Introduction

Atrial fibrillation (AF) is the most common persistent arrhythmia encountered in clinical

practice, and its global disease burden continues to increase as the acceleration of aging

population (1). Data from the Framingham Heart Study revealed a threefold increase in the

incidence of AF over the past 50 years, underscoring its growing impact as a significant

public health concern, particularly for the elderly (2). Currently, the clinical diagnosis of

AF largely depends on patient-reported symptoms and electrocardiogram (ECG) results.

However, existing evidence suggests that these traditional methods are associated with a

misdiagnosis rate of approximately 20% (3). This diagnostic uncertainty may result in
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excessive treatment, increasing patient burdens and inefficient

resource allocation. As a result, the development of innovative and

accurate diagnostic technologies has become a critical priority to

enhance the diagnostic approach for AF.

Heart rate variability (HRV), which quantifies fluctuations in

beat-to-beat intervals, has become an established tool in clinical

prediction models for sudden cardiac death and life-threatening

arrhythmia (4). Notably, recent advancements integrating

wearable or implantable HRV data with artificial intelligence

(AI)-based analytical systems have facilitated novel strategies for

the early detection of AF and precision risk stratification (5, 6).

AI systems replicate human cognitive processes through

autonomous decision-making architectures, with their inherent

strength rooted in hierarchical pattern recognition and deep

processing of complex datasets. In the field of cardiovascular

medicine, machine learning (ML)-enhanced ECG interpretation has

demonstrated measurable improvements in predictive performance:

Alimbayeva et al. established a cardiovascular risk stratification

model through multimodal integration of ECG biomarkers using

logistic regression, random forest classifiers, and convolutional

neural networks (7). While, Khurshid’s group developed an ML-

driven framework synergizing ECG patterns with clinical risk

factors, achieving significant predictive capacity for the onset of AF

(8). These developments, driven by ongoing technological

advancements and the growing availability of open-access clinical

data, positions AI-driven approaches as powerful tools to enhance

the accuracy of AF detection and improve diagnostic efficiency.

The increasing clinical adoption of HRVmonitoring technologies

has driven substantial research interest in AI-driven HRV feature

engineering for AF prediction. However, existing studies

demonstrate substantial methodological heterogeneity in algorithm

architectures, data quality standards, and validation protocols,

which may introduce potential biases in diagnostic performance

evaluations. This study aims to fill this gap by conducting the first

diagnostic test accuracy meta-analysis that simultaneously evaluates

both sensitivity and specificity of ML-enhanced HRV analysis for AF

detection. The findings provide essential insights to inform clinical

decision-making and offer valuable guidance for future algorithmic

improvements through standardized performance bench marking.

2 Materials and methods

2.1 Protocol and registration

This meta-analysis is reported according to the Preferred

Reporting Items for Meta-Analyses (PRISMA) statement

(Supplementary Table S1) (9), and it was registered in the

PROSPERO database (CRD42025634406).

2.2 Search strategy and study selection

A systematic search was conducted across four major databases

including PubMed, Web of Science, Embase, and the Cochrane

Library, from their inception through December 13, 2024, limited

to English-language publications. The search strategy is as follows:

(atrial fibrillation OR auricular fibrillation) and (heart rate

variability OR HRV OR SDNN OR SDANN OR RMSSD) and

(artificial intelligence OR machine learning OR deep learning).

Two researchers (YZW and LCX) completed the literature

screening separately——title and abstract screening eliminated

clearly irrelevant records (e.g., non-AI methods, non-ECG

data, or animal studies)——followed by full-text evaluation

of potentially eligible articles against predefined criteria.

Discrepancies were resolved through consensus discussions or

third-reviewer arbitration (LH).

Inclusion criteria were as follows——(1) implementation of

machine learning algorithms, (2) using ECG-derived data, (3) AF as

the primary clinical endpoint, (4) human clinical studies, and (5) the

prediction of true positive (TP), false positive (FP), false negative (FN),

and true negative (TN) either be included in studies or can be

calculated; Exclusion criteria included——(1) duplication publications,

(2) studies involving critically ill populations, and (3) undefined AI

methodologies. The complete selection process was detailed in Figure 1.

