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Background: Metabolic disorder and endothelial dysfunction (ED) are key events

in the development and pathophysiology of atherosclerosis and are associated

with an elevated risk of Cardiovascular disease (CVD). The pathophysiology

remains incompletely understood.

Methods: Leftover serum samples were collected and stored at −20 °C until

study. Serum specimens were mixed to obtain pooled high glucose serum

(GLU group) (11.97 ± 2.09 mmol/L); pooled elevated low-density lipoprotein

serum (LDL group) [3.465 (3.3275, 3.6425 mmol/L)]; pooled high triglycerides

serum (1.15 ± 0.35 mmol/L) (TG group); Subsequently, Human umbilical vein

endothelial cells (HUVECs) were exposed to culture media supplemented with

these pooled serum or control serum for 72 h. Whole transcriptome

sequencing was performed to characterize gene expression profiles and data

were analyzed using GSEA, GO, KEGG. qPCR was used to validate the

gene expression.

Results: A total of 306 mRNAs and 523 lncRNAs were identified as differentially

expressed in the GLU group, 335 mRNAs and 471 lncRNAs in the LDL group, and

364 mRNAs and 562 lncRNAs in the TG group, compared to the control group.

These genes are primarily involved in inflammation, lipid metabolism, and EndMT

pathways. By integrating differentially expressed mRNA and curated EndMT-

related gene sets from the KEGG, GO, and dbEMT2.0 databases, we identified

52 differentially expressed genes associated with EndMT under metabolic

stress conditions. Utilizing machine learning techniques, we established an

EndMT-associated gene diagnostic signature comprising CD36, ISG15, HSPB2,

and IRS2 for the diagnosis of AS, which achieved an AUC of 0.997. The model

was subsequently validated across three independent external cohorts

(GSE43292, GSE28829, GSE163154), in which it consistently demonstrated

strong diagnostic performance, with AUC values of 0.958, 0.808, and 0.884,

respectively. The ceRNA networks associated with EndMT are constructed and

related lncRNAs including LINC002381, VIM-AS1, and ELF-AS1 were

significantly upregulated in peripheral blood samples.
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Conclusions: This study identified novel biomarkers for ED. These findings may

provide both a potential biomarker and therapeutic target for the prevention

and treatment of atherosclerosis and CAD.

KEYWORDS

cardiovascular disease, endothelial dysfunction, lipid metabolism, EndMT, hub genes,

bioinformatics analysis, machine learning, ceRNA network

1 Introduction

Cardiovascular disease (CVD) represents a significant global

health concern, with mortality increasing from approximately

12.1 million in 1990 to nearly 20.5 million in 2021 (1). The

pathogenesis and development of CVD are closely related to a

series of metabolic disorders, including diabetes, obesity,

hypertension, and dyslipidemia. With the aging population and

the increasing prevalence of metabolic disorders, the global

burden of CVD continues to increase (2). This fact highlights the

pressing necessity to comprehend how it originates, make

progress in its control, and explore therapeutic possibilities for

reducing its impact (3).

Endothelial cells (ECs) form the inner lining of blood vessels

that is crucial for vascular function and homeostasis. They

regulate vascular tone, oxidative stress, and permeability.

Endothelial Dysfunction (ED) leads to increased permeability,

leukocyte adhesion, and thrombosis (4). During the

inflammatory process induced by different risk factors as

hypertension, oxidized low-density lipoprotein (oxLDL) and

diabetes, there is an increase in the production of interleukin-1

(IL-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and

C-reactive protein (CRP) that generate the endothelial

proinflammatory phenotype characterized by an increase in

E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and

intercellular adhesion molecule 1 (ICAM-1) expression (5).

Therefore, there is a greater interest in the search for new

biomarkers and therapeutic strategies that help to prevent ED

and reduce the risk of developing CVD and its complication (6).

In the previous studies, culture medium with glucose or ox-LDL

were used to treat ECs to establish ED in vitro model, however,

under physiological conditions, circulating glucose, lipids,

hormones, inflammatory mediators, anticoagulant and

procoagulant factors were all contributed to dynamic equilibrium

of ECs (7, 8). Conventional single-component culture systems

employing supraphysiological glucose concentrations induce

cellular glucose desensitization (9) and may introduce potential

biological artifacts, which limit the accuracy of modeling

physiological conditions. This methodological limitation, coupled

with the absence of multifactorial in vitro models that can

incorporate clinically relevant parameters has limited hypothesis-

driven studies and, in turn, limited our progress in understanding

ED mechanisms. Treatment with pooled clinical serum with

altered metabolic parameters could better mirrors the

microenvironment reality may be better model for ED study. In

this study, pooled serum (high-glucose; high low-density

lipoprotein; high triglycerides) from individuals were used to treat

Human umbilical vein endothelial cells (HUVECs). Subsequently,

whole-transcriptome sequencing was employed to determine the

expression profiles of mRNAs and key noncoding RNAs

(including circRNAs and lncRNAs) within these models, with the

intention of exploring their potential regulatory mechanisms.

