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Background: In-hospital cardiac arrest (IHCA) is a major adverse event with a

high death risk. Machine learning (ML) models of prognosis in cardiac arrest

(CA) patients have been established, but there are some interferences in their

clinical application. This study developed an ensemble learning (EL) model

based on clinical information to predict IHCA patient death risk.

Methods and results: This retrospective cohort study used data from the

Medical Information Mart for Intensive Care IV (MIMIC-IV) database and eICU

Collaborative Research Database. Patients (age≥ 18 years) with CA based on

the ICD-9/10 code were included. Eight candidate ML models were selected

for soft voting ensemble. Features were sequentially eliminated based on

feature importance scoring to reduce input complexity without compromising

model performance. The final model was externally validated with the MIMIC-

IV database and deployed as a web application. Overall, 4,068 patients were

included. In the internal validation cohort, the EL model exceeded single ML

models with an accuracy of 0.842, precision of 0.830, recall of 0.839, F1 score

of 0.835, and AUC of 0.898 and showed better calibration across the

spectrum of survival probabilities. Furthermore, there is no obvious decline in

the prediction performance of the EL model with the top seven features

(HCO3
−, Glasgow Coma Scale, white blood cell count, international normalized

ratio, hematocrit, body temperature, and blood urea nitrogen) retained. In

external validation, the performance slightly decreased but remained

acceptable for deploying a clinically feasible web application.

Conclusion: The EL model outperformed single ML models in predicting IHCA

patient death risk. The identified seven key features enabled the parsimonious

EL model to reliably estimate the death risk.
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1 Introduction

In-hospital cardiac arrest (IHCA) is a major adverse event,

affecting >200,000 people annually in the USA, and is associated

with a poor survival rate of approximately 20% (1, 2). Efforts to

improve the survival of IHCA patients have focused on the

timeliness and quality of resuscitation, e.g., early defibrillation or

cardiopulmonary resuscitation (CPR) has been proven to

improve the success of return of spontaneous circulation (ROSC)

(3, 4). Given the high incidence of and low survival of IHCA,

early and accurate identification of IHCA patients with high

death risk will help clinicians make optimal clinical decisions and

improve the patient prognosis.

Biomarkers can be used to monitor the progress and predict

the prognosis of IHCA patients, such as neuron-specific enolase

(NSE), S100B protein (S100B), TNF-α, IL-6, high-sensitivity

C-reactive protein (hsCRP), and endothelin-1 (5–9). However,

the long testing time and complexity of the testing process make

them difficult to promote in clinical settings. The scoring systems

have been routinely used to evaluate the overall condition and

predict patient prognosis in clinical settings, such as sequential

organ failure assessment (SOFA), the National Early Warning

Score 2 (NEWS2), and the cardiac arrest risk triage (CART)

(10, 11). In addition, statistical methods have been widely used

for survival prediction in CA patients. Shang et al. (12) applied

logistic regression (LR) to establish a prediction model for

sudden cardiac death (SCD) in 262 hospitalized patients, which

demonstrated good prediction performance with an AUC of

0.774. However, scoring systems and statistical models are

limited by the amount of clinically available features that are

ignored and the assumption of linear relationships between

clinical features, which fundamentally makes them not ideal in

terms of accuracy and reliability (13, 14).

Machine learning (ML), as a typical form of artificial

intelligence, offers methods for deciphering complex non-linear

relationships, achieving trend predictability, and discovering new

knowledge hidden behind big data (15, 16). ML models have

demonstrated effectiveness in capturing potential associations

between clinical features and IHCA death risk (17). Sun et al. (11)

established a LASSO model to predict IHCA death risk. Deep

learning (DL), as a subset of ML, also demonstrated advantages in

capturing temporal information representation of longitudinal

variables and extracting features from electrocardiography (ECG)

data for ICU death and sudden cardiac death (SCD) risk

prediction (18, 19). However, recurrent neural networks (RNNs)

struggle to handle irregular time-series data caused by emergency

resuscitation, while convolutional neural networks (CNNs)

generally only consider ECG is not entirely sufficient (20, 21).

The mismatch with clinical data structure and clinical urgency

limits the clinical practicality of DL methods.

Moreover, pure ML methods need to further improve the

prediction capability while reducing input complexity, which

dictates the clinical utility of prediction models since any

clinician will be unable to enter data on too many variables

during ongoing CPR (22). Studies show that a single ML model

can be outperformed by a “committee” of individual models,

which is called ensemble learning (EL) (23). EL is a powerful ML

paradigm that assembles multiple models to enhance model

prediction performance and generalization capability (24).