2.3 Data extraction and quality assessment

Two investigators (YZW and LCX) independently extracted

data using standardized templates. The following parameters

were collected: first author, publication year, data source,

specifications of the AI algorithm, and diagnostic performance

metrics (sensitivity, specificity). The methodological quality was

assessed with the Quality Assessment of Diagnostic Accuracy

Studies-2 (QUADAS-2) tool (10), which evaluates four critical

domains: (1) patient selection, (2) index test, (3) reference

standard, and (4)flow and timing. After the initial data

extraction, cross-validation was conducted to verify inter-rater

consistency. Due to the limited sample size (n < 20), Cohen’s

kappa coefficients were not calculated, as agreement measures

can be statistically unstable with small sample sizes.

2.4 Statistical analysis

When a patient was diagnosed as AF, it was considered a positive

result; conversely, when diagnosed as non-AF, it was considered a

negative result. So, TP refers to the number of true positive

samples, which are correctly predicted as positive. FP indicates the

number of false positive samples, which are negative but

incorrectly predicted as positive. TN refers to the number of true

negative samples, which are correctly predicted as negative. FN

represents the number of false negative samples, which are

positive but incorrectly predicted as negative. Two independent

investigators (YZ and LC) extracted the number of TP, FP, FN,

and TN from each eligible study. We implemented bivariate

random-effects modeling coupled with hierarchical summary

receiver operating characteristic analysis to derive pooled sensitivity

and specificity estimates with 95% confidence intervals (CI).

Heterogeneity assessment incorporated Cochran’s Q and I2

statistics, with predefined thresholds: Q-test P-value≥ 0.10 and

I2≤ 50% indicating low heterogeneity, vs. P < 0.10 and I2 > 50%
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denoting substantial heterogeneity. For analyses demonstrating

substantial heterogeneity, we conducted meta-regression, sensitivity

analyses, leave-one-out analyses. And we conducted subgroup

analysis with the type of AI algorithm and number of adopted data

sets as parameters to investigate potential sources of variability.

Publication bias was evaluated using Deek’s funnel plot

asymmetry test, with statistical significance set at P > 0.05 indicating

absence of bias. Finally, we conducted a clinical diagnostic test for

this diagnostic strategy, calculating both the positive likelihood ratio

(PLR) and the negative likelihood ratio (NLR) to assess its

diagnostic accuracy. All statistical computations were performed in

Stata/MP 18.0 and R 4.4.2.

3 Results

3.1 Characteristics of included studies

This analysis incorporated twelve diagnostic studies (11, 22),

five of these studies predicted the occurrence of AF (11, 14, 16,

18, 19), and another seven used AI algorithms to detect AF

(12, 13, 15, 17, 20–22). And the included studies with algorithm

type distributed as follows: four studies employed DL methods

(11, 12, 15, 17), seven utilized ML approaches (13, 14, 18–22),

and only one study incorporated both two algorithmic ways (16).

Data mainly originated from the PhysioNet platform (https://

physionet.org/), MIT-BIH Atrial Fibrillation Database, and MIT-

BIH Arrhythmia Database. Only one investigation utilized

clinical datasets (18), while another synthesized clinical and

repository data (12). Regarding data diversity, only five original

studies used multi-source datasets (11–13, 16, 18), other 7

studies relying on single-source one. Comprehensive baseline

characteristics were presented in Table 1.

3.2 Quality assessment

The risk of bias in the included studies was evaluated using the

QUADAS-2 tool. The evaluation results are as follows: (1) patient

election (2 studies with high risk of bias, 6 with unclear risk of bias,

FIGURE 1

Flow diagram of literature search and study selection.
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and 4 with low risk of bias), (2) index test (all 12 studies with low

risk of bias), (3) reference standard (no study with high risk of bias,

2 with unclear risk of bias, 10 with low risk of bias), and (4)flow

and timing (4 studies with high risk of bias, 5 with unclear risk

of bias, and 3 with low risk of bias). A detailed summary of the

quality assessment results can be found in Figure 2.