2 Materials and methods

2.1 Subject

Individuals who underwent physical examination at the Health

Management Center of Taihe Hospital from January to March

2021 were included as research subjects in this study. Fasting

venous blood samples were collected from these participants for

routine blood tests and biochemical analyses at the hospital

laboratory department, using accredited laboratory methods. The

hematological and biochemical investigations which were

performed included hemoglobin, total leukocyte count, platelet

count, neutrophil level, blood sugar, urea, creatinine, sodium,

potassium, serum total cholesterol (TC), serum triglycerides

(TG), and serum low-density lipoprotein (LDL). A residual

serum volume of 2–5 ml was separated from the remaining blood

samples by centrifugation at 1,500 rpm for 15 min at 4 °C and

stored at −80 °C for future use. All subjects had no history of

severe preexisting infections, immunological or cardiovascular

diseases that required long-term medication, hypertension,

diabetes, and chronic kidney disease. This study received

approval from the Ethics Committee of Hubei University

of Medicine.

2.2 Preparation of pooling serum

Matching serum samples from healthy individuals (n = 80)

were selected based on sex, age, and test results. Serum from 20

samples exhibiting isolated elevations in blood glucose levels

(11.97 ± 2.09 mmol/L, GLU group) was pooled by combining

3 ml from each sample, yielding a total volume of 60 ml of

high-glucose pooled serum with a final concentration of

12.36 mmol/L. Likewise, serum from 20 samples showing isolated

elevations in LDL levels [3.465 (3.3275, 3.6425 mmol/L), LDL

group] was pooled in the same manner, resulting in a total

volume of 60 ml of high-LDL pooled serum (final concentration:

3.30 mmol/L). Serum from 20 samples with isolated elevations in

TG levels [3.725 (3.0125, 5.08) mmol/L, TG group] was pooled,

producing a total volume of 60 ml of TG pooled serum (final
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concentration: 3.40 mmol/L). All other measured indicators

remained within the normal range for each group

(Supplementary Table 1). Additionally, twenty normal serum

samples, each with all indicators within normal ranges, were

pooled to serve as control samples (Con group). All serum

samples were maintained at 4 °C throughout the pooling process,

and the pooled serum was stored at −80 °C for subsequent

experiments. Biochemical indices of pooled samples were

measured and are reported in Table 1.

2.3 Human umbilical vein endothelial cells
culture and treatments

Human umbilical vein endothelial cells (HUVECs) were

isolated from umbilical cord veins obtained from the Obstetrics

and Gynecology department of Taihe Hospital. The HUVECs

were cultured in Dulbecco’s modified Eagle’s medium,

supplemented with 10% fetal bovine serum, 100 U/ml penicillin,

and 100 mg/ml streptomycin. The cultures were maintained at

37 °C in a 5% CO2 environment. ECs ranging from passages

three to five were utilized in the experiments. HUVECs were

seeded at a density of 15,000 cells/cm2, and on the following day,

the culture medium was replaced with fresh medium containing

a Penicillin–Streptomycin solution at a final concentration of 1%

and 15% v/v of pooled serum from the GLU, LDL, TG, and Con

groups. The cells were treated for a duration of 72 h.

2.4 RNA extraction, cDNA libraries
preparation, and high-throughput RNA
sequencing

Each treatment group consisted of four independent biological

replicates (n = 4 per group). In total, 16 samples were sent to

Oebiotech Corporation (Shanghai, China) for RNA sequencing.

Total RNA was extracted using the mirVana miRNA Isolation

Kit (Ambion) in accordance with the manufacturer’s protocol.

The integrity of the RNA was assessed using the Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Only

samples with an RNA Integrity Number (RIN) ≥7 were selected

for further analysis. Libraries were constructed using TruSeq

Stranded Total RNA with Ribo-Zero Gold, following the

manufacturer’s instructions. These libraries were subsequently

sequenced on the Illumina HiSeqTM 2500 sequencing platform,

resulting in 150 bp paired-end reads.

2.5 Identification and characterization of
DElncRNAs and DEmRNAs

The long non-coding RNA (lncRNA) profiles were identified by

screening the merged transcript sets based on five criteria: (1)

transcript length of at least 200 nucleotides; (2) transcripts

containing two or more exons; (3) exclusion of transcripts

overlapping with exon regions annotated as coding genes in the

database; (4) transcripts with an FPKM (fragments per kilobase of

exons per million mapped fragments) of at least 0.1 in one or more

groups; (5) identification of transcripts with low protein-coding

potential using four distinct algorithms (CNCI v1.0, PLEK v1.2,

CPC2-beta, and Pfam v30). Each transcript was required to have a

minimum of 0.1 million mapped fragments in one or more groups.

