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Background: Osteoporotic patients are at a higher risk of stroke or myocardial

infarction compared to non-osteoporotic patients, and conversely, individuals

who have experienced a myocardial infarction or stroke are at increased risk

for low bone mineral density (BMD) or osteoporotic fractures. Some studies

suggest that the relationship between osteoporosis and vascular calcification

may stem from the dysregulation of common factors that are implicated in

both bone remodeling and the formation of calcified vascular plaques.

Objectives: Our primary endpoint was to evaluate the correlation between bone

mineral density and calcification score. Our secondary endpoint was to analyse

the association between potential shared serum biomarkers and the calcification

score or bone status.

Methods: We conducted a retrospective study between May and October 2015

in 94 patients who had undergone a thoracic CT scan, to assess their coronary

risk by calculating an Agatston score. The scans were re-analysed to obtain

volumetric bone mineral densities (vBMD). We measured osteoprotegerin,

FGF23 and sclerostin in frozen serums from these patients.

Results: Patients with a calcium score of 0 had a significantly higher vBMD than

patients with a calcium score > 0 (187.7 vs. 162.1, p 0.03). This relationship

persisted after adjusting for age, sex, BMI and sedentarity (p 0.036). There was

no significant relationship between FGF23, osteoprotegerin, or sclerostin levels

and the calcium score or vBMD.

Conclusion: Lower vertebral thoracic bone mineral density is significantly

associated with an increased risk of vascular calcification. However, this

relationship is not explained by the serum levels of FGF23, sclerostin,

or osteoprotegerin.
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1 Introduction

Idiopathic osteoporosis is a risk factor for long-term

mortality, and in particular, it doubles the risk of

cardiovascular mortality (1).

Osteoporotic patients are more likely to have a stroke or a

myocardial infarction than non-osteoporotic patients, and

patients who have had a myocardial infarction or a stroke have

an increased risk of low BMD (Bone Mineral Density) or

osteoporotic fracture (2–5).

This link appears to exist independently of classic

cardiovascular or osteoporosis risk factors (smoking,

hypertension, diabetes, family history) (6, 7).

Some studies suggest that the links between osteoporosis

and vascular calcification could therefore result from

secretion anomalies of identical factors potentially implicated

in both bone remodelling and calcified vascular plaque

formation (8–12).

The mechanism of osteoporosis involves the release of calcium

from bone. However, the idea that this liberated calcium

subsequently deposits onto the vascular wall is not plausible. The

highly precise regulation of calcium homeostasis—and the

typically normal levels of serum calcium and phosphate in

idiopathic osteoporosis, despite the massive amount of calcium

released from bone—suggests the need for more subtle and likely

multifactorial explanations.

One possible hypothesis is that, since bone is a vascularized

organ, chronic impairment of intraosseous blood flow—secondary

to atherosclerosis—might promote bone demineralization.

Finally, the central hypothesis of our work is the existence

of a shared pathophysiological mechanism between osteoporosis

and atherosclerosis.

Vascular calcification was long considered a passive,

unregulated process. It is now better understood that

vascular calcification involves both passive and active

mechanisms, including a form of mineralization mediated by

cells resembling osteoblasts.

These “osteoblast-like cells” exhibit a phenotype very similar to

bone osteoblasts and possess an innate capacity for mineralization.

They are formed through the differentiation of certain vascular

wall cells.

It is reasonable to suppose that factors regulating bone

metabolism may also influence these cells. Among the implicated

factors are Fibroblast Growth Factor 23 (FGF23), osteoprotegerin

(OPG), and sclerostin.

FGF23 was initially identified in patients with tumor-induced

osteomalacia (phosphaturic mesenchymal tumors). It is

synthesized by osteocytes and plays a key role in phosphate

metabolism: it increases renal tubular phosphate excretion and

inhibits the hydroxylation of 25-hydroxyvitamin D into

1,25-dihydroxyvitamin D (calcitriol) (13, 14). FGF23 requires the

co-receptor Klotho for its activity; Klotho is expressed in the

kidney, choroid plexus, germ cells, and arterial walls, and is

essential for FGF23 signaling.