3.3 Meta analysis

A total of 12 studies were included in the meta-analysis. The

forest plot indicated that AI exhibited high diagnostic

performance in identifying AF with HRV from ECG. The pooled

sensitivity was 0.94 (95% CI: 0.87–0.98), while the pooled

TABLE 1 Main characteristics of the 12 included researches in this meta-analysis.

Authors Database HRV parameter Methodology Performance

Chen et al. (11) Atrial Fibrillation Paroxysmal Database

MIT-BIH Atrial Fibrillation Database

MIT-BIH Normal Sinus Rhythm Database

R-R interval Convolutional Neural

Network

SEN = 0.9712

SPE = 0.9777

Tutuko et al. (12) MIT-BIH Atrial Fibrillation Database

2017 PhysioNet/CinC Challenge Database

2018 PhysioNet/CinC Challenge Database

ECG Long Term AF Database

Atrial Fibrillation Paroxysmal Database

MIT-BIH Arrhythmia Database

AF Termination Challenge Database

Fantasia Database

ECG recording from Chapman University

and Shaoxing People’s Hospital

ECG recording from an Indonesian

Hospital

R-R interval Convolutional Neural

Network

SEN = 0.9980

SPE = 0.9980

Udawat and

Singh (13)

MIT-BIH Atrial Fibrillation Database

MIT-BIH Arrhythmia Database

R-R interval Fourier Decomposition

Method

SEN = 0.9940

SPE = 0.9950

Wu et al. (14) Atrial Fibrillation Paroxysmal Database a11 time domain parameter

7 frequency domain parameter

7 nonlinear parameter

Bagging Ensemble Learning

Method

AdaBoost Ensemble

Learning Method

Stacking Ensemble Learning

Method

SEN = 0.8800

SPE = 0.9600

Marinucci et al.

(15)

2017 PhysioNet/CinC Challenge Database MRR、SDRR、RMSRR、PRR50 Artificial Neural Network SEN = 0.8120

SPE = 0.8120

Chesnokov (16) Atrial Fibrillation Paroxysmal Database

MIT-BIH Atrial Fibrillation Database

pVLF, pLF, pHF, LF/HF, SampEn, ApEn, MSE, and

MAE

Artificial Neural Network SEN = 0.6818

SPE = 1.0000

Support Vector Machine

(Radial Basis Function

Kernel)

SEN = 0.8372

SPE = 0.7647

Support Vector Machine

(Sigmoid Kernel)

SEN = 0.8372

SPE = 0.7647

Sanjana et al.

(17)

2017 PhysioNet/CinC Challenge Database MRR、SDNN、RMSSD Recurrent Neural Network SEN = 0.9034

SPE = 0.9687

Gated Recurrent Unit SEN = 0.8725

SPE = 0.9787

Saiz-Vivo et al.

(18)

Reveal LINQ usability study

(NCT01965899)

Single Center Clinical Trail (29)

MRR, pNN50, pNN20, RMSSD, SDNN, TINN, TRI,

ApEn, SampEn, SD1, SD2、SD1/SD2, DFAɑ1ɑ2

Support Vector Machine SEN = 0.8275

SPE = 0.5950

Xin and Zhao

(19)

Atrial Fibrillation Paroxysmal Database b4 time domain parameter

4 frequency domain parameter

Multi-scale Wavelet α-

entropy

SEN = 0.9488

SPE = 0.8948

Asl et al. (20) MIT-BIH Arrhythmia Database R-R interval Generalized Discriminant

Analysis

Support Vector Machine

SEN = 0.9463

SPE = 0.9972

Mei et al. (21) 2017 PhysioNet/CinC Challenge Database R-R interval Support Vector Machine

Bagging Trees

SEN = 0.8840

SPE = 0.9958

Bus et al. (22) Long-Term Atrial Fibrillation Database pRRx Fourier Decomposition

Method

SEN = 0.9042

SPE = 0.9537

aTime domain parameter: MRR, SDNN, HR, SDHR, minHR, maxHR, RMSSD, NN50, pNN50, HRV triangular index, and TINN, Frequency domain parameter: pVLF, pLF, pHF, LF/HF, total

spectral power, LF/(TP-VLF), and HF/(TP-VLF), Nonlinear parameter: SD1, SD2, SD2/SD1, ApEn, SampEn, and short-term and long-term fluctuations of DFA.
bTime domain parameter: MRR, SDNN, RMSSD, and pNN50, Frequency domain parameter: pVLF, pLF, pHF, and LF/HF.