We utilized the DESeq2 R package for RNA-seq data normalization

and processing, and applied it to each subset to analyze

differentially expressed mRNAs (DEmRNAs) and long non-coding

RNAs (DElncRNAs) from our sequencing results. DEmRNAs

were identified using the criteria of absolute log2-fold change

(|log2FC|)≥ 0.5 and P < 0.05. Similarly, lncRNA transcripts with

|log2FC|≥ 1 and P < 0.05 were considered differentially expressed.

2.6 Functional analyses of DEmRNAs and
DElncRNAs

The Metascape database (https://metascape.org/gp/) was

selected for the enrichment analysis of overlapping DEmRNAs,

with the results visualized in enriched bar graphs. Annotation

and visualization were conducted for Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses to investigate the potential roles and

functions of the identified DEmRNAs. The GO annotation

analysis, based on the GO database, was performed for three

ontologies: biological process (BP), molecular function (MF), and

cellular component (CC). Additionally, Gene Set Enrichment

Analysis (GSEA) was employed to elucidate the biological

significance of characteristic genes. The R package clusterProfiler

can be utilized to perform KEGG, GO, and GSEA enrichment

analyses. To explore the potential functions of DElncRNAs, we

predicted their trans- and cis-target genes based on distinct

principles and subsequently intersected these with DEmRNAs

profiles to enhance prediction accuracy. Trans-target genes were

identified using the following criteria: Trans-target genes were

identified based on the following criteria: (1) complementary

TABLE 1 Baseline biochemical characteristics of pooled serum samples.

Biochemical
parameter
(unit)

Pooled
high
GLU

Pooled
high LDL

Pooled
high TG

Pooled
control

TC (mmol/L) 4.22 6.73 4.12 4.34

TG (mmol/L) 1.05 1.28 3.40 1.04

HDL-C (mmol/L) 1.15 1.50 1.01 1.26

LDL-C (mmol/L) 1.90 3.30 1.66 1.92

Glucose (mmol/L) 12.36 4.69 4.99 4.9

Apolipoprotein A1

(g/L)

0.98 1.06 0.98 1.03

Apolipoprotein B (g/

L)

0.78 1.11 0.72 0.75

Lipoprotein (a) (mg/

L)

83.74 182.15 93.66 57.72

Reference values: Total Cholesterol (TC, 2.8–5.68 mmol/L), Triglycerides (TG, 0.28–

1.8 mmol/L), High-Density Lipoprotein Cholesterol (HDL-C, 0.9–1.6 mmol/L), Low-

Density Lipoprotein Cholesterol (LDL-C, 1.5–3.11 mmol/L), Glucose (3.9–6.1 mmol/L),

Apolipoprotein A1 (ApoA1, 1.06–1.8 g/L), Apolipoprotein B (ApoB, 0.6–1.14 g/L),

Lipoprotein(a) (Lp(a), 0–300 mg/L). Bold values indicate measurements outside the

normal reference range.
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sequences between DElncRNAs and mRNAs with normalized free

energy <−0.1 were identified using LncTar software; (2) the

Pearson correlation coefficient between DElncRNAs and mRNAs

was calculated and found to be |r| > 0.97. Cis-target genes were

classified as the DEmRNAs transcribed from regions

approximately 100 kb upstream and downstream.

2.7 Regulatory networks construction and
functional analysis

To establish an effective DElncRNAs-mediated protein–protein

interaction (PPI) network, all functionally known protein-coding

targets (both trans- and cis-targets) of DElncRNAs were selected.

The STRING v11.0 database was utilized to generate interactions

with the following criteria: a minimum interaction score of ≥0.4

and interactions involving at least one protein. The PPI network

was visualized using Cytoscape v3.7.2 software, and the nodes

with higher degrees (top 5%) were identified as hub genes

through the Cytohubba function. The different modules within

the PPI network were delineated using the MCODE function,

and the significantly enriched signaling pathways and potential

functions were analyzed through KEGG and GO annotation.

2.8 Identification of DE-EndMTs

A comprehensive search of the KEGG and GO databases

identified a total of 223 genes associated with the Transforming

Growth Factor Beta (TGF-β) pathway. Integration with the

dbEMT2.0 database (https://bioinfo-minzhao.org/dbemt/index.

html) revealed a gene set related to Endothelial-to-Mesenchymal

Transition (EndMT), comprising 1,164 genes (see Supplementary

Table 2). DEmRNAs were categorized into upregulated

(log2FC≥ 0.5, p < 0.05) and downregulated (log2FC≤−0.5, p < 0.

05) groups. DE-EndMTs were defined as the intersection of these

DEmRNAs (|log2FC|≥ 0.5, p < 0.05) with the EndMT-related

gene set (1,164 genes). Venn diagrams were used to visualize the

overlap between the DEmRNAs and the EndMT-related gene set.