In animal models, Klotho gene deficiency leads to premature

aging, reduced life expectancy, and transdifferentiation of

endothelial cells into osteoblast-like cells, which initiate calcification

and thus contribute to atherosclerosis (15). Conversely,

overexpression of Klotho—stimulated by 1,25-dihydroxyvitamin

D—results in inhibition of vascular calcification.

In animals, FGF23 activity thus appears to be inversely

correlated with the risk of vascular calcification. Surprisingly, in

humans, FGF23 seems to have the opposite effect. Patients with

chronic kidney disease (CKD) often show reduced Klotho

expression. In end-stage renal disease (ESRD) patients

undergoing hemodialysis, hyperphosphatemia leads to elevated

serum FGF23 levels as a compensatory response to increase

phosphate excretion.

The combination of high FGF23 and phosphate levels with

low Klotho expression is associated with increased

cardiovascular mortality (16) and vascular calcification.

However, it remains unclear whether this effect is due to

the direct vascular toxicity of phosphate—suspected to

induce the transformation of vascular smooth muscle cells

into osteoblast-like cells (13)—or to dysfunction of the

FGF23/Klotho axis.

Osteoprotegerin (OPG) is involved in the regulation of bone

resorption. It is a soluble receptor secreted by various cell types,

notably osteoblasts.

OPG functions as a decoy receptor by binding to RANK

Ligand (Receptor Activator of Nuclear Factor κB Ligand), which

would otherwise activate osteoclastogenesis via the RANK

receptor. Initially considered a bone-specific protein, OPG was

later identified in atherosclerotic plaques. The “osteoblast-like

cells” present in these plaques are therefore likely regulated by

the same factors as bone osteoblasts, including the RANK–

RANK Ligand–Osteoprotegerin pathway. In animal models, OPG

deficiency is associated with vascular calcification and increased

incidence of fragility fractures (17).

Conversely, in humans, elevated OPG levels have been

associated with higher coronary artery calcium scores (18) as

well as with the presence and severity of coronary artery

disease (19).

Sclerostin is a protein primarily produced by osteocytes

that inhibits the WNT signaling pathway, which is

involved in the differentiation of osteoprogenitor cells

into osteoblasts.

From a cardiovascular perspective, sclerostin may serve as a

marker of cardiovascular mortality in hemodialysis patients (20),

and has been identified as a risk factor for carotid (21) and

aortic calcification (22).

It can be hypothesized that, much like in bone, sclerostin acts

as a protective factor against calcification in the vascular wall. The

slower progression of vascular calcification may explain the

observed survival benefits in patients with higher circulating

levels of sclerostin.

The main objective of this work was to identify an inverse

correlation between bone mineral density and coronary

calcification score using the same CT-scan.

The secondary objectives were to identify the association of

FGF23, sclerostin and osteoprotegerin serum levels and the

calcification score and bone status.
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2 Methods

2.1 Study population

Our study was conducted in a BIOCAC population (Biological

phosphocalcic metabolism and coronary artery calcifications, RCB

ID Number: 2015-A00853-46) (Appendix 1).

The BIOCAC protocol was an observational, monocentric

study. The study population included patients from the Centre

for Detection and Prevention of Atherosclerosis at Toulouse

University Hospital, recruited between May and October 2015.

As part of this protocol, these subjects had a chest CT scan to

calculate a coronary calcification score.

Patients with the following characteristics were initially

included in the BIOCAC protocol: over 18 years of age, in

primary prevention for coronary pathology (with no history of

acute coronary syndrome, and no documented coronary stenosis

greater than 50%), with an intermediate cardiovascular risk based

on the European SCORE (Systematic Coronary Risk evaluation)

equation (risk of cardiovascular death at 10 years greater than or

equal to 1% and less than 5%), having signed the informed

consent and affiliated to a national insurance.

