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Cardiovascular diseases (CVDs) have become the leading cause of death

globally, surpassing infectious diseases and other chronic illnesses. The

incidence and mortality rates of CVDs are rising worldwide, posing a key

challenge in public health. The ubiquitination system is a vast and complex. It

is an important post-translational modification that plays a crucial role in

various cellular processes. Deubiquitination is catalyzed by deubiquitinases

(DUBs), which remove ubiquitin (Ub) from ubiquitinated proteins, thereby

reversing the ubiquitination process. DUBs play an important role in many

biological processes, such as DNA repair, cell metabolism, differentiation,

epigenetic regulation, and protein stability control. They also participate in the

regulation of many signaling pathways associated with the development and

progression of CVDs. In this review, we primarily focus on the role of DUBs in

various key pathological mechanisms of atherosclerosis (AS), such as foam cell

formation, vascular remodeling (VR), endothelial-to-mesenchymal transition

(End-MT), and clonal hematopoiesis (CH). In the heart, we summarize the

involvement of DUBs in diseases and pathological processes, including heart

failure (HF), myocardial infarction (MI), myocardial hypertrophy (MH) and

ischemia/reperfusion (I/R) injury. Additionally, we also explore the diabetic

cardiomyopathy (DCM) and the use of doxorubicin-induced cardiotoxicity in

clinical settings. A comprehensive understanding of deubiquitination may

provide new insights for the treatment and drug design of CVDs.
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deubiquitinases, deubiquitination, ubiquitin-proteasome system, signaling pathways,
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1 Introduction

Despite the increasing depth of understanding and research into CVDs, their mortality

rate remains high (1). The ubiquitin-proteasome system (UPS) plays a significant role in

CVDs due to its unique functions. As one of the key protein degradation systems within

cells, the UPS is primarily responsible for the degradation and regulation of target

proteins. It is involved in the degradation of over 80% of the proteins within cellular

proteins (2). The system consists of Ub, ubiquitin-activating enzymes (E1s),
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ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), and

DUBs. The ubiquitination process, mediated by E1s, E2s, and

E3s, is referred to as ubiquitination (3). Protein homeostasis

imbalance is a key factor that disrupts cellular homeostasis. These

enzymes typically mark their specific target proteins using Ub,

leading to their degradation by the proteasome, or further

mediate signaling based on the protein’s modification sites and

the number of attached Ub molecules, thus participating in

various physiological processes (4) (Figure 1). The reverse process

of ubiquitination is called deubiquitination. Deubiquitination is

primarily catalyzed by DUBs, which are classified into seven

families based on sequence and structural similarity: ubiquitin-

specific proteases (USPs), ovarian tumor proteases (OTUs),

ubiquitin c-terminal hydrolases (UCHs), Machado-Josephin

domain proteases (MJDs), JAB1/MPN+/MOV34 (JAMM) domain

proteases, monocyte chemoattractant protein-Induced protein

(MCPIP), and a novel family of DUBs associated with ubiquitin-

binding, motif Interacting with Ub-containing novel DUBs

(MINDYs) (5). DUBs are a group of proteins that recognize and

cleave Ub chains. They interact with substrate proteins,

preventing their degradation by the UPS. DUBs contain

ubiquitin-binding domains (6), which enable that they perform

specific and precise regulation through the recognition and

recruitment of ubiquitinated proteins (7). By cleaving the peptide

or isopeptide bonds between Ub and its substrate, DUBs remove

Ub from ubiquitinated proteins, thereby stabilizing the substrate

and reversing ubiquitination (8). Additionally, DUBs regulate

signaling pathways to prevent their overactivation, maintaining

UPS homeostasis (9). Through Ub removal, DUBs rescue

target proteins from degradation signals, preserving their

stability (10). The dynamic balance between ubiquitination and

FIGURE 1

The process of polyubiquitination and deubiquitination. The E2 enzyme carries an activated ubiquitin (Ub) molecule via its cysteine (Cys) residue and

transfers it to the target protein under the action of the E3 ubiquitin ligase. The E3 ligase, composed of a RING domain and a recognition domain,

facilitates the attachment of ubiquitin to the lysine (Lys) residue of the target protein. Subsequently, a polyubiquitin chain is formed through the

linkage between the glycine residue at position 76 (Gly76) of one ubiquitin molecule and the Lys residue of the preceding ubiquitin.