Ensemble models have been proven to be effective as they can

significantly reduce the bias of individual models and improve

diagnostic accuracy by combining the predictions of multiple

basic models (25–27). To optimally support clinicians,

interpretability of the results is also essential besides prediction

accuracy. The Shapley Additive exPlanation (SHAP) method can

provide both local and global interpretation and excellent

visualization capabilities, which can be applied to break through

the “black box” in any ML model and help clinicians evaluate

the rationality of the model prediction (28, 29).

This study used the EL strategy to develop a death risk

prediction model for IHCA patients. A total of 54 candidate

clinical features in 1,472 and 2,596 cases of IHCA were extracted

from two databases for internal and external validation,

respectively. The key factors affecting the IHCA death risk were

explored via the Gini impurity and SHAP method, and then the

optimal feature subset was identified to reduce input complexity

without compromising model performance to help clinicians

quickly and reliably estimate the death risk of IHCA patients.

The final model was deployed into a web application for

practical application in clinical settings.

2 Materials and methods

2.1 Data collection

This was a retrospective cohort. The data used in this study were

extracted from the Medical Information Mart for Intensive Care IV

(MIMIC-IV) database (v2.2) and the eICU Collaborative Research

Database (eICU-CRD). The eICU-CRD is a multicenter database

of 335 units at 208 hospitals located throughout the USA between

2014 and 2015. The authors who acquired data from the databases

completed the course and obtained certification (No. 61529195).

The MIMIC-IV consists of data from the Beth Israel Deaconess

Medical Center from 2008 to 2019. The eICU-CRD and MIMIC-

IV database received ethical approval from the Institutional

Review Boards and the Massachusetts Institute of Technology. As

the two databases did not contain identified health information, a

waiver of informed consent was included in the approval. The

eICU-CRD was used for model development and internal

validation to check the repeatability, while the MIMIC-IV database

was used as the external validation cohort to assess model

transportability and generalizability.

2.2 Patients

All Patients in the MIMIC-IV database and eICU-CRD

who met the following criteria were included in this study:

(1) patients who were 18 years old or older and (2) patients with

cardiac arrest identified based on the ICD-9/10 code. The

exclusion criteria were as follows: (1) patients under the age of
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18 and (2) those with ICU stay time of no >24 h. For patients with

multiple admissions or a history of ICU stays, only those with their

first ICU experience during their first admission are included. The

flowchart showed the selection of patients in this study (Figure 1).

Finally, 4,068 people were included in the study.

2.3 Data extraction

The clinical data of patients with MIMIC-IV and eICU-CRD

IHCA were extracted using PostgreSQL tools in pgAdmin and

Navicat Premium. The prediction model only included the

clinical and laboratory variables on the first day of ICU

admission. If the patient received more than one vital sign

measurement or laboratory test on the first day of admission, the

average values were used for subsequent analysis. Patient

characteristics were collected, including emergency department

(ED) admission, age, sex, height, and weight. Information on

comorbidities, such as myocardial infarct, congestive heart failure

(CHF), peripheral vascular disease, cerebrovascular disease,

dematia, chronic pulmonary disease, immune system disease,

peptic ulcer disease, diabates mellitus (DM), paraplegia, and

FIGURE 1

Flowchart for developing a death risk prediction model for IHCA patients.
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renal disease, were extracted based on the International

Classification of Diseases coding system. Vital signs were

collected, including heart rate (HR), systolic blood pressure

(SBP), diastolic blood pressure (DBP), mean blood pressure

(MBP), respiratory rate (RR), SPO2, and body temperature.

Laboratory tests included hemoglobin (HB), hematocrit (HCT),

platelet, red blood cell count (RBC), white blood cell count

(WBC), prothrombin time international normalized ratio

(INR), prothrombin time (PT), partial thromboplastin time

(PTT), creatinine, blood urea nitrogen (BUN), aspartate

aminotransferase (AST), glutamic pyruvic transaminase (ALT),

alkaline phosphatase (ALP), ceatine kinase (CK), creatine kinase

isoenzymes (CKMB), brain natriuretic peptide (BNP), glucose,

K+, Na+, Ca2+, Cl−, anion gap, pH, HCO3
−, and lactate.

The extracted treatment information included ventilation,

epinephrine, dopamine, and vasopressin. The extracted marking

systems included the Glasgow Coma Scale (GCS) and Charlson

Comorbidity Index (CCI). The primary outcome of the study

was in-hospital death, defined as the vital status of the patient

at discharge.