Patients with the following characteristics were excluded

because of potential biases: chronic renal insufficiency with an

estimated GFR of less than 60 ml/min/1.73 m2 (due to changes

in their phosphocalcic metabolism), receiving diabetes treatment,

capillary glucose greater than or equal to 1.10 g/L confirmed by a

plasma glucose level greater than or equal to 1.10 g/L, receiving

diuretic treatment (due to a modification of the urinary

ionogram), seropositive for HIV, on antiretrovirals (due to a

modification of the urinary ionogram), pregnant women, and

patients under the protection of justice, guardianship,

or curatorship.

We included 94 patients from this population, corresponding

to those who had undergone all the exams under the initial

protocol and for whom serum was available for complementary

biological assays. The sample size of 94 participants was

determined based on the availability of eligible patients within

the study period who met all inclusion criteria and had complete

biomarker, vBMD, and CAC data. While a formal a priori power

calculation was not conducted due to the exploratory nature of

the study, the sample size was considered sufficient to detect

moderate to large effect sizes in the primary analyses.

This protocol has been ethically approved by the Limoges CPP

Ethics committee.

2.2 Data collection

We collected the information on the patients’ demography

(sex, age, weight and height), cardiovascular risk factors, and

osteoporosis risk factors from the BIOCAC database.

Additional data, not available in the BIOCAC data collection,

was collected either from the medical files or by direct contact

with patients.

2.2.1 Coronary artery calcium score

Coronary calcifications were evaluated by calculating an

Agatston calcification score. This was determined with a non-

injected cardiac scanner. A Siemens device (Definition 64 strips)

was used. The average irradiation was about 1 mSv 49.

A calcification score strictly lower than 1 corresponds to a null

cardiovascular risk, a score greater than 100 predicts a high risk of

events in 2–5 years, with an annual risk greater than 2% (23–26).

2.2.2 Bone mineral density
In our cohort, the CT scans performed to assess coronary

calcifications were re-analysed to determine the volumetric bone

mineral density (vBMD) on the 5th thoracic vertebra, as

described in the study by Schreiber et al. (27).

This vertebra was chosen because it gave a better image quality

compared to other vertebras on our CT scans.

The vertebra of interest was first analysed on a sagittal section,

to include the entire vertebral body on the vertical axis.

Benchmarks were taken on the upper (A), middle (B) and lower

(C) vertebrae. The vertebra was then worked on an axial section,

to include the entire body of the vertebra on the horizontal axis

at each level of the vertebra (A: upper, B: median, C: lower).

A volume in 3 dimensions (from A to C) corresponding to the

vertebral body (Figure 1) was then built.

Finally, this volume was studied to obtain the average

volumetric bone density in Hounsfield units. These

FIGURE 1

Measurement of volumetric bone density.
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measurements were blindly performed by two independent

observers. Disagreement was solved by consensus. The coefficient

of variation of this measurement, intra- and inter-observer, was

established for 20 consecutive patients.

2.2.3 Biological measurements

We performed additional assays, including FGF23, sclerostin,

and osteoprotegerin, using serum initially collected under the

BIOCAC protocol (Eurobio Scientific: ELISA kits with final

fluorometric detection, Kit Elisa Bone Alkphos Human Marker

Ce, Kit Elisa Sclerostin High Sensitive Human Marker Ce, Kit

Elisa Osteoprotegerin Human Marker Ce).

2.3 Statistical analyses

The mean vBMD and the coronary artery calcium SC were first

compared using Spearman’s correlation. The patients were then

divided into two groups: those with a coronary artery calcium

score of zero (cardiovascular risk zero) and those with a

coronary artery calcium score strictly higher than zero

(cardiovascular risk present). We assessed the distribution of

vBMD by coronary artery calcium score using the chi-squared

test, and the population characteristics using Fisher’s exact test.

We made an adjustment using two different models to confirm

our working hypothesis (linear regression model and multinomial

logistic regression model). We employed two regression models to

demonstrate the robustness and coherence of our results. Both

models were designed to account for the key confounding factors

identified in the study, including age, sex, BMI, and sedentary

lifestyle. By adjusting for these variables, we aimed to minimize

potential bias and better isolate the associations of interest.