2.9 Machine learning-based selection of
EndMT-related signature genes

To select characteristic genes, three machine learning

algorithms were employed: Random Forest, support vector

machine recursive feature elimination (SVM-RFE), and least

absolute shrinkage and selection operator (LASSO) logistic

regression. The LASSO model was constructed using the

R package “glmnet” to mitigate the risk of overfitting. A 10-fold

cross validation method was applied to find the regularization

parameter lambda, which gave the minimum mean cross-

validated concordance index. The SVM-RFE model, a supervised

machine learning method, was implemented using the e1071

package. This algorithm recursively eliminates features while

evaluating classification performance via 10-fold cross-validation

at each iteration, ultimately retaining the minimal feature subset

that maximizes predictive accuracy and mitigates overfitting risks.

The Random Forest model was implemented using the

“RandomFores” package, which utilizes a decision tree classifier

to iteratively evaluate categorical variables, resulting in the

generation of highly accurate classification features.

Hyperparameter optimization involved out-of-bag (OOB) error

analysis, where ntree (number of trees) and mtry (features per

split) were systematically tuned. After evaluating mtry across a

range of 1–20 and monitoring OOB error stabilization with

ntree = 1,000, the optimal configuration (mtry = 5, ntree = 1,000)

was selected to maximize generalizability while minimizing

overfitting risks (10).

2.10 Construction and evaluation of
diagnostic model

Using the “rms” package, a nomogram model was developed to

predict the occurrence of atherosclerosis by utilizing selected

genetic markers. Calibration curves were plotted to evaluate the

predictive accuracy of the nomogram. To assess the clinical

significance of the model, decision curve analysis and clinical

impact curves were generated (11). Additionally, to further

evaluate the diagnostic capacity of the selected genes for

atherosclerosis, the “pROC” program was employed, and

validation was conducted using the datasets GSE43292,

GSE28829, and GSE163154.

2.11 Processing of scRNA-Seq data

Single-cell transcriptome profiles of human carotid

atherosclerotic plaques were obtained from tissue samples of 12

subjects (6 symptomatic) from the Gene Expression Omnibus

(GEO) database (accession code GSE253903). For the analysis of

the scRNA-seq data, we utilized the “Seurat”package (version

4.1.2). Initially, we excluded cells with more than 6,000 detected

genes and those with more than 30% mitochondrial reads for

downstream analysis. The SCTransform function, using default

parameters, was employed to normalize and scale the feature

expression measurements for each cell based on total expression.

Initial cell clustering was performed using the FindClusters

function with the first 20 principal components (PCs) and the

Louvain algorithm at a resolution of 0.6. Non-linear dimensional

reduction was executed via the RunUMAP function and

visualized through Uniform Manifold Approximation and

Projection (UMAP). Marker genes for each cell cluster were

identified using the “FindAllMarkers” function with the

Wilcoxon rank-sum test, considering only those with

|avg_logFC|≥ 0.10 and p_val≤ 0.05 as marker genes. We also

conducted differential expression analysis on ECs clusters using

the “FindAllMarkers”function embedded in Seurat (version 4.1.2)

to identify informative markers reflecting the plaque state.
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2.12 Coexpression analysis of De-EndMTs
and DElncRNAs and construction of the
ceRNA network

To determine the correlation between DE-EndMTs and

DElncRNAs, a coexpression analysis was conducted using the

Psych R package, focusing on the identified upregulated and

downregulated genes. A relevance value exceeding 0.90 and a

p-value below 0.05 were established as thresholds. The starBase

and multiMiR R packages, which are tools for predicting miRNA

binding sites, were employed to estimate the miRNAs that may

interact with DElncRNAs and DE-EndMTs. Subsequently, an

intersection analysis was performed to construct ceRNA

networks composed of both upregulated and downregulated

lncRNAs. This process involved integrating miRNA/DElncRNAs

and miRNA/DE-EndMTs. The results were visualized using

Cytoscape 3.7.1. To elucidate the relevant molecular mechanisms

further, the cytoHubba R package, utilizing the MCC method,

was adopted to identify the top ten hub lncRNAs within the two

ceRNA networks.

2.13 qRT-PCR validation

Quantitative reverse transcription polymerase chain reaction

(qRT-PCR) was performed to validate the expression levels of

three lncRNAs and mRNAs within the competing endogenous

RNA (ceRNA) networks in patients with coronary artery disease

(CAD) and healthy controls. The study received approval from

the Medical Ethics Committee of Hubei University of Medicine,

and the characteristics of the patients are detailed in

Supplementary Table 4. Residual peripheral blood samples were

collected from 50 CAD patients in the cardiovascular department

and 50 gender- and age-matched healthy individuals from the

health check-up center at Taihe Hospital between April 2024 and

June 2024. Inclusion criteria and exclusion criteria were the same

as previously reported (12).