Deubiquitinases (DUBs) recognize and cleave ubiquitin chains at specific sites. The ubiquitin-binding domain (UBD) of DUBs identifies the ubiquitin

chain, while the catalytic domain performs the cleavage, thereby regulating the ubiquitination levels of proteins. (created with BioRender.com).
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deubiquitination is intricately linked to various cellular functions

and is critical in disease pathogenesis and therapeutic

interventions (11).

To date, more than 100 DUBs have been identified (12). Recent

studies have demonstrated that DUBs play crucial regulatory roles

in various CVDs and control the onset and progression of disease

through multiple mechanisms. This review will systematically

examine the role of DUBs in CVDs, categorized by different

disease types (Figure 2).

2 Atherosclerosis

AS is a multifocal, immune-mediated chronic inflammatory

disease that predominantly affects large and medium-sized

arteries and is closely associated with lipid deposition. The

hallmark pathological feature of AS is excessive cholesterol

accumulation in arterial walls, leading to progressive thickening

and hardening (13). AS a leading contributor to acute

cardiovascular events including MI and stroke, AS represents a

complex disease process involving multiple pathophysiological

mechanisms such as dysregulated lipid metabolism, aberrant

immune responses, and VR (14). uring the onset and progression

of AS, DUBs play crucial roles in regulating several processes,

including endothelial cell function, immune cell activation,

inflammation, and lipid uptake. These findings suggest that

DUBs may serve as potential therapeutic targets for AS

treatment. We will systematically elucidate the mechanistic role

of DUBs in the initiation and progression of atherosclerosis

across its different developmental stages.

2.1 Endothelial dysfunction and
inflammatory regulation

Atherosclerosis can be broadly divided into several stages: lipid

deposition, persistent inflammatory response, foam cell formation,

vascular smooth muscle cell (VSMC) proliferation, and VR (15). In

the early stage of atherosclerosis, no apparent atherosclerotic

plaques have formed in the vascular wall; however, a series of

pathophysiological changes have already begun to take place. The

earliest alterations occur in endothelial cells, with endothelial cell

injury being defined as the initiating event of atherosclerosis (16).

Endothelial cells, positioned at the interface between solid and

semi-solid states, serve as the outermost protective barrier of

blood vessels. Under physiological conditions, they maintain

vascular homeostasis by regulating vascular tone, inhibiting

thrombosis, and modulating inflammatory responses (17).

However, when exposed to pathological stimuli such as from

disturbed blood flow (18), Oxidative stress (19), inflammatory

factors and elevated lipid levels, endothelial cells undergo an

inflammatory response, leading to structural alterations and

functional impairment, ultimately disrupting vascular

homeostasis, by suppressing the inflammatory response to reduce

endothelial cell injury, the progression and development of

atherosclerosis can be effectively alleviated. A study has shown

that USP14 expression is significantly downregulated in

FIGURE 2

The role of DUBs in CVD. This figure summarizes the mechanisms of DUBs in various pathways associated with CVD, as discussed in this review article.

(created with BioRender.com).
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atherosclerotic plaques. Further experiments revealed that

overexpression of USP14 alleviates ox-LDL-induced endothelial

inflammation, primarily by deubiquitinating NLRC5, thereby

inhibiting NF-κB activation and reducing the release of pro-

inflammatory cytokines (20). Interestingly, another study by

Zhang et al. reported that USP14 expression is upregulated in the

serum of atherosclerosis patients, and overexpression of USP14

promotes the activation of the Smad2/3 signaling pathway via

NLRC5 deubiquitination (21), leading to increased secretion of

pro-inflammatory cytokines. These seemingly contradictory

findings, however, can be reasonably explained. Firstly, NLRC5

itself exhibits dual functions. While it is generally considered an

inhibitor of inflammation, it can also act as a pro-inflammatory

regulator under certain conditions (22). Secondly, USP14’s

deubiquitination activity may result in different biological

effects depending on the type of ubiquitin chains removed.