We evaluated the relationships between the biological markers

(FGF 23, Ostopotegerin, Sclerostin), the mean vertebral vBMD, and

the calcium score with Student’s t-test.

3 Results

3.1 Description of the study population

Ninety-four patients were included, with an average age of 64.6

years, 47 women and 47 men. Eleven (13.1%) patients had a known

osteoporosis. Four (4.8%) patients had a history of osteoporotic

fracture (Table 1).

The main risk factor for osteoporosis was age (over 60 years:

77.7%). Thirteen patients (15.5%) were active smokers, 14

(16.7%) had low calcium intake, 7 (8.3%) had a profound

vitamin D deficiency, 2 (2.4%) had excessive alcohol

consumption and 6 (7.1%) were sedentary. Finally, 7 (8.3%)

patients had an osteoporosis-inducing chronic disease (one

hyperparathyroidism, four diabetics, one spondyloarthropathy,

one Crohn’s disease).

Regarding cardiovascular risk factors, 83 (98.8%) patients had

familial dyslipidaemia or hypercholesterolaemia, 25 (29.8%) had

hereditary cardiovascular disease, and 4 (4.8%) had diabetes.

3.2 Primary endpoint

Thirty-four patients had a coronary artery calcium score of 0

(36.2%) and 60 patients had a score strictly higher than 0

(63.8%). As shown in Table 2, the patients with a coronary

TABLE 1 Description of the study population.

Study population N= 94

Demographic data

Mean age (min-max) 64.6 (28–86)

Sex (males, %) 47 (50)

Mean BMI, kg/m2 (min-max) 25.4 (17.5–43.1)

Osteoporosis risk factors (%)

Age > 60 years 73 (77.7)

History of osteoporotic fracture 4 (4.8)

Amenorrhoea 0 (0)

Early menopause 0 (0)

Osteoporosis-inducing chronic disease 7 (8.3)

Extended immobilization 0 (0)

Corticosteroids 1 (1.2)

BMI < 19 kg/m2 0 (0)

Active smoking 13 (15.5)

Excessive consumption of alcohol 2 (2.4)

Low calcium intake (<800 mg/day) 14 (16.7)

Vitamin D

Deficiency (Vitamin D < 10 ng/ml) 7 (8.3)

Insufficiency (Vitamin D = 10–30 ng/ml) 51 (60.7)

Sedentarity 6 (7.1)

Cardiovascular risk factors (%)

Family history of cardiovascular disease 25 (29.8)

Familial dyslipidaemia and hypercholesterolaemia 83 (98.8)

Diabetes 4 (4.8)

Hypertension 32 (34.0)

Coronary artery calcium score

Mean 272.7

Median 8

Standard deviation 692.2

Minimum-Maximum 0–4,717

Coronary artery calcium score, distribution by risk class (%)

0 34 (36.2%)

>0 60 (63.8%)

vBMD (HU)

Mean 171.3

Median 163

Minimum-Maximum 87.2–309

Standard deviation 52.6

Number (percentage) or mean (standard deviation).

TABLE 2 vBMD and coronary artery calcium score.

Coronary artery
calcium score
by mean vBMD

Coronary
artery calcium

score = 0

Coronary
artery calcium

score > 0

p*

n = 34 (36.2%) n = 60 (63.8%)

Mean vBMD (HU) 187.7 (59.6) 162.1 (46.2) p = 0.03

Mean (standard deviation).

*Fisher’s exact test.
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artery calcium score of 0 had a significantly higher vBMD (187.7

vs. 162.1, p 0.03).

A comparison of the characteristics of these two groups showed

a significant difference between each group for age, sex, BMI and

physical activity (see Table 3).

The “zero coronary artery calcium score” group had

significantly more patients over 60 (35.3% vs. 15%, p 0.023),

there were fewer men (35.3% vs. 67.2%, p 0.032), they were more

sedentary (14% vs. 1.7%, p 0.03) and had a higher mean BMI

(26.7 vs. 24.7 kg/m2, p 0.03).