2.4 Data processing and analysis

The missing values in the raw dataset from eICU-CRD were

handled using the K-nearest neighbor (KNN) imputer. KNN

imputation leverages local patient similarity to preserve

subgroup-specific distributions, which avoids the linear

assumptions of regression methods and maintains feature

correlations better than mean imputation. The imputed dataset

was randomly divided into the training cohort (80% of the data)

and the internal validation cohort (20% of the data). The

synthetic minority oversampling technique (SMOTE) was

conducted to generate synthetic samples to reduce class

imbalance in the raw training cohort to enhance the robustness

in prediction and extrapolation (30). Furthermore, all data values

of continuous features were normalized to the range of 0–1

according to Equation 1 to eliminate dimensional differences and

hasten the learning process (31). The categorical features were

converted into numerical variables by label encoding to unify the

data format (32).

x ¼
xraw � xmin

xmax � xmin
(1)

where x is the normalized value, xraw is the raw value that has not

been normalized, and xmin and xmax are the minimum and the

maximum values in the raw dataset, respectively.

2.5 Ensemble modeling methodology

Eight ML models, including support vector machine (SVM),

random forest (RF), gradient boosting decision tree (GBDT),

adaptive boosting (AdaBoost), extreme gradient boosting

(XGBoost), light gradient boosting machine (LightGBM),

categorical boosting (CatBoost), and natural gradient boosting

(NGBoost), were initially selected as candidate basic models for

ensemble modeling. Although CNNs/RNNs excel in many ML

applications, clinical prediction based on tabular data

classification is still dominated by the bootstrap aggregating

(Bagging) algorithm and boosting algorithm, largely due to their

short training time and robustness (33, 34). Importantly, IHCA

is an acute, time-sensitive event where clinicians need immediate

predictions based on baseline data, not long-term trends, which

drives the exclusion of more advanced models such as CNNs

or RNNs.

During model training, fivefold cross-validation and grid

search were performed in the training cohort to achieve the

optimal hyperparameters for each model. Note that cross-

validation should be performed after applying SMOTE. The

accuracy (Equation 2), precision (Equation 3), recall

(Equation 4), F1 score (Equation 5), and the area under the

receiver operating characteristic (ROC) curve (AUC) were used

to evaluate the prediction performance of trained models. The

basic models with the best prediction performance would be

used to establish an EL model for stronger robustness and

diagnostic accuracy through the soft voting strategy, which

weights predictions of multiple ML models based on their

confidence or probability estimates to obtain a more accurate and

robust final prediction.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
(2)

Precision ¼
TP

TPþ FP
(3)

Recall ¼
TP

TPþ FN
(4)

F1 score ¼
2� Precision� Recall

Precisionþ Recall
(5)

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives, and TN is the

number of false negatives. Different metrics provide different

perspectives on the performance evaluations of trained models.

Accuracy provides overall correctness of the model predictions,

but it may not be sufficient in imbalanced datasets. Precision is

important when false positives are costly, recall is vital when

missing positive cases is unacceptable, and the F1 score combines

the strengths of both. AUC is calculated by integrating the ROC

curve, which ranges from 0 to 1. A model with an AUC of 1 is

perfect, while a model with an AUC of 0.5 is no better than

random guessing.

2.6 Model interpretation

The SHAP method was adopted to interpret the EL model

assembled by multiple diverse basic models. SHAP connects

optimal credit allocation with local explanations using the
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classical Shapley values from game theory and their related

extensions, which represent a thorough theoretical demonstration

of consistent and unbiased interpretation methods (29, 35). The

Shapley value fi of the feature i was calculated according to

Equation 6 (36). The Shapley value of each feature quantified its

contribution, whether negative or positive. A feature with a

higher mean absolute Shapley value implied a greater impact on

the model output.

fi ¼
X

S#N={i}

jSj!(n� jSj � 1)!

n!
( f (S> {i})� f (S)) (6)

where S is the subsets of all features with feature i,f (S> {i})

denotes the prediction by the established EL model considering

feature i, and f (S) is the prediction without considering feature i.

The differences among all possible subsets of S # n are

calculated due to the dependency of the effect of withholding a

feature on other features in the EL model. In addition, for

decision-tree–based models, the feature importance can be

assessed by the Gini impurity used for the calculation of splits in

the tree. The Gini impurity is computed during training based

on how much each feature decreases the weighted impurity in a

tree (37, 38). This method was only adopted in the EL model

consisting of decision-tree–based models, such as RF, GBDT,

AdaBoost, XGBoost, LightGBM, CatBoost, and NGBoost.