MRR: mean of RR interval, SDNN: standard deviation of normal to normal RR intervals, HR: heart rate, SDHR: standard deviation of instantaneous heart rate values, minHR: min heart rate per

minute, maxHR: maximum heart rate per minute, RMSSD: root mean square of successive RR interval differences, NN50: number of successive RR interval pairs that differ more than 50 ms,

pNN50: NN50 divided by the total number of all NN intervals, pNN20: NN20 divided by the total number of all NN intervals, TINN: baseline width of the NN interval histogram, TRI:

triangular index, pVLF: absolute power of VLF band, pLF: absolute power of LF band, pHF: absolute power of HF band, LF/HF: ratio between LF and HF band powers, LF/(TP-VLF):

normalized LFP, HF/(TP-VLF): normalized HFP, SD1: poincaré plot standard deviation perpendicular the line of identity, SD2: poincaré plot standard deviation along the line of identity,

SD2/SD1: ratio of SD2 to SD1, ApEn: approximate entropy, SampEn: sample entropy, DFAɑ1ɑ2: short-term and long-term fluctuations of detrended fluctuation analysis, MSE: multiscale

sample entropy, MAE: multiscale approximate entropy, pRRx: percentage of successive RR intervals differing by at least x ms, AF: atrial fibrillation, ECG: electrocardiogram; SEN:

sensitivity, SPE: specificity.
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specificity was 0.97 (95% CI: 0.92–0.99). The summary receiver

operating characteristic curve showed an area under the curve

(AUC) of 0.99 (95% CI: 0.97–0.99), with most studies

demonstrating strong sensitivity and specificity (Figure 3A).

In predicting the onset of AF, the AI algorithm demonstrated

a sensitivity of 0.87 (95% CI: 0.74–0.94), specificity of 0.90

(95% CI: 0.72–0.97), and an AUC of 0.94 (Figure 3B). For AF

detection, the AI algorithm exhibited even superior performance,

with sensitivity of 0.96 (0.87–0.99), specificity of 0.99 (0.96–1.00),

and AUC of 1.00 (0.99–1.00) (Figure 3C). The above three

results are summarized in Table 2. However, considerable

heterogeneity was observed in the forest plot, with sensitivity

showing an I2 of 99.95%, Q = 24,113.88, and P < 0.1, and

specificity exhibiting an I2 of 99.94%, Q = 18,584.74, and

FIGURE 2

Summary of risk of bias across all included studies.
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P < 0.1. To explore the sources of heterogeneity, we conducted

meta-regression, sensitivity analysis, and subgroup analysis.

3.4 Meta-regression and sensitivity analyses

Meta-regression analyses were performed based on the baseline

characteristics of the included studies, focusing on two factors: AI

algorithm type and the number of datasets used. The results

indicated that the heterogeneity between different AI algorithm

types was not statistically significant (P > 0.05), and no significant

differences in specificity were observed between single-dataset

and multi-dataset groups (P > 0.05). Therefore, neither the AI

algorithm type nor the number of datasets explained the

heterogeneity observed in the meta-analysis (Supplementary

Figure S2). Sensitivity analysis demonstrated the robustness of

the overall results (Supplementary Figure S3). When each study

was individually excluded, neither the pooled effect size nor the

heterogeneity exhibited any significant changes (Supplementary

Table S4).