The total distribution of risk factors for osteoporosis was not

significantly different between the 2 groups (11.8% vs. 11.7%, p

0.99). The coefficient of variation for the intra-observer vBMD

measurement was 1.2%, and the coefficient of variation for the

inter-observer measurement was 3.6%.

Since these factors are potentially confounding factors, we

made an adjustment using two different models to confirm our

working hypothesis.

We first used a linear regression model: the relationship

between vBMD and coronary artery calcium score persisted after

adjusting for age, sex, BMI and sedentary lifestyle (p 0.036). We

then used a multinomial logistic regression model: the

relationship between coronary artery calcium score and vBMD

remained significant (p 0.017).

3.3 Secondary endpoints

The FGF23, osteoprotegerin and sclerostin values did not differ

for the subjects with an coronary artery calcification score < 0

compared to those > 0 (Table 4).

FGF23 was not significantly related to calcium score (p = 0.14)

nor to mean vBMD (p = 0.76). This absence of a significant

relationship persisted after separating the calcium scores into

classes (p = 0.71).

Sclerostin levels were not significantly associated with calcium

score (p = 0.88) or mean vBMD (p = 0.53). This lack of significant

relationship persisted even after stratifying calcium scores into

classes (p = 0.74). Similarly, osteoprotegerin was not significantly

associated with calcium score (p = 0.74) or mean vBMD

(p = 0.26), and this finding remained unchanged when calcium

scores were categorized (p = 0.82).

4 Discussion

A total of 94 patients (47 women and 47 men) were included,

with a mean age of 64.6 years. Among them, 34 patients had a

coronary artery calcium (CAC) score of 0 (36.2%), while 60

patients had a CAC score greater than 0 (63.8%). The mean

TABLE 3 Comparison of the characteristics of the two groups.

Coronary artery calcium score by population
characteristics

Coronary artery calcium
score = 0

Coronary artery calcium
score > 0

p

n= 34 (%) n = 60 (%)

Mean vBMD (HU) 187.7 (59.6) 162.1 (46.2) p = 0.03

Demographic data

Mean age (min-max) 60.1 (11.8) 67.2 (9.0) 0.002

Sex (males, %) 35.3 58.3 0.032

Mean BMI, kg/m2 (min-max) 26.7 (5.5) 24.7 (31) 0.03

Osteoporosis risk factors (%) 11.8 11.7 0.99*

Age > 60 years 35.3 15.0 0.023

History of osteoporotic fracture 0 6.7 0.29*

Amenorrhoea 0 0

Early menopause 0 0

Osteoporosis-inducing chronic disease 4.4 2.2 0.99*

Extended immobilization 0 0

Corticosteroids 0 1.7 0.99*

BMI < 19 kg/m2 0 3.3 0.53*

Active smoking 20.6 10.0 0.14*

Excessive consumption of alcohol 0 3.3 0.75*

Low calcium intake (<800 mg/day) 14.7 15.0 0.97

Vitamin D

Deficiency (Vitamin D < 10 ng/ml) 11.3 5.5 0.24*

Insufficiency (Vitamin D = 10–30 ng/ml) 60.0 60.0 1

Sedentarity 14.7 1.7 0.03*

Cardiovascular risk factors (%)

Family history 20.6 30.0 0.32

Familial dyslipidaemia and hypercholesterolaemia 70.6 86.7 0.06

Diabetes 8.8 6.7 0.71*

Hypertension 0 5.0 0.55*

Cardiovascular risk factors (%) 12 20 0.44*

Number (percentage) or mean (standard deviation).

*Fisher’s exact test.
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vBMD was 171.3 HU. Patients with a zero CAC score, indicating

low cardiovascular risk, had significantly higher vBMD compared

to those with a high calcium score (187.7 vs. 162.1 HU, p = 0.03).

This relationship between BMD and calcium score persisted after

adjusting for potential confounders (age, sex, BMI, and sedentary

lifestyle), suggesting that the impact of these factors on the

observed relationship is minimal. Thus, higher cardiovascular

risk was significantly associated with lower bone mineral density.