Lastly, USP14 exerts distinct functions in different cell types

and pathological conditions. For instance, in macrophages,

downregulation of USP14 suppresses inflammation (23). In THP-

1 and RAW264.7 cells, inhibition of USP14 inactivates the ERK

signaling pathway, thereby reducing LPS-induced inflammation

(24). In TCMK-1 cells, USP14 inhibition downregulates TFAP2A

while upregulating TBK1, leading to reduced oxidative stress and

inflammation (25). Undoubtedly, USP14 plays a crucial role in

the pathogenesis of atherosclerosis. Although its precise

mechanisms require further investigation, current evidence

strongly suggests that USP14 is closely linked to inflammation

regulation. Specific USP14 inhibitors, such as IU1 and other

compounds, have been identified (26). Unfortunately, these

inhibitors remain in the experimental stage and have yet to be

translated into clinical applications. In the future, USP14 may

emerge as a promising therapeutic target for controlling

inflammation and treating atherosclerosis, offering new avenues

for disease intervention. End-MT is a critical phenotypic

alteration associated with endothelial dysfunction (27). Under

maladaptive and pathological conditions, newly transformed

mesenchymal cells undergo fibrosis, leading to excessive

extracellular matrix deposition, increased tissue stiffness, and

ultimately impaired vascular function, thereby promoting disease

progression. OTUD1, a deubiquitinase belonging to the OTUD

family, has been identified as a key regulator of End-MT. Huang

et al. Demonstrated (28) that OTUD1 deubiquitinates SMAD3,

thereby exacerbating AngII-induced VR and collagen deposition

by promoting End-MT. SMAD3 is a crucial signal transduction

protein involved in multiple cardiovascular diseases (29–31). As a

member of the SMAD family, SMAD3 forms a complex with

other family proteins to regulate gene expression (32). OTUD1

stabilizes SMAD3 and enhances the formation of the SMAD3/

SMAD4 complex, thereby modulating the transcription of genes

associated with End-MT and VR. β-catenin is a central

regulatory factor in the Wnt signaling pathway, playing a pivotal

role in cellular proliferation and differentiation. It has been

extensively investigated as a therapeutic target in cardiovascular

and other diseases (33, 34). The deubiquitinase YOD1 interacts

with β-catenin via its OTU domain, removing its K48-linked

ubiquitin chains, thereby preventing its degradation. This process

leads to the aberrant nuclear accumulation of β–catenin, which

subsequently enhances the transcription of EndMT-related genes,

further promoting endothelial dysfunction, VR, and pathological

progression. Collectively, these molecular mechanisms highlight

the intricate regulatory network governing End-MT and its role

in endothelial dysfunction and VR. The pathological alterations

induced by End-MT not only compromise endothelial integrity

but also create a pro-inflammatory and pro-oxidative

microenvironment within the vasculature. These changes, in

turn, facilitate the recruitment and infiltration of immune cells,

further amplifying vascular damage and contributing to the

progression of atherosclerosis.

2.2 Lipid deposition and foam cell formation

Following endothelial cell injury, structural alterations and

functional impairment lead to a marked increase in vascular

permeability, facilitating the penetration of large amounts of LDL

into the subendothelial space. Under the influence of reactive

ROS, LDL undergoes oxidation, forming ox-LDL (35).

Simultaneously, the expression of ICAM-1 and VCAM-1 is

upregulated, further enhancing monocyte adhesion and enabling

their transendothelial migration into the intimal layer. Upon

stimulation by MCP-1 and TNF-α, monocytes differentiate into

macrophages. Macrophages, through scavenger receptors such as

SR-A1, CD36, and LOX-1, indiscriminately uptake ox-LDL (36).

Since these receptors are not subject to negative feedback

regulation by intracellular cholesterol levels, the continuous

accumulation of ox-LDL within macrophages results in

excessive intracellular lipid overload, ultimately driving their

transformation into foam cells (36). Foam cells not only

exacerbate the inflammatory response but also significantly

increase the risk of plaque rupture. As early as 2006, studies

reported that heightened activity of the UPS is closely associated

with increased plaque inflammation and vulnerability (37),

suggesting that UPS plays a crucial role in the pathogenesis and

progression of atherosclerosis. Furthermore, deubiquitination

may serve as a key regulatory factor in foam cell formation,

warranting further investigation into its underlying mechanisms.