Total RNA was extracted from serum samples using Trizol

reagent (Vazyme, Nanjing, China) according to the

manufacturer’s instructions. The concentration and quality of

RNA were assessed using a microplate reader. For lncRNA

analysis, total RNA was reverse transcribed into complementary

DNA (cDNA) using the RevertAid First Strand cDNA Synthesis

Kit (Thermo Scientific, Waltham, Massachusetts, USA). For

mRNA, equal amounts of RNA were reverse transcribed into

cDNA using the HiScriptQ RT SuperMix for qPCR (Vazyme,

Nanjing, China). Subsequently, cDNA samples were mixed with

ChamQTM SYBR® qPCR Master Mix (Vazyme, Nanjing, China)

and amplified on a Bio-Rad CFX96 PCR Thermal Cycler. The

housekeeping genes GAPDH and β-actin served as internal

controls. Primer sequences are provided in Supplementary

Table 4. Primer specificity was validated via melt curve analysis.

qRT-PCR reactions were performed in triplicate using RNase-free

consumables. No-template controls (NTCs) were included in

each run. Pre- and post-PCR workflows were spatially segregated,

and UV sterilization was applied to eliminate contamination. The

results were calculated using the 2 −ΔΔCt method.

3 Results

3.1 lncRNA and mRNA transcriptome

To elucidate the transcriptomic changes in lncRNA and mRNA

in HUVECs exposed to pooled serum from the GLU, LDL, TG and

Con groups, we employed a high-throughput RNA sequencing

strategy (Figure 1A). In brief, we isolated high-quality total RNA

from HUVECs to capture their expression profiles and infer the

potential functions of lncRNAs and mRNAs using RNA-seq

data. This approach generated 229.48 Gb of clean data, with an

average of 123,138,624,728 reads per sample, and a Q30 quality

score exceeding 95%, ensuring high reliability (Supplementary

Table 5). Utilizing a two-iteration mapping method, we aligned

transcripts to the annotation database and identified known

mRNAs and lncRNAs. Based on our cut-off criteria, we

predicted a total of 2,266 novel lncRNAs across the 16 samples

analyzed (Figure 1B). At the transcript level, we identified a total

of 23,999 lncRNAs, including 5,775 antisense genic exonic, 3,956

antisense genic intronic, 1,826 antisense intergenic downstream,

4,837 antisense intergenic upstream, 1,123 sense genic exonic,

1,510 sense genic intronic, 2,834 sense intergenic downstream,

and 2,138 sense intergenic upstream lncRNAs. Notably, the

antisense intergenic upstream category was the most

abundant (Figure 1C).

To gain further insight into the mRNA and lncRNA responses

in HUVECs, we analyzed DEmRNAs and DElncRNAs. In our

gene-level expression analysis, we identified a total of 306

DEmRNAs between the control and GLU groups, 335 between

the control and LDL groups, and 364 between the control and

TG groups, using a significance threshold of p-value <0.05 and

|log2(fold change)| > 0.5 (Figure 1D). Furthermore, by applying a

more stringent threshold of p-value < 0.05 and |log2(fold

change)| > 1, we identified 523 DElncRNAs in the GLU group

(260 upregulated and 263 downregulated), 471 in the LDL group

(259 upregulated and 212 downregulated), and 562 in the TG

group (293 upregulated and 269 downregulated), compared to

the control group (Figure 1F). Heatmaps were utilized to

visualize the distribution of differentially expressed mRNAs and

lncRNAs (Figures 1E,G).

3.2 Enrichment analysis of overlapping
DEmRNAs

Gene enrichment analysis was performed on the overlapping

sets of DEmRNAs to elucidate the shared molecular mechanisms

underlying the response of HUVECs to metabolic stressor

stimulation. The Venn diagram (Figure 2A) illustrates the

distribution of overlapping DEmRNAs across the three groups.

KEGG enrichment analysis of the shared differentially expressed

mRNAs revealed significant enrichment in microRNAs associated
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with cancer. Additionally, Metascape analysis indicated enrichment

in pro-inflammatory and profibrotic pathways (Figures 2B,C),

suggesting a close association of HUVECs with inflammatory

and fibrotic processes under these adverse conditions.

Furthermore, Metascape was utilized to analyze the exclusive

DEmRNAs that exhibited no overlap among the three groups.

The results indicated that the GLU group demonstrated

significant enrichment in several key biological processes,

including the regulation of smooth muscle cell proliferation,

regulation of leukocyte degranulation, and positive regulation of

lipid metabolic processes (Figure 2D). In the LDL group, the

enrichment analysis highlighted critical biological processes, such

as the response to lipopolysaccharide, the positive regulation of

macrophage-derived foam cell differentiation, the initiation of DNA

replication, and metal ion transport, among others (Figure 2E).