2.7 Feature optimization

The SHAP method and Gini impurity clarified which clinical

features are the most important for the death risk of IHCA

patients. Each feature was ranked in descending order based on

feature importance and then eliminated to determine how many

features were required to reduce input complexity without

compromising model performance. Furthermore, the top features

were used to establish parsimonious EL models with varying

numbers of features in order of feature importance. The

parsimonious EL model would be retrained in each subset of

eliminated features and evaluated using accuracy, precision,

recall, F1 score, and AUC to determine how many features were

required to achieve an acceptable model performance to deploy a

clinically feasible web application.

2.8 Statistical analysis

Data analysis was performed using SPSS version 27.0.1. For

continuous variables, the normality was assessed by the

Kolmogorov–Smirnov test. The normally distributed data were

presented as mean ± standard deviation, and the independent

samples t-test was used for their between-group comparisons.

The non-normally distributed data were expressed as median

with interquartile range (IQR: P25, P75), and the Mann–

Whitney U test was used for their between-group comparisons.

Categorical variables were described using frequencies and

percentages (%), and between-group differences were evaluated

using the chi-square (χ²) test or corrected chi-square test.

Statistical significance was set at P < 0.05.

2.9 Webpage deployment tool based on
Streamlit framework

To facilitate the utility of the model in clinical settings, the final

prediction model was implemented into a web application based on

the Streamlit Python-based framework. When the values of

corresponding features from the final model are provided, the

application can return the IHCA patient death risk and

its probability.

3 Results

3.1 Baseline characteristics

A total of 5,987 patients were diagnosed with CA on

admission according to ICD-9/10, and a total of 1,919 patients

were excluded according to the exclusion criteria. Finally, 4,068

patients were included in our study, of which 1,472 patients

were from the MIMIC-IV database and 2,596 patients were

from the eICU-CRD, as shown in Figure 1. Statistical

differences of clinical features between the survival and death

groups using the eICU-CRD as the internal validation cohort

are shown in Table 1, while differences using the MIMIC-IV

database as the external validation cohort are shown in

Supplementary Table S1. In the raw dataset, the proportion of

female and ED admissions was lower in the death group

(P < 0.005). Body temperature, platelet count, CK, PH, HCO3
−,

and GCS values were lower in the death group (P < 0.005).

Patients who died also were older, had higher incidence of

peripheral vascular disease, dementia, and chronic pulmonary

disease, and had elevated levels of HR, RR, WBC, INR, PT,

creatinine, BUN, ALT, AST, ALP, CKMB, BNP, K+, Na+, Ca2+,

Cl−, anion gap, glucose, and lactate. In addition, there was a

significantly higher proportion of ventilatory treatment,

epinephrine use, dopamine use, and vasopressin use (P < 0.005).

Moreover, Supplementary Table S2 indicates that 36 out of 54

initial features showed significant differences (P < 0.005) between

the MIMIC-IV database and eICU-CRD, implying that MIMIC-

IV can be effectively used for external validation to test the

model’s transportability and generalizability.

3.2 Data processing

KNN was used to impute missing values, and the details were

described in Supplementary Text S1. Logistic regression (LR) was

established to evaluate the effect of KNN imputer with different

K values to achieve the best imputation result and avoid

potential bias on candidate models. Figure 2a illustrates that the

accuracy of LR peaked at 0.683 when the K value reached 5 and
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then decreased. Hence, the K value was set to 5 to impute missing

values. Furthermore, in the training cohort, the in-hospital death

rate of IHCA patients was 45.5% (1,152 survivors and 925 non-

survivors), which may impede the prediction performance of ML

models due to class imbalance (22). Figure 2b indicates that

SMOTE could effectively balance the raw dataset by synthesizing

new samples from the minority class in eICU-CRD. To avoid

potential bias of the selected features on candidate models, LR

was employed for recursive feature elimination (RFE) to initially

screen for significant clinical features. The results demonstrate

that RFE using LR decreased the original 54 features into a

subset of 36 features, achieving the optimal combination of

features (Figure 2c).

TABLE 1 Baseline characteristics of the patients.