In macrophages and mouse models with USP9X deficiency,

studies have shown a significant increase in ox-LDL uptake, lipid

accumulation, lesion macrophage content, and necrotic core

expansion. Mechanistically, USP9X inhibits foam cell formation

by removing K63-linked polyubiquitination of SR-A1 at the K27

site (38). Additionally, USP14 has been identified as a

deubiquitinase for CD36, promoting foam cell formation by

deubiquitinating CD36 in THP-1 and RAW264.7 macrophages

(39). Similarly, VSMC serve as another major source of foam

cells, and the deubiquitinase USP53 facilitates lipid uptake and

accelerates foam cell formation by stabilizing SR-A through

deubiquitination (40). Beyond lipid uptake, macrophage

polarization plays a critical role in the pathogenesis and

progression of atherosclerosis (41). In the early stages

of atherosclerosis, M1 macrophages secrete pro-inflammatory

cytokines such as TNF-α and IL-6, exacerbating local
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inflammation and arterial wall damage, thereby accelerating lesion

development (42). In contrast, during disease progression, M2

macrophages contribute to lesion repair and plaque stabilization

by secreting anti-inflammatory cytokines like IL-10, thus slowing

the progression of atherosclerosis Modulating macrophage

polarization may offer a novel therapeutic approach for

atherosclerosis (43). Studies have demonstrated that the

deubiquitinase Mysm1 plays a crucial role in macrophage

survival and polarization. Its deficiency leads to accelerated

proliferation and increased production of pro-inflammatory

factors, promoting an M1-like phenotype (44). In another

study, Rui et al. revealed that USP14 stabilizes cGAS, thereby

enhancing cGAS-STING pathway activation and promoting

ox-LDL/4-HNE-induced pro-inflammatory M1 macrophage

polarization. Conversely, inhibiting USP14 facilitates IL-4/IL-

13-induced anti-inflammatory M2 macrophage polarization,

alleviating inflammation in atherosclerosis (23). However,

whether USP14 can directly deubiquitinate cGAS to stabilize

the cGAS protein remains unclear.Collectively, DUBs play a

pivotal role in regulating macrophage lipid uptake and

polarization. Further exploration of their specific mechanisms

may contribute to the development of novel therapeutic

strategies for atherosclerosis.

2.3 VSMC proliferation, migration, and VR

As inflammation persists and foam cells accumulate, structural

changes gradually occur in the vascular wall, characterized by

VSMC proliferation, migration, and extracellular matrix

remodeling. This process, known as vascular remodeling, is a

critical hallmark of atherosclerosis progression (45). The

phenotypic transition, proliferation, and migration of VSMC not

only influence the stability of atherosclerotic plaques but also

directly determine the severity of arterial stenosis. Additionally,

End-MT and macrophage polarization collectively regulate

vascular remodeling, further promoting vascular stiffening and

fibrosis, thereby exacerbating pathological vascular remodeling

(46). Cezanne is a DUBs belonging to the OTUD family. It was

first characterized in 2001 as a negative regulator of the NF-κB

signaling pathway (47). Subsequent studies revealed that it can be

induced by various pro-inflammatory cytokines and functions as

an inhibitor of the NF-κB signaling pathway, thereby forming a

negative feedback loop in inflammatory cytokine signaling (48).

Recent studies have revealed that the DUBs Cezanne plays a

pivotal role in VSMC proliferation, migration, and arterial

remodeling. Specifically, Cezanne regulates the Wnt/β-catenin

signaling pathway by deubiquitinating β-catenin, thereby

modulating the expression of cysteine-rich protein 61.

Furthermore, analyses of human atherosclerotic tissue samples

have provided additional evidence supporting the role of

Cezanne in disease progression (49). The Wnt/β-catenin

signaling pathway plays a crucial role in the development and

pathological remodeling of the cardiovascular system.