Furthermore, in the TG group, An interesting unique differential

gene enrichment analysis revealed significant activation of the

cholesterol biosynthesis pathway in hepatocytes (Figure 2F).

3.3 Enrichment analysis of differentially
expressed mRNAs

The GSEA was carried out on mRNA expressions across three

distinct groups (Supplementary Figures 1A–C). A significant

upregulation was witnessed in pathways such as ECM—receptor

FIGURE 1

Identification of the differentially expressed RNAs expression profiles in human umbilical vein endothelial cells. (A) Flow diagram representing the

strategy. HUVECs treated for 72 h with pooled plasma from the Con, GLU, LDL, or TG groups, respectively. whole transcriptome sequencing and

bioinformatic analysis was performed. Software used in this study were indicated in red, and the criteria for lncRNAs and DElncRNAs identification

were shown in blue. (B) Venn diagram showing the lncRNAs identified by four different algorithms (CPC, PLEK, CNCI, and Pfam). (C) The pie chart

illustrates the number of lncRNAs categorized by their genomic location, with the antisense intergenic upstream category being the most

abundant. (D–G) Volcano plot showing the expression profiles of differentially expressed mRNAs (D) and lncRNA (F) in the GLU, LDL, and TG

groups compared to the Con group. Differentially expressed mRNAs were identified using the criteria of p-value < 0.05 and |Log2 (fold

change)| ≥ 0.5, while lncRNAs were identified with p-value < 0.05 and |Log2 (fold change)| ≥ 1. Up- and down-regulated genes are labeled in red

and black, respectively. Heatmap representing the DEmRNAs (E) and DElncRNA (G) across the four groups. The color of cells reflects the change

degree of DEmRNAs and DElncRNAs expression, blue indicates down-regulated while red indicates up-regulated. Statistical significance was

determined using P-value < 0.05.
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interaction and the Hedgehog signaling pathway within the GLU

group. The main upregulation pathways identified in the LDL

group were focused on leukocyte transendothelial migration and the

T cell receptor signaling pathway. The TG group showed an

upregulation of the Hedgehog signaling pathway, the JAK-STAT

signaling pathway, the PI3K-Akt signaling pathway, and the TGF-

beta signaling pathway. Further clarification was offered by

functional enrichment analysis through GO and KEGG for the

DEmRNAs. Significant enrichment was observed in GO terms

related to biological processes, including cell adhesion, proliferation,

differentiation, and the regulation of immune responses across the

three groups. The most positively enriched GO terms related to

biological processes are presented in Supplementary Figures 1D–F.

Meanwhile, KEGG pathway analysis revealed that the DEmRNAs in

the GLU group were highly enriched in pathways such as “Cell

adhesion molecules”, “Cytokine-cytokine receptor interaction”, and

“Type I diabetes mellitus”. In contrast, the primary KEGG pathways

enriched in the LDL and TG groups were predominantly related to

inflammation, encompassing pathways such as Lipid and

Atherosclerosis, TNF signaling, NF-kappa B signaling, and IL-17

signaling. Notably, the TGF-beta signaling pathway was significantly

enriched in the LDL group (Supplementary Figures 1G–I).

3.4 Functional assessment of the
DElncRNAs

To evaluate the potential functions of DElncRNAs in HUVECs,

candidate targets were predicted through both trans- and cis-acting

regulatory modes. A total of 198, 193, and 220 potential targets

were identified across three groups. Based on these targets, GO

analyses were conducted, resulting in the identification of

significantly enriched GO terms (p < 0.05). Notably, DElncRNAs

were primarily enriched in GO terms associated with cell growth,

metabolism, and differentiation within the GLU group. In contrast,

the GO terms enriched in the comparison between the LDL and

TG groups were predominantly related to the activation and

regulation of the immune system, inflammatory responses, and cell

growth and differentiation, as illustrated in Figures 3A–C.

Furthermore, KEGG pathway enrichment analyses revealed 10

FIGURE 2

Functional annotation of shared and unique differentially expressed mRNAs (DEGs). (A) Three-way Venn diagram showing shared DEGs among the

GLU, LDL, and TG groups compared to the Con group. (B,C) Enrichment analysis of shared DEGs based on the KOBAS (B) and Metascape (C)

databases, revealing significant enrichment in pro-inflammatory and profibrotic pathways (P-value <0.05). (D-F) Enrichment analysis of unique

DEGs without overlap among the GLU vs. Con (D), LDL vs. Con (E), and TG vs. Con (F) groups based on the Metascape database, highlighting

unique biological processes and pathways in each group. Pathway enrichment results were considered significant at a P-value threshold of <0.05.
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significantly enriched signaling pathways (p < 0.05), including insulin

resistance, adipocytokine signaling pathway, and cytokine-cytokine

receptor interaction (Figure 3D) in the GLU group. KEGG pathway

analysis also demonstrated that the IL-17 signaling pathway and

cytokine-cytokine receptor interaction were significantly enriched in

the LDL and TG groups (Figures 3E,F). These results indicate that

differentially expressed lncRNAs and mRNAs play a crucial role in

regulating cellular functions such as metabolism, immune responses,

and differentiation in response to metabolic stressors.