Feature Raw dataset (n = 2,596)

Survival
(n= 1,440)

Death
(n= 1,156)

P-value

Patient characteristics

ED admission, n (%) 600 (41.70) 541 (46.80) 0.009

Age (years old) [median

(IQR)]

65.00 (54.00, 74.00) 66.00 (76.00,

55.00)

0.007

Mean, n (%) 875 (60.76) 658 (56.92) 0.048

Height (cm) [median

(IQR)]

170.20 (162.60,

177.80)

170.20 (162.60,

177.80)

0.239

Weight (kg) [median

(IQR)]

81.80 (70.00, 99.80) 83.60 (68.10,

119.48)

0.795

Comorbidities, n (%)

Myocardial infarct, n (%) 179 (12.43) 137 (11.85) 0.654

CHF, n (%) 266 (18.47) 246 (21.28) 0.074

Peripheral vascular

disease, n (%)

67 (4.65) 86 (7.44) 0.003

Cerebrovascular disease,

n (%)

27 (1.88) 22 (1.90) 0.958

Dementia, n (%) 32 (2.22) 48 (4.15) 0.005

Immune system disease,

n (%)

30 (2.08) 24 (2.08) 0.990

Chronic pulmonary

disease, n (%)

192 (13.33) 227 (19.64) <0.001

Peptic ulcer disease, n

(%)

21 (1.46) 17 (1.47) 0.979

DM, n (%) 495 (34.38) 412 (35.64) 0.502

Paraplegia, n (%) 109 (7.57) 109 (9.43) 0.090

Renal disease, n (%) 241 (16.74) 212 (18.34) 0.285

Vital signs

HR (beats/minute)

[median (IQR)]

81.09 (69.73, 92.71) 82.23 (69.82,

97.37)

<0.001

SBP (mmHg) [median

(IQR)]

114.19 (105.88,

126.29)

115.09 (103.81,

128.60)

0.441

DBP (mmHg) [median

(IQR)]

65.17 (58.94, 73.32) 64.75 (58.00,

72.64)

0.191

MBP (mmHg) [median

(IQR)]

79.28 (72.79, 88.55) 79.06 (71.57,

88.30)

0.316

RR (beats/minute)

[median (IQR)]

18.50 (16.37, 21.61) 21.00 (17.96,

24.80)

<0.001

SPO2 (%) [median

(IQR)]

98.09 (96.37, 99.32) 98.09 (95.89,

99.35)

0.076

Body temperature (°C)

[median (IQR)]

36.70 (36.04, 37.06) 36.00 (33.52,

36.86)

<0.001

Laboratory tests

HB (g/dl) [median

(IQR)]

8.97 (8.73, 10.48) 9.77 (9.11, 12.96) 0.796

HCT (%) [median (IQR)] 29.49 (26.40, 31.36) 31.55 (27.71,

43.20)

0.367

RBC (1012/L) [median

(IQR)]

3.55 (3.14, 4.34) 4.07 (3.42, 5.55) 0.775

WBC (109/L) [mean

(SD)]

13.54 (1.13) 16.73 (1.33) <0.001

Platelet (109/L) [median

(IQR)]

258.83 (224.60,

286.09)

205.71 (176.06,

263.10)

<0.001

INR [median (IQR)] 1.25 (1.10, 1.39) 1.31 (1.12, 2.75) <0.001

PT (s) [median (IQR)] 12.95 (11.86, 14.75) 13.60 (11.31,

35.83)

<0.001

PTT (s) [median (IQR)] 33.00 (25.95, 45.81) 35.26 (26.13,

53.67)

0.557

(Continued)

TABLE 1 Continued

Feature Raw dataset (n = 2,596)

Survival
(n= 1,440)

Death
(n= 1,156)

P-value

Creatinine (mg/dl)

[median (IQR)]

1.30 (0.72, 4.38) 1.63 (1.22, 2.58) <0.001

BUN (mg/dl) [mean

(SD)]

31.65 (7.21) 34.44 (3.84) <0.001

AST (U/L) [median

(IQR)]

82.00 (67.25,

253.63)

87.00 (65.50,

209.00)

<0.001

ALT (U/L) [median

(IQR)]

60.25 (27.00,

152.00)

73.75 (31.25,

124.63)

<0.001

ALP (U) [median (IQR)] 104.50 (80.88,

137.25)

113.50 (69.50,

152.63)

<0.001

CK (U/L) [median

(IQR)]

511.50 (123.25,

1,259.75)

321.50 (200.29,

568.25)

0.004

CKMB (ng/ml) [median

(IQR)]

12.53 (7.48, 221.75) 18.58 (7.49, 49.10) <0.001

BNP (pg/ml) [median

(IQR)]

378.85 (286.17,

1,109.50)

1,301.50 (195.25,

3,498.50)

0.040

K+ (mmol/L) [mean

(SD)]

4.00 (0.11) 4.04 (0.76) <0.001

Na+ (mmol/L) [mean

(SD)]

139.43 (1.27) 139.64 (0.71) <0.001

Ca2+ (mmol/L) [mean

(SD)]

7.83 (0.15) 7.91 (0.16) <0.001

Cl− (mmol/L) [mean

(SD)]