4.1 Reliability of the vBMD measurement

The mean vBMD in our study was 171.3 HU, using T5

vertebra. Patients with a zero coronary artery calcium score had

a mean vBMD of 187.7 HU and those with a coronary artery

calcium score higher than zero had a mean vBMD of 162.1 HU;

the delta between our two groups was 25.6 HU.

Most of the studies using computed tomography to evaluate

bone status concerned the lumbar spine. On DXA measurements

at L1–L4, Schreiber et al. (27) found mean values in 25 subjects

of 133.0 HU (95% CI [118.4–147.5]), 100.8 HU (95% CI [93.1–

108.8]), and 78.5 UH (95% CI [61.9–95.1]) for normal,

osteopenic and osteoporotic patients respectively. Hendrickson

et al. (28) meanwhile found mean values in 252 patients of 153

and 129.6 HU for osteopenic and osteoporotic patients. Lee et al.

(29) established mean L1 values in 571 patients of 122.1 HU for

normal patients and ≤110 HU for osteoporotic patients (DXA).

Finally, at the thoracic level (T6), Marinova et al. (30) found

mean values in 234 patients of 160–200 HU in normal patients,

130–160 HU in osteopenic patients and 60–130 HU in

osteoporotic patients. These values seem comparable to ours.

The reproducibility of the CT measurements in these studies is

1%–3% (31, 32), comparable to our coefficients of variation of 1.2%

and 3.8%.

Other studies have confirmed a close correlation between bone

mineral density measured by DXA and three-dimensional bone

mineral density assessed by CT scan (33–37).

4.2 The relationship between bone density
and vascular calcification in the literature

Numerous studies have demonstrated an inverse relationship

between bone mineral density and vascular calcification:

The Framingham study (38) aimed to establish the relationship

between volumetric vertebral bone mineral density and coronary,

aortic and valvular calcifications. It showed that coronary

calcification was inversely related to bone density in women

but not in men, and that aortic calcification was inversely

related to bone mineral density in both men and women. They

found no significant relationship for valvular calcifications.

Additionally, the Multi-Ethnic Study of Atherosclerosis (MESA)

(39), aiming to evaluate the association between lumbar vertebral

bone mineral density and coronary and aortic calcifications,

showed an inverse relationship between coronary calcifications

and bone mineral density in men and women. Two other

studies, the SWAN study (Study of Women’s Health Across

the Nation) (40) and Schulz et al.’s (41) study (conducted only

in women), also showed that women with low vertebral

bone mineral density had a higher risk of aortic (but not

coronary) calcification.

These results are also true for density measurements from

other bone sites.

The Rancho Bernardo Study (42) found a significant

association between femoral bone mineral density and coronary

calcification, and Jørgensen et al. (43) identified the same

relationship for wrist density and carotid calcifications. A study

by Kiel et al. (44) showed in women, but not in men, that bone

loss in the metacarpal bone (measured by hand radiographs) was

associated with aortic calcification. Hak et al. (15) and Boukhris

et al. (45) found an identical relationship in postmenopausal

women. A study by Chen et al. (46) found a significant

correlation in women, but not in men, between low total bone

mineral density and high coronary artery calcium score (>100).

The HUNT Study (47), a Norwegian cohort study involving

22,857 adults, found no significant association between distal

forearm bone mineral density (BMD) and the risk of

cardiovascular diseases, including atrial fibrillation, acute

myocardial infarction, ischemic stroke, hemorrhagic stroke, and

heart failure.

The CKD Study (48), which included 1,957 patients with

predialysis chronic kidney disease, indicated that lower BMD was

associated with an increased risk of major adverse cardiovascular

events and accelerated progression of coronary artery calcification.

The OUP Academic Asian Women Study (49), involving 12,681

women aged 50–80, revealed that lower BMD at the lumbar spine,

femoral neck, and total hip was independently associated with a

higher risk of atherosclerotic cardiovascular events.

Finally, a meta-analysis (50) analyzing data from 46,182

participants concluded that lower BMD is associated with an

increased risk of all-cause and cardiovascular mortality, although

no significant link was found with stroke mortality.