3.5 DElncRNAs-mediated PPI network
construction and module identification

To construct the DElncRNAs-mediated PPI network, we

utilized the STRING online database and the Cytoscape v3.7.2

visualization tool, selecting protein-coding targets of DElncRNAs

for interaction analysis. As shown in Figure 3H, we identified 74

nodes (34 upregulated and 40 downregulated) and 70 edges in the

DElncRNAs-mediated PPI network for the GLU group. Five high-

degree nodes (top 5%, average degree≥ 5) were considered hub

genes, including IL1A, MUC1, FOXA1, TGFA, and HGF.

Additionally, a significantly enriched module, termed Module I, was

identified. KEGG analyses revealed that the primary signaling

pathway associated with this module was the ECM-receptor

interaction pathway (Figure 5G). Similarly, in the DElncRNAs-

mediated PPI networks, we identified 99 nodes and 268 edges in

the LDL group, while 99 nodes and 207 edges were identified in

the TG group. In the LDL group, IL1B, PXDNL, CDK1, POU5F1,

and ISG15 were identified as hub genes, whereas IL6, CXCL8,

IL1A, VCM1, and CSF2 were recognized as hub genes in the TG

group. Furthermore, three notable enriched modules, designated as

Module I, II, and III, were also identified. The signaling pathways

primarily associated with these three modules were linked to

FIGURE 3

Functional annotation of differentially expressed lncRNA. (A–C) KEGG pathway enrichment analyses of DElncRNAs in HUVECs treated with serum

from the GLU (A), LDL (B), and TG (C) groups compared to the Con group. The top 10 significant KEGG terms were presented, with the color and

length of the corresponding column indicating the p value and gene number, respectively. (D-F) GO analyses of DElncRNAs in HUVECs treated

with serum from the GLU (D), LDL (E), and TG (F) groups. The top 20 most enriched GO terms were listed. The columns in red, blue, and green

indicate the significantly enriched terms of CC, MF, and BP categories, respectively. (G–I) Identification of the DElncRNAs-mediated PPI network

in the GLU vs. Con (G), LDL vs. Con (H), and TG vs. Con (I) comparisons. The DElncRNAs-mediated PPI network was established based on the

targets of DElncRNAs identified in this study. The dotted areas indicate three significant modules (Module I in orange, Module II in green, and

Module III in blue). The enriched signaling pathways (P-value <0.05) in each module were presented.
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multiple inflammation pathways, including NF-κB, IL-17, and NOD-

like receptor signaling pathways (Figures 5H,I).

3.6 Building and verifying machine learning
models

We identified 52 genes associated with EndMT that were

differentially expressed across three groups by intersecting

differential mRNA expressions with an EndMT-related gene set,

as depicted in Figure 4A and Supplementary Table 6. To confirm

the association of these genes with EndMT, we conducted a

Metascape enrichment analysis. This analysis revealed significant

enrichment in four critical domains: epithelial differentiation,

regulation of epithelial differentiation, mesenchymal-epithelial

signaling, and positive regulation of the epithelial-to-

mesenchymal transition (Figure 4B). To investigate the utility

of these EndMT-related genes as biomarkers, we utilized

FIGURE 4

Identification of EndMT-related genes that indicate the presence of a disease. (A) Four-way Venn diagram showing the intersection of DEmRNAs from

the GLU vs. Con, LDL vs. Con, and TG vs. Con groups with the EndMT-related gene set. (B) Enrichment analysis of DE-EndMTs based on the

Metascape database. (C) 10 cross-validations of the LASSO model’s altered parameter selection. Each curve represents a single gene. (D) Analysis

of LASSO coefficients. The best lambda is where vertical dashed lines are drawn. (E) The SVM-RFE algorithm’s gene cross-validation error variation

curve. (F) A Venn diagram illustrates four signature genes related to EndMT that are shared among the LASSO, SVM-RFE and random forest algorithms.
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GSE100927 as a test dataset and GSE43292, GSE28829, and

GSE163154 as validation datasets. We employed three machine

learning algorithms: the Least Absolute Shrinkage and

Selection Operator (LASSO), Support Vector Machine

Recursive Feature Elimination (SVM-RFE), and Random

Forest, to evaluate their biomarker potential. Figures 4C–E

demonstrate that LASSO regression and SVM-RFE identified a

total of 22 and 9 genes, respectively. The Random Forest

method utilized gene significance scores to prioritize the

genes. The intersection of the top 10 genes with the highest

scores from the Random Forest algorithm and the genes

obtained through LASSO regression and SVM-RFE resulted in

the identification of four genes: ISG15, CD36, HSPB2, and

IRS2 (Figure 4F).