104.99 (1.58) 105.02 (1.42) <0.001

Anion gap (mmol/L)

[median (IQR)]

11.00 (8.25, 15.75) 11.58 (7.63, 13.81) <0.001

PH [mean (SD)] 7.37 (0.16) 7.33 (0.02) <0.001

HCO3
− (mmol/L) [mean

(SD)]

25.58 (0.77) 24.38 (1.00) <0.001

Lactate (mmol/L)

[median (IQR)]

2.41 (1.48, 3.40) 2.43 (1.70, 3.60) <0.001

Glucose (mg/dl) [mean

(SD)]

137.68 (7.12) 149.14 (8.97) <0.001

Treatment information, n (%)

Ventilation, n (%) 921 (63.96) 928 (80.28) <0.001

Epinephrine, n (%) 139 (9.65) 190 (16.44) <0.001

Dopamine, n (%) 116 (8.06) 138 (11.94) <0.001

Vasopressin, n (%) 116 (8.06) 202 (17.474) <0.001

Marking systems

GCS [median (IQR)] 9.57 (6.00, 13.90) 4.00 (3.00, 7.00) <0.001

CCI [median (IQR)] 2.00 (1.00, 3.00) 2.50 (1.00, 4.50) 0.002
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3.3 Model performance comparison

The hyperparameters were tuned using grid search to reach the

best performance of each ML model, and the training results are

shown in Supplementary Figure S1. Figure 3 indicates that the

balanced sample generated by SMOTE consistently improved the

model performance in the internal validation cohort. The average

accuracy, precision, recall, F1 score, and AUC of ML models

were increased by 25.4%, 42.5%, 144.7%, 77.8%, and 34.5%,

respectively, showing that SMOTE could enhance the prediction

capability of models, which might be due to the advantages of

SMOTE in balancing the training cohort, introducing diversity

and reducing the risk of overfitting (30). Furthermore,

Supplementary Table S3 indicates that XGBoost and LightGBM

had the best performance, with the highest accuracy, recall, and

F1 score of 0.797, 0.824, and 0.800 in XGBoost and the highest

precision and AUC of 0.786 and 0.861 in LightGBM,

respectively. Therefore, XGBoost and LightGBM developed with

SMOTE were used for ensemble modeling to obtain better

prediction performance and generalization capability.

3.4 Soft voting ensemble modeling

The training results and prediction performance of the EL

model are shown in Supplementary Figure S2 and Figure 4a,

respectively. The accuracy, precision, recall, F1 score, and AUC

of the EL model all reach 1 in the training cohort. In the

internal validation cohort, the accuracy, precision, recall, F1

score, and AUC of the EL model exceed XGBoost and

LightGBM, reaching 0.842 (vs. 0.797 in XGBoost), 0.830 (vs.

0.786 in LightGBM), 0.839 (vs. 0.824 in XGBoost), 0.835 (vs.

0.800 in XGBoost), and 0.898 (vs. 0.861 in LightGBM),

respectively. In addition, the EL model showed better calibration

FIGURE 2

(a) The missing value imputation using KNN under different K values; (b) training cohort balancing using SMOTE; (c) feature selection using RFE based

on LR.

Liu et al. 10.3389/fcvm.2025.1582636

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1582636
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


across the spectrum of survival probabilities, with the lowest Brier

score of 0.137 (Figure 4b; Supplementary Table S3).

3.5 Model interpretation

The contribution of each feature to the death risk

prediction in LightGBM and XGBoost was evaluated using the

Gini impurity (Figures 5a,c) and SHAP method (Figures 5c,d).

For the SHAP method, on the vertical axis, each feature was

ranked according to the mean |SHAP| value of each feature

across all samples, which indicates the global importance of

each feature; on the horizontal axis, the SHAP value for each

sample is shown, which represent the distribution of the

influence of features on the model output. The colors denote

feature values (red for high and blue for low), which illustrate

the impact of feature variation on outcomes. Figure 5 indicates

that INR, HR, Cl−, HCT, PH, RR, SBP, MBP, and RBC were

considered essential for LightGBM, while HCO3
−, GCS, WBC,

lactate, BUN, Ca2+, glucose, ventilation, body temperature,

Na+, CCI, INR, HCT, and HR were found to be critical

for XGBoost.

3.6 Input feature optimization

Given that all basic models in the EL model were tree-based,

the Gini impurity and SHAP method were used together to reveal

FIGURE 3

(a,b) Accuracy, precision, recall, F1 score and (c,d) AUC in the internal validation cohort of eight ML models trained with the raw dataset and SMOTE dataset.
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the final feature importance ranking to avoid individual bias.