The discrepancies in the results of these different studies can

be explained by differences between the populations, methodology

and imaging modalities. Some results appear to find differences

depending on gender which may indicate differences in the

physiopathology of vascular calcification and bone demineralization

between men and women. In women, rapid trabecular bone loss at

the onset of menopause is paralleled by increased development of

atherosclerosis in the aorta (51–53). Further gender analyses should

be done to obtain consistent results. However, these findings were

not modified after adjustment for cardiovascular and osteoporosis

TABLE 4 Biomarkers according to the calcium score.

Biological measurements Coronary artery calcium
score

0 >0 p*

FGF 23 (10 à 50 pg/ml) 49.9 (13.6) 48.6 (15.9) 0.71

Sclerostin (0.68–5.45 ng/ml) 0.703 (0.21) 0.720 (0.23) 0.74

Osteoprotegerin (0.01–5.32 pmol/L) 4.211 (1.20) 4.379 (1.15) 0.82

Mean (standard deviation).

*Student’s t-test comparison of the biomarkers according to coronary artery calcium score.
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risk factors (except for age, which in some of these studies may

partially mitigate the relationship between bone density and

vascular calcification).

4.3 What could the physio-pathological
links between these two diseases be?

Our study is the first to establish a link between coronary

calcifications and bone mineral density, both measured using

a single chest computed tomography scan, while also exploring

the underlying mechanisms. For our cohort, we analyzed

three biological parameters that, based on existing literature, we

identified as the most relevant potential candidates to explain

the relationship between these two conditions.

Indeed, the cells recruited on the lipid plaques in atherosclerosis,

known as “osteoblast-like calcifying vascular cells”, have phenotypes

very close to the cells involved in bone remodelling. Proteins initially

considered to be characteristic of bone tissue have been identified

in these atheroma plaques: BMP2, osteopontin, Gla protein,

osteoprotegerin. These cells are probably subjected to the same

regulatory factors, such as Rank-RankL-Osteoprotegerin or Wnt

protein-Beta catenin pathways (8, 54–56).

Osteoprotegerin (OPG) is the natural inhibitor of the Rank

Rank-Ligand pathway and therefore a potent inhibitor of bone

resorption. Mice deficient in osteoprotegerin have been shown to

develop vascular calcifications and bone fragility with fracture.

In rats, the injection of OPG prevents vascular calcifications

caused by Warfarin. In haemodialysis subjects, OPG levels are

associated with the coronary calcification score. In humans,

elevated serum OPG levels are associated with coronary artery

disease and cardiovascular mortality. Indeed, following a

myocardial infarction, the OPG level predicts the risk of

subsequent mortality. OPG knock-out mice were shown to

develop osteoporosis (17), and in postmenopausal women there

is a connection between OPG gene polymorphisms and bone

mineral density (57, 58).

Sclerostin is a physiological inhibitor of the Wnt pathway,

known to stimulate osteoblastic activity. It is believed to be a

marker of cardiovascular mortality in dialysis patients (59). In

another study, sclerostin was negatively correlated with bone

mineral density in men and women without renal failure and

with the size of the calcified vascular plaques (60).

FGF23, initially discovered in oncogenic phosphorus diabetes,

is known to be involved in the regulation of phosphoraemia and

mineralisation (61, 62). In patients with renal failure, increased

levels of FGF23 and phosphorus and decreased levels of Khlotho

(FGF23 co-receptor) are connected with increased mortality from

cardiovascular disease (63). Several studies have shown that

there is a relationship between FGF23 levels and cardiovascular

mortality, excluding renal failure (64). The FGF23 level could

also be linked to osteoporosis. Mirza et al. have shown that the

level of FGF23 was directly related to the risk of fracture in 2,868

Swedish men aged 75.4 ± 3.2 years. Men with a FGF23 level of

>55.7 pg/ml had a vertebral fracture risk of 2.30 (1.16–4.58). This

relationship persisted after adjustment for BMI, bone mineral

density, GFR, and 25(OH)D and PTH levels (65). Lane et al.

showed an association between FGF23 levels and risk of fracture

in elderly men (13).