Dysregulation of this pathway is closely associated with the onset

and progression of various cardiovascular diseases (50). Targeting

β-catenin for therapeutic intervention has shown promise in

cancer research (51), and is gaining attention for its potential in

cardiovascular diseases. However, as an intrinsically disordered

protein, β-catenin lacks well-defined drug-binding pockets and

exhibits poor metabolic stability, posing significant challenges

for direct targeting (52). Consequently, indirect regulatory

strategies have emerged as a promising alternative. DUBs play

a crucial role in cardiovascular diseases and offer new avenues

for intervention. For instance, Cezanne modulates β-catenin

stability and signaling by regulating its ubiquitination status.

Developing therapeutics targeting upstream DUBs such as

Cezanne may overcome the limitations of direct β-catenin

targeting and expand treatment strategies for cardiovascular

diseases. Notably, USP10 (53) and USP14 (54) have also been

implicated in the regulation of VSMC proliferation and

migration, highlighting the broader involvement of DUBs in

vascular remodeling. DUBs play a critical regulatory role in

both vascular remodeling and vascular calcification during

atherosclerosis. These discoveries not only enhance our

understanding of the pathological mechanisms underlying

atherosclerosis but also provide potential therapeutic targets

for anti-atherosclerotic and anti-calcification strategies.

2.4 Clonal hematopoiesis

In recent years, CH has been recognized as an independent risk

factor for cardiovascular diseases, alongside traditional risk factors

such as smoking and low-density lipoproteins (55). CH is

characterized by the presence of mutant hematopoietic cell

clones with selective proliferative advantages in peripheral blood

(56). It is closely associated with atherosclerosis, primarily by

promoting chronic inflammation and exacerbating vascular

injury (57). CH is typically driven by somatic mutations in

HSCs, such as TET2, DNMT3A, and ASXL1 mutations, which

enhance the pro-inflammatory properties of immune cells,

including monocytes and macrophages, thereby intensifying

vascular inflammation. Among these mutations, TET2 deficiency

promotes NLRP3 inflammasome activation, leading to increased

secretion of IL-1β and IL-18, which in turn induces endothelial

cell injury, foam cell accumulation, and aberrant proliferation

and migration of VSMC, thereby accelerating the initiation and

progression of atherosclerotic lesions (58). BRCC3 plays a critical

role in CH-driven atherosclerosis. As a DUBs, BRCC3 directly

deubiquitinates NLRP3, enhancing its stability and sustaining

inflammasome activation. Consequently, aberrant BRCC3

activation amplifies pro-inflammatory signaling, exacerbating

vascular inflammation and atherosclerosis (59). Targeting

BRCC3 represents a promising strategy to mitigate CH-

induced atherosclerosis. Inhibiting BRCC3 prevents NLRP3

deubiquitination, thereby reducing excessive inflammasome

activation and suppressing IL-1β secretion, ultimately alleviating

vascular inflammation associated with CH. Unlike traditional

NLRP3 inhibitors such as MCC950 (60), which block NLRP3

assembly and activation by targeting the NACHT domain and

have demonstrated efficacy in reducing atherosclerotic plaque
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formation in murine models (61), BRCC3 inhibition offers distinct

advantages. While MCC950 has shown promising anti-

inflammatory effects in various disease models (62, 63), its

clinical application has been hindered by hepatotoxicity.

Moreover, traditional anti-inflammatory therapies typically

target key inflammatory cytokines or signaling pathways

directly. While effective in reducing inflammation, they may

also compromise baseline immune function, increasing the

risk of infections and other adverse effects. In contrast,

BRCC3 inhibition provides a more refined regulatory

mechanism. By selectively modulating NLRP3 stability, BRCC3

inhibition specifically attenuates excessive inflammasome

activation driven by TET2 deficiency while preserving baseline

inflammasome function. This targeted approach not only

minimizes adverse effects but also maintains essential immune

defense mechanisms, positioning BRCC3 inhibition as a safer

and more precise therapeutic strategy compared to

conventional anti-inflammatory treatments.

3 Heart failure

HF is a clinical syndrome characterized by the heart’s inability

to pump blood effectively to meet the body’s metabolic demands or

maintain normal blood flow. The causes of HF are diverse, typically

involving structural and functional changes in the heart, along with

the interactions of systemic factors. Additionally, DUBs play a

crucial regulatory role in the onset and progression of HF. The

following discussion will explore the mechanisms through which

several DUBs contribute to this process.