3.5 Subgroup analysis

Subgroup analysis revealed significant differences in

diagnostic performance based on various AI algorithms type

(Figure 4A). The DL model demonstrated nearly perfect

discriminative ability, with an AUC of 0.99 (95% CI: 0.98–1.00),

sensitivity of 0.95 (95% CI: 0.76–0.99), and specificity of 0.98

(95% CI: 0.93–1.00) (Supplementary Figure S5A). In contrast,

AUC of ML models was 0.97 (95% CI: 0.96–0.98), with

sensitivity of 0.92 (95% CI: 0.84–0.96) and specificity of 0.95

(95% CI: 0.84–0.99), which were slightly inferior to those of the

DL model (Supplementary Figure S5B). Additionally, data

diversity was found to have a crucial impact on model

generalization ability (Figure 4B). When trained on a single

database, AUC was 0.95 (95% CI: 0.92–0.96), with sensitivity of

0.89 (95% CI: 0.86–0.91) (Supplementary Figure S5C). However,

cross-validation using multiple databases significantly improved

diagnostic performance, with an AUC of 0.99 (95% CI: 0.98–

1.00) and sensitivity increased to 0.96 (95% CI: 0.81–0.99)

(Supplementary Figure S5D).

3.6 Clinical diagnostic testing

When the PLR value exceeds 10, a positive result significantly

raises the likelihood of disease, shifting the pre-test probability

from 20% to 90%. In this study, PLR was 37, suggesting this

diagnostic marker effectively identified the presence of the

FIGURE 3

Forest plot and receiver operating characteristics curves of artificial intelligence for AF identification in HRV. (A) The result of pooled research; (B) The

results of AI in predicting AF; (C) The results of AI in detecting AF.

TABLE 2 Main results of meta-analysis.

Research type Sensitivity Specificity AUC

Pooled 0.94 (0.87–0.98) 0.97 (0.92–0.99) 0.99 (0.98–1.00)

Prediction of AF 0.87 (0.74–0.94) 0.90 (0.72–0.97) 0.94 (0.91–0.97)

Detection of AF 0.96 (0.87–0.99) 0.99 (0.96–1.00) 1.00 (0.99–1.00)

AF, atrial fibrillation; AUC, area under the curve.
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disease. Conversely, when the NLR is below 0.1, a negative result

markedly reduces the probability of disease, lowering the pre-test

probability from 20% to 1%. In this study, NLR was 0.06,

demonstrating that this diagnostic marker is highly effective in

ruling out the disease in negative cases (Figure 5).

3.7 Publication bias

Publication bias was evaluated using Deek’s funnel plot

asymmetry test. The results indicated a P-value of 0.16,

suggesting that no publication bias was present in the studies

included in this analysis (Figure 6).

4 Discussion

This study is the first to evaluate the diagnostic performance of

HRV based on AI algorithms through a meta-analysis. The 12

included studies demonstrate that AI models exhibit outstanding

performance in identifying AF, especially in detecting AF. The

area under the summary receiver operating characteristic curve is

the theoretical optimal value (AUC = 1.00), which seems to mean

that AI could be the “gold method” for diagnosing AF. Notably,

the clinical applicability analysis further validated the diagnostic

FIGURE 4

Summary of receiver operating characteristics. (A) The subgroup of algorithm type; (B) The subgroup of number of databases.

FIGURE 5

Fagan plot.

FIGURE 6

Deeks’ funnel plot.
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value of this technology: the PLR value is 37, and the NLR value is

0.06. These findings indicated that the AI-based HRV diagnostic

tool has strong accuracy and rule out negative results effectively,

highlighting its potential as a auxiliary tools for clinicians in

identifying AF.