A Mendelian randomization study (66) indicated that higher

genetically predicted FGF23 concentrations were associated with

increased gynoid (pelvic girdle) bone mass but not with lumbar

vertebrae or femoral neck bone mineral density (BMD).

However, these associations were not significant after excluding

certain single nucleotide polymorphisms (SNPs) linked to

vitamin D metabolism.

Mendelian randomization studies (67) have also explored the

effects of genetically lowered sclerostin on cardiovascular

outcomes. The findings are mixed, with some studies suggesting

an increased risk of myocardial infarction and hypertension,

while others report no significant associations.

Research on men with heart failure (68) revealed significantly

higher levels of osteoprotegerin, while sclerostin levels were

significantly lower compared to controls. These findings suggest

alterations in bone-related proteins in heart failure patients.

Despite the positive results from these studies showing

correlations between FGF23 levels and either cardiovascular

disease or osteoporosis independently, our study did not observe

any significant correlations in the same cohort between FGF23,

sclerostin, osteoprotegerin, coronary calcification score, and bone

mineral density.

Other pathophysiological hypotheses should be explored, for

example, pro-inflammatory cytokines involved in the genesis of

atheromatous plaques and in bone resorption (56, 69), the role

of oxidative stress and lipids (oxidative stress increases with age

and fosters the appearance of oxidised lipids capable of inducing

the differentiation of osteoclasts whilst inhibiting that of

osteoblasts within bone tissue, and simultaneously promoting

their differentiation within the atheromatous plaque (70), or the

direct role of ischaemia on bone tissue: we have shown that the

intraosseous arterioles could be the site of atherosclerotic lesions

and that this atherosclerosis was more serious and more

frequently encountered in subjects operated for an osteoporotic

fracture of the upper extremity of the femur than for paired

subjects having had arthroplasty for coxarthrosis (71). In subjects

with asymmetric arteriopathy of the lower limbs, we have shown

that the limb, the site of the arterial disease, was demineralized

compared to the contralateral limb (72).

The lack of significant relationships between our biomarkers,

coronary artery calcifications (CAC), and bone mineral density

(vBMD) could be attributed to several factors. These include:

timing of biomarker measurement, which may not reflect long-term

physiological status relevant to vBMD or calcification processes;

differences in study population characteristics (e.g., age range,

comorbidities, baseline risk profiles) compared to prior studies

(73–76); potential threshold effects or non-linear relationships not

captured by the models used; influence of unmeasured confounders

or effect modifiers that may dilute observable associations in this

specific cohort; tissue-specific regulation, where systemic biomarker

levels may not accurately reflect local activity in bone or vascular

tissue, and limited statistical power, which may have prevented

detection of modest but meaningful associations.
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4.4 Limitations

The main limitation of this study is its monocentric design.

Another limitation is the measurement of vBMD at a single

vertebral level, specifically in the thoracic region, using CT

scanning. This approach is not commonly used in current

clinical practice and is mostly found in recent studies. As of now,

there are no established guidelines for interpreting this type

of measurement.

Concerning the biomarkers, in our study, we focused

exclusively on factors directly related to cardiovascular and bone

health, as these were the primary areas of interest. Consequently,

other potential confounders, such as iron status, were not

measured or available in our study.

5 Conclusion

Our study demonstrates that the coronary artery calcium score

—and thus cardiovascular risk—is significantly associated with

decreased vertebral bone mineral density. Given that this

relationship has been previously reported in the literature, it is

reasonable to consider that the association may have a

pathophysiological basis.

However, taking into account the limitations of our study, we

did not find a significant correlation between serum levels of

FGF23, osteoprotegerin or sclerostin and either the calcium score

or bone mineral density.

This study also highlights the reliability of CT scans in

assessing bone status. Therefore, as CT imaging is often

performed for various clinical indications, it could also serve as a

valuable tool for the systematic and early screening of osteoporosis.
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