3.1 Myocardial hypertrophy

The primary function of the heart is to ensure adequate

perfusion of peripheral organs, meeting their metabolic

demands under both normal and stressed conditions. To

accomplish this under increased preload or afterload, the heart

and individual cardiomyocytes typically undergo hypertrophy.

This hypertrophic response initially develops as an adaptive

mechanism to both physiological and pathological stimuli.

However, pathological hypertrophy often progresses to HF

over time (64). Each form of hypertrophy is initiated and

regulated by a variety of cellular signaling pathways. Over the

past decade, many previously unrecognized mechanisms have

been identified that regulate MH from both positive and

negative aspects, including cellular metabolic proliferation (65,

66), immune responses (67, 68), and epigenetic modifications

(69). Currently, classic medications, including β-adrenergic

blockers and renin-angiotensin-aldosterone system inhibitors,

are used to improve pathological ventricular hypertrophy.

However, the incidence of HF remains high, suggesting that

other signaling pathways or regulatory proteins also play

crucial roles in pathological hypertrophy.

Calcium ion (Ca2+) cycling plays a crucial role in the

contraction and relaxation of cardiomyocytes. The sarcoplasmic

reticulum (SR), as the organelle that stores Ca2+, is primarily

responsible for mediating the uptake and release of Ca2+ during

the contraction-relaxation process. Dysregulation of sarcoplasmic

reticulum function can severely impair Ca2+ cycling, leading to

abnormalities in cardiomyocyte function (70). Sarcoplasmic/

endoplasmic reticulum Calcium ATPase 2a (SERCA2a) is the

cardiac-specific SERCA isoform, responsible for mediating the re-

uptake of Ca2+ into the SR during cardiomyocyte diastole.

SERCA2a regulates cardiac contractility and relaxation by

controlling Ca2+ uptake, thus influencing cardiac function. In

HF, the expression and activity of SERCA2a are reduced. Gene

therapy aimed at increasing SERCA2a expression in the heart has

been shown to be effective (71). USP25 is a product of the

21q11.2 gene, consisting of 25 exons, and can produce three

isoforms through alternative splicing: USP25a, USP25b, and

USP25m. USP25m is specifically expressed in skeletal muscle and

the heart, and it is upregulated during myogenesis, suggesting a

potential role for USP25 in cardiac biology. Studies have shown

that the deletion of USP25 exacerbates MH and cardiac

dysfunction induced by Ang II and TAC. In contrast, restoring

USP25 expression significantly improves pathological cardiac

hypertrophy. Mechanistically, USP25 regulates the uptake

of Ca2+ by deubiquitinating and stabilizing SERCA2a via

K48-linked deubiquitination (72), thereby influencing cardiac

function.Another member of the OTUD family, OTUD6a, has

also been found to be involved in the regulation of MH (73). It

primarily regulates the STING-NF-κB inflammatory axis by

deubiquitinating the K48-linked Ub chains on STING, thereby

maintaining STING stability. Inhibiting OTUD6a significantly

reduces the activation of the STING signaling pathway, thus

slowing down the progression of MH. Targeting DUBs to

regulate MY could become a new direction for the treatment of HF.

3.2 Myocardial infarction

MI is a severe cardiovascular event characterized by ischemic

necrosis of cardiomyocytes due to a sudden reduction or

complete cessation of coronary blood flow. The underlying

pathophysiological mechanisms primarily involve atherosclerotic

plaque rupture, subsequent thrombus formation, and coronary

artery spasm, ultimately leading to myocardial perfusion

impairment and irreversible cardiomyocyte injury. The

occurrence of MI can trigger a range of severe cardiovascular

complications, including HF (74). OTUD1 plays a crucial role

not only in VR but also in cardiac diseases. Wang et al. (75)

established MI and HF mouse models by performing MI surgery

and administering isoproterenol, respectively, to investigate the

role of OTUD1. The study found that the expression levels of

OTUD1 were significantly elevated in both models. Knockdown

of OTUD1 resulted in substantial structural improvements,

alleviation of cardiac damage, and restoration of cardiac function.