Features recurring in Figure 5 were included for feature

importance scoring, and the scoring rules are described in

Supplementary Text S2 and Supplementary Table S4. Features

that obtain scores are deemed by the EL model to be important

for predicting IHCA death risk, and the composite score

ranking is shown in Figure 6a. Next, each feature was

eliminated sequentially starting from the least contributing

feature to optimize input features and reduce model

complexity. Fewer features without compromising model

performance imply faster response times, which can enhance

the use value of the prediction model.

Figure 6b demonstrates that there is no obvious performance

decline in the internal validation cohort with the top seven

features retained, with accuracy, precision, recall, F1 score, and

AUC of 0.804, 0.782, 0.842, 0.811, and 866, respectively. As an

example of accuracy, the performance decreased by 6.60% when

using the top eight features, while the accuracy decreased

by 4.54% for the top seven features and by 6.39% when

further reduced to six features. Moreover, no significant

multicollinearity among the seven features was observed via

Pearson correlation coefficients (<|0.5|), confirming that these

features are independent in their linear relationships and

ensuring that the contribution of each feature to mortality risk

is accurately quantified (Supplementary Figure S3). Thus,

employing clinical features including HCO3
−, GCS, WBC, INR,

HCT, body temperature, and BUN as inputs allowed the EL

model possible to predict with high precision using as few

features as possible, which could help physicians make fast and

accurate decisions in time-critical and complex emergencies to

gain valuable time to improve the curability and prognostic for

IHCA patients.

3.7 External validation

The MIMIC-IV database was used for external validation, and the

results are shown in Figure 6c. In the external validation, the final

model gave a similar performance to that in the internal validation,

with accuracy, precision, recall, F1 score, and AUC of 0.802, 0.781,

0.805, 0.793, and 0.851, respectively, indicating that the final model

showed strong capability and robustness in prediction and

extrapolation. Moreover, the consistency of EL model performance

across cohorts further emphasizes the positive impact of SMOTE

on model performance, indicating that the synthetic samples

generated by SMOTE did not introduce significant biases.

3.8 Web application

The final prediction model was implemented into the web

application to facilitate its utility in clinical scenarios, as shown

in Figure 7. When the actual values of the seven features

required for the model are entered, this application will

automatically predict the death risk for an individual CA patient.

The web application is available at https://elm4ihca.streamlit.app/,

which follows the security framework of Streamlit Community

Cloud. Note that the application is for research and providing

support for clinicians, not for direct patient care.

4 Discussion

IHCA is a major adverse event with a high death risk if not

treated appropriately (39, 40). It is reported that the in-hospital

FIGURE 4

(a) Prediction performance of the EL model in the internal validation cohort. (b) The calibration plot illustrates the agreement between predicted

probabilities and observed probabilities of survival.
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death rate for patients who developed IHCA was 81.46% compared

with 23.83% among patients who did not develop IHCA (41).

Providing excellent clinical advice is important for doctors to

assess CA severity and plan more appropriate treatment based on

patient information, thereby reducing suffering and costs by

avoiding futile rescue efforts. With respect to target temperature

management (TTM), Callaway et al. (42) indicated that choosing

TTM at 33°C was associated with better outcomes than TTM at

36°C for patients with severe post-CA illness, but TTM at 36°C

was associated with better survival in mild- to moderate-severity

illness. Therefore, our study developed a clinical prediction

model with good performance to predict the death risk of IHCA

patients, which utilized clinical features that can be collected in

most clinical settings.

The proposed EL model could make prediction with high

precision in internal and external validation cohorts using only

seven clinical features, which is driven by the more

comprehensive feature importance analysis and the fact that the

EL model could effectively correct overfitting and underfitting

tendencies inherent in single models to enhance prediction

FIGURE 5

Feature importance ranking derived by the (a,b) Gini impurity and (c,d) SHAP method.
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performance and generalization capability. More importantly, the

seven clinical features used to assess IHCA death risk were

related to the basic vital signs, neurologic function scores, and

laboratory tests of patients, including body temperature, GCS,

HCT, WBC, INR, BUN, and HCO3
−, which are routine

examinations when a patient is first admitted to the hospital.

Thus, these input features can be rapidly obtained in most

clinical settings when patients experience CA, implying our

model is more practical. The developed web application

employed the final EL model with the seven clinical features to

calculate death risk for IHCA patients.