Our results are consistent with previous studies. For example,

Manetas-Stavrakakis et al. conducted a cohort or case-control

study using single-lead ECG to detect AF and reported a

combined sensitivity of 92.3% and specificity of 96.2% (23). In

comparison, our study found even higher sensitivity and

specificity, suggesting that HRV may be a more accurate AF

diagnostic marker. Subsequent subgroup analyses revealed that,

compared to ML models, DL demonstrated superior diagnostic

performance, which aligns with the findings of Solam Lee et al

(24). Additionally, Xie C.G. et al. reached similar conclusions,

with the DL model exhibiting significantly higher sensitivity

(98.1%) compared to the ML model (91.5%) (25). DL models

represent an important category of ML, encompassing algorithms

such as deep feedforward neural networks, convolutional neural

networks, and deep belief networks. A key feature of these

models is their high degree of flexibility. Unlike ML models, the

individual representations in DL are not manually designed by

researchers but are instead learned from training data (26).

Furthermore, DL models learn representations not in a single

step, but across multiple layers between hidden layers. More

importantly, the subsequent transformations between layers in

DL models are non-linear, significantly enhancing the model’s

adaptability. This could explain the superior performance of the

DL model observed in our study.

Although this study demonstrates promising combined results,

several limitations are unavoidable. On the one hand, limitations

stems from the included studies themselves. The majority of

studies did not use external validation sets, and the widespread

use of a single data source led to significant overlap between

model training and validation sets. This overlap may hinder the

model’s ability to adapt to the complexity of real-world patients

and clinical environments, potentially increasing misdiagnosis

rates and medical risks. The AUC in detecting atrial fibrillation

may imply an overlap between the training sets and test sets, and

the lack of real-world external validation may be an important

reason why the AUC is perfect. On the other hand, there was

considerable heterogeneity observed across studies (sensitivity

I2 = 99.95%, specificity I2 = 99.94%). Although meta-regression

and sensitivity analyses confirmed the robustness of our findings,

this suggested the presence of deeper underlying factors. One

major cause of heterogeneity is the differences in the source and

quality of the raw data. The majority of the included studies

relied on the publicly available PhysioNet database, with only

one study collecting clinical data and one combining both

clinical and database data. While the standardized collection

process of public databases reduces technical bias, it may not

fully reflect the complexity of real-world clinical scenarios.

Clinical data collection, is often susceptible to background noise

(e.g., patients’ movement). Unfortunately, due to the limited

number of clinical diagnostic studies, we were unable to perform

subgroup analysis to compare the diagnostic performance of

database vs. clinical data. Secondly, while all studies focused on

HRV as the central feature, there were slight differences in the

ECG features of HRV, leading to a lack of a standard procedures

for HRV extraction. For example, Chen W. et al. used the RR

interval as the HRV feature (11), while Bus S. et al. extracted the

pRRx parameter to predict AF (22). Other studies incorporated

multiple indicators as HRV features, including DNN, RMSSD,

pNN50, and pNN20 (15, 18, 19). These technical variations led

to inconsistent model inputs, affecting performance stability.

Finally, since ECG signals are highly susceptible to various types

of interference during data collection, background noise can

obscure the true cardiac electrical activity, thereby affecting the

performance and accuracy of AI models. Consequently, most

diagnostic studies performed denoising prior to HRV signal

input. Removing noise helps preserve crucial ECG signals (27),

thereby reducing the rates of both false positives and false

negatives. However, subtle AF fibrillation waves could be

mistakenly classified as noise and eliminated, resulting in

diagnostic bias. Additionally, there are significant differences in

signal fidelity and computational efficiency among different

denoising methods, which contributes to the substantial

heterogeneity observed in this study.

The limitations of this study reflect common challenges in the

current field. There is a clear need for standardized data collection

processes and high-quality datasets to ensure consistency in data

input. Additionally, it is crucial to identify and optimize the

most effective HRV features to enhance the specificity of AF

identification. More importantly, there is an urgent need for

additional prospective studies to assess the real-world

applicability of AI prediction models. Despite these challenges,

the accuracy of AI models for identifying arrhythmias has

already been shown to surpass that of general cardiologists (28).

We look forward to the development of more comprehensive

databases and more advanced AI algorithms, which can assist

clinicians in better diagnosing atrial fibrillation.

5 Conclusion

In conclusion, AI effectively utilizes HRV in ECG signals to

detect AF, with its DL algorithms and multi-database approaches

demonstrating superior diagnostic performance.
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