The mechanism primarily involves OTUD1 deubiquitinating

phosphodiesterase 5A (PDE5A) in cardiomyocytes, inhibiting its

degradation, and subsequently suppressing the activation of the

cGMP-PKG pathway. This process may be a key factor leading
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to the disruption of calcium homeostasis and MH. cGMP and its

kinase PKG play critical roles in regulating cardiomyocytes

and cardiac function (76). PDE5A, a member of the

phosphodiesterase family, plays an important regulatory role in

the cardiovascular system (77). Numerous studies have

demonstrated that inhibiting PDE5A can effectively alleviate the

progression of HF (78, 79). Therefore, investigating the upstream

regulatory proteins of PDE5A and their underlying mechanisms

holds significant clinical implications for the treatment of HF.

Additionally, another study revealed that OTUD1 can regulate

pathological cardiac remodeling and HF by removing K63-linked

ubiquitination from STAT3, thereby promoting phosphorylation

at the Y705 site, increasing p-STAT3 levels, and facilitating its

nuclear translocation (80). Liu et al. identified that OTUD5,

another member of the OTUD family closely related to OTUD1,

acts as a deubiquitinase for glutathione peroxidase 4 (GPX4) in

cardiomyocytes (81), 4-hydroxy-2-nonenal (4-HNE), a reactive

aldehyde derived from lipid peroxidation, is commonly produced

during oxidative stress. Numerous studies have confirmed that

4-HNE is significantly elevated during MI and is a primary

contributor to cell death (82, 83). In this study (81), the authors

demonstrated that 4-HNE induces carbonylation of GPX4,

impairing its normal function and promoting K48-linked

ubiquitination, which leads to proteasomal degradation and

triggers ferroptosis in cardiomyocytes. OTUD5 counteracts

this process by removing Ub chains from GPX4, thereby

protecting it from 4-HNE-mediated damage and degradation.

This mechanism effectively prevents ferroptosis and mitigates

ischemia-reperfusion-induced cardiac injury (84), Preventing

cardiomyocyte damage represents a critical strategy in treating

cardiac diseases. As a deubiquitinase for GPX4, OTUD5 plays a

vital role in maintaining cellular homeostasis. Its depletion has

been shown to exacerbate ferroptosis, evidenced by a significant

reduction in the SLC7A11/SLC3A2 complex in OTUD5-silenced

cardiomyocytes. This suggests that OTUD5 may also regulate

ferroptosis through transcriptional pathways, providing a broader

understanding of its cardioprotective mechanisms.Targeting

OTUD5 in clinical practice could represent a promising

therapeutic strategy for patients undergoing reperfusion therapy

after MI.

In CVDs, DUBs critically regulate cardiomyocyte stability and

function. They contribute to HF pathogenesis by modulating

pathological MH, post-myocardial infarction remodeling, and

maladaptive responses. DUBs mediate cardiac injury and

remodeling through transcriptional regulation, inflammatory

signaling, and cell survival mechanisms. Current research

provides novel insights into HF progression mechanisms and

identifies DUBs as potential therapeutic targets.

4 Cardiomyopathy

Based on etiology and pathophysiological characteristics,

cardiomyopathy can be classified into genetic and acquired types,

including dilated cardiomyopathy, hypertrophic cardiomyopathy,

restrictive cardiomyopathy, and secondary cardiomyopathy

caused by specific underlying conditions (85). The main features

of cardiomyopathy include myocardial structural remodeling,

ventricular dysfunction, and the potential progression to HF and

arrhythmias (86). Among acquired cardiomyopathies, toxic and

metabolic factors can significantly affect myocardial function.

Doxorubicin (DOX), due to its potent anticancer properties, is

widely used in clinical practice. However, its severe cardiotoxicity

limits the clinical doses that can be administered. DOX-induced

cardiotoxicity is a common form of drug-induced

cardiomyopathy in clinical practice, primarily characterized by

oxidative stress injury in cardiomyocytes, mitochondrial

dysfunction, and impaired cardiac contractility. Therefore,

studying its toxic mechanisms and developing targeted

prevention or treatment strategies are currently key focuses of

both clinical and basic research (87). OTUD1 has been found to

deubiquitinate c-MYC, and inhibiting OTUD1 can effectively

protect mice from DOX-induced cardiac dysfunction (88).