Furthermore, the findings in model interpretation ensured the

consistency of our model with fundamental domain knowledge and

clinical experience. HCO3
− was proven to be associated with death

risk of CA patients in a multicenter prospective study (43). During

the ischemic phase post-CA, anaerobic glycolysis will lead to lactic

acid accumulation and subsequent tissue acidosis (44). Previous

studies also found that the lower the GCS score, the higher the

death risk (45, 46). In addition, some studies have pointed out

that the systemic inflammatory response plays an important

role in the pathophysiological development of early post-CA

syndrome and affects the prognosis of IHCA patients, while

WBC is the early determinant of the development of the

systemic inflammatory response (47, 48). During ischemia

and reperfusion in CPR, neutrophils will be activated to

release inflammatory mediators, such as elastase and heparin-

binding protein, which can lead to inflammatory tissue

damage and therefore affect the prognosis of patients (49, 50).

Abnormity in the coagulation–fibrinolysis system is an important

pathophysiological feature of CA patients (51, 52), and thus INR

was proven to be an independent risk factor for predicting the

in-hospital death rate in CA patients (53, 54). Furthermore, den

Hartog et al. (55) found that initial hypothermia in CA patients

was associated with poor prognosis and poor neurologic recovery.

FIGURE 6

(a) The composite feature importance score ranking and (b) accuracy, precision, recall, F1 score and AUC of the EL model with decreasing feature

number based on the ranking. (c) Prediction performance of the EL model in the external validation cohort.
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In terms of model performance and practicality, our model has

enhanced prediction performance and generalization capability,

simple operation, and fast calculation, which makes it more

suitable for urgent clinical scenarios than a few similar studies.

Chen et al. (56) developed a nomogram to predict in-hospital

death risk for CA patients based on the MIMIC-IV database,

whereas our study used two large databases, including MIMIC-

IV and eICU-CRD, which have extensive data to demonstrate a

more comprehensive patient condition. Bi et al. (57) developed

an in-hospital death risk prediction model using 69 clinical

features based on ML methods, which showed good prediction

performance with an AUC of 0.86. However, the usefulness of

the prediction model was limited since it is improbable that any

clinician will be able to enter data on 69 clinical features during

ongoing CPR. Moreover, DL has advanced healthcare prediction

in domains such as medical imaging and regular time-series

analysis, but its utility in tabular data is limited, despite tabular

data being the most common data type in electronic medical

records (EMRs) (33, 34). In contrast, the proposed parsimonious

EL model could directly model non-linear feature interactions

and used only seven clinical features to achieve AUC of 0.84 in

internal validation and AUC of 0.81 in external validation, which

yielded a clinically actionable tool with interpretable feature

contributions, millisecond inference speed, and robust

performance that are paramount for rapid and explainable

clinical decisions. Meanwhile, Supplementary Table S5 revealed

no significant differences in the seven key features between

misclassified and overall cases, indicating the model errors are

not driven by feature distribution and further demonstrating the

robustness of feature selection.

The error analysis also provides the motivation to continue

improving the EL model in future work. The EL model requires

a prospective study to further assess its impact on clinical

decisions in actual clinical settings and to identify areas where

the model fails or underperforms. In addition, there is a risk of

selection bias due to the fact that MIMIC-IV database and eICU-

CRD may not represent all patients with CA in the ICU. Future

research should use data from more diverse sources to avoid this

FIGURE 7

Web application with (a) data upload, (b) model training and (c) model prediction modules for clinical utility. Screenhots from: https://elm4ihca.

streamlit.app/.
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risk. As a retrospective study, it faces inconsistent quality and

completeness of recorded clinical features; thus, more advanced

methods or prospective data collection are needed. Meanwhile,

unmeasured confounding factors like CPR quality and genetic

factors, which can influence in-hospital mortality risk, were not

considered. Future studies should incorporate them to enhance

the accuracy of risk prediction models. Although our EL model

has achieved high performance in predicting the mortality of CA

patients in the ICU, there are still some errors. Therefore,

clinicians should always combine their clinical judgment with the

model prediction rather than relying solely on the model to

maximize patient protection.

5 Conclusion

Overall, the EL model outperformed all single ML models,

including SVM, RF, AdaBoost, GBDT, XGBoost, LightGBM,

CatBoost, and NGBoost, in predicting the death risk of IHCA

patients. HCO3
−, GCS, WBC, INR, HCT, body temperature, and

BUN were considered as the most important input features of

the EL model when a patient experiences CA, with no significant

impact on model performance if only retaining them. Therefore,

the parsimonious EL model can reliably and rapidly estimate the

death risk of IHCA patients, which can provide clinicians with

critical information in urgent clinical settings.
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