Moreover, DUBs such as USP36 (89), USP14 (90), and Cezanne

(91) play significant roles in DOX-induced cardiac dysfunction.

Although their specific targets and the signaling pathways they

modulate differ, the cellular processes ultimately regulated by

these DUBs, including apoptosis and oxidative stress, are closely

associated with their toxic effects. These mechanisms are key

contributors to the cardiac toxicity observed (92). Targeting

DUBs to mitigate the cardiac toxicity they induce offers a

promising new direction for research and potential

therapeutic strategies.

In addition to toxic factors, metabolic abnormalities also

play a crucial role in the development of cardiomyopathy.

DCM is a specific form of cardiomyopathy caused by diabetes,

characterized by cardiomyocyte hypertrophy, fibrosis, cardiac

dysfunction, and arrhythmias (93). DUBs play a crucial role in

DCM. In the db/db mouse model of diabetes, differences in

UPS expression in diabetic myocardial tissue were already

observed in young db/db mice, with a significant reduction in

the levels of certain DUBs (94). Recent studies have indicated

that the primary cause of HF in DCM is the impairment of

cardiomyocyte function. Mitochondrial dysfunction is a

critical and often overlooked aspect of the pathology and

pathogenesis of DCM. Xie et al. Discovered (95), that the

expression of USP28 was significantly reduced in the hearts of

diabetic patients and db/db mice. Furthermore, compared to

the control group, Myh6-Cre+/USP28fl/fl mice showed more

severe, progressive heart dysfunction, lipid accumulation, and

mitochondrial disruption. Further investigation revealed that

USP28 stabilizes peroxisome proliferator-activated receptor α

through deubiquitination, which in turn promotes the

transcription of mitofusin 2, thus protecting mitochondrial

morphology and function and alleviating diabetic HF. Protein

C (PC), a natural anticoagulant, is activated to form activated

protein C (aPC), which has been found to induce the key

deubiquitinase OTUB1 through PAR1 and EPCR signaling

pathways. This induction helps maintain the expression of YB-

1. The sustained levels of YB-1 inhibit the transcription of

MEF2B, thereby protecting the heart from the effects of DCM

(96). It is worth noting that Xigris, a drug approved in 2001
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for the treatment of sepsis, contains the active ingredient

recombinant activated protein C (rAPC). However, it was

withdrawn by the FDA due to severe bleeding complications.

Recent studies, however, have indicated that aPC plays an

important role in I/R injury as well (97). In conclusion,

although research on the role of DUBs in DCM is still limited,

it is undeniable that targeting DUBs offers a novel approach

for treating DCM.

5 Conclusions

The process of deubiquitination plays a critical regulatory role

in the onset and progression of CVDs, particularly in regulating

key signaling pathways and maintaining cellular homeostasis

(Table 1). Clinically, the application of DUBs is primarily

focused on cancer, neurodegenerative diseases, inflammation, and

immunity. These enzymes mainly regulate protein homeostasis,

the cell cycle, DNA repair, and signal transduction, thus

participating in many key biological processes. In cancer

treatment, deubiquitinase inhibition strategies can generally be

divided into two types: stabilization of the enzymatic active site

conformation and allosteric inhibition of non-catalytic sites

(101). Many newly developed DUB inhibitors, such as Novartis’s

CSN5i-3 (102) or the already marketed drug pimozide (103),

have been found to exhibit significant functions in the field of

cancer therapy.

In cardiovascular research, there has been significant interest

in the development of DUB-targeting drugs, but most of these

studies remain in the predictive or experimental stages, with

no drugs successfully translated for clinical use. Targeting

DUBs offers significant advantages over traditional small

molecule drugs. Instead of merely inhibiting the active sites of

proteins and reducing their activity, DUB inhibitors can

completely degrade the target proteins, effectively eliminating

the residual activity that often leads to side effects with

traditional drugs. Although the role of DUBs in CVDs is

gradually being revealed, the specific mechanisms remain

incompletely understood. Future research should focus on

exploring the relationships between DUBs, signaling pathways,

transcription factors, and other biomarkers relevant to CVDs,

to further investigate their multifaceted roles in

disease progression.
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