3.7 Development of nomogram
diagram model

Utilizing four key genes identified via machine learning, we

developed a nomogram to predict the risk of atherosclerosis

development (Figure 5A). According to the clinical impact curve,

the nomogram diagram model exhibited robust diagnostic

abilities. In addition, we assessed the diagnostic significance of

ISG15, CD36, HSPB2, IRS2 and the nomogram diagram model

in the GSE100927 dataset by analyzing the area under the ROC

curve (Figure 5E). Furthermore, in order to verify the precision

of the model, we conducted validation using the GSE43292,

GSE28829 and GSE163154 dataset (Figures 5F–H). This indicates

that our model not only has high diagnostic value in predicting

FIGURE 5

Developing and assessing a nomogram model for the diagnosis of AS. (A) Developing a nomogram that utilizes five characteristic genes to forecast the

likelihood of AS. (B) Calibration curves are used to determine the nomogram’s accuracy in making predictions. (C) The clinical impact curve

determines the clinical significance of the nomogram model. (D) The decision curve analysis illustrates the therapeutic benefit of a nomogram.

(E) The model’s ROC curve is shown for the GSE100927 dataset in the training set. (F) The validation set GSE163154 dataset displays the ROC

curve of the model. (G) The model’s ROC curve in the GSE28829 dataset. (H) The model’s ROC curve in the GSE43292 dataset.
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the occurrence of atherosclerosis, but it is also effective in

distinguishing between early and late stages, as well as between

IPH and non- IPH patients.

3.8 Single-cell sequencing

To further validate the differential expression of these genes in

ECs, we analyzed the single-cell dataset GSE253903. We processed

a total of 11,756 cells from 12 samples of six aortic stenosis patients

using the Seurat R package. Following quality control and utilizing

SingleR and cell taxonomy markers, we annotated 21

subpopulations and identified five distinct cell types (Figures 6A–C

and Supplementary Figure 2). To examine gene expression

differences in endothelial cells between symptomatic and

asymptomatic AS, we conducted a differential analysis on the

GSE253903 dataset (Figure 6D). The results demonstrated that the

IRS2 and ISG15 genes exhibit significant differential expression in

endothelial cells (Supplementary Table 7).

3.9 Identification of the EndMT-related
ceRNA network

Recent studies have demonstrated that lncRNA-mediated

ceRNA networks play a pivotal role in a multitude of biological

processes, including immunity, embryonic implantation,

metabolism, and disease (13–15). To construct ceRNA regulatory

FIGURE 6

Dimensionality reduction, clustering, and specific markers of different cell types based on single-cell data from the GSE253903 data set. (A,B) t-SNE

plots of symptomatic and asymptomatic AS patient cells depicting 5 cell types and dot plots of their characteristic genes. (C) t-SNE plot illustrating the

distribution of cells from symptomatic (blue): and asymptomatic (red): atherosclerosis patients. (D) Volcano plots of the most significantly differentially

expressed genes in endothelial cells.
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networks, we investigated the negative interactions between

DElncRNAs and identified EndMT-DEmRNAs. We established

three groups of upregulated and downregulated ceRNA networks

using miRDB and starBase. Taking the upregulated GLU group

as an example, 128 microRNAs (miRNAs) related to EndMT-

DElncRNAs and 461 miRNAs associated with DE-EndMTs were

identified. The intersection between the two clusters of miRNAs,

including 59 miRNAs, was chosen for the following analysis.

Simultaneously, 24 intersecting miRNAs from the downregulated

group were found among 174 EndMT-DElncRNAs-related

miRNAs and 161 DE-EndMT-related miRNAs. Ultimately, based

on the intersecting miRNAs, associated EndMT-DElncRNAs and

DE-EndMTs, ceRNA networks of the downregulated lncRNAs

and upregulated lncRNAs were constructed, as shown in

Figures 7A,B, respectively. CytoHubba analysis with the maximal

clique centrality (MCC) method was used to identify hub

lncRNAs in the two networks, which included, PWAR5, DLEU2,

and SNHG20 in the downregulated network and DANT2,

AC109460.3, and PP7080 in the upregulated network.

3.10 Validation of quantitative real-time
polymerase chain reaction

To further validate the expression levels of the aforementioned

lncRNAs and mRNAs selected from the ceRNA networks, we

assessed their expression levels in 50 CAD and 50 healthy

peripheral blood samples using qRT‒PCR (Figures 8A–F). The

expression level results for CD36, FOXA1, FZD7, VIM-AS1,

ELF-AS1, and LINC02381 were consistent with the

corresponding alterations observed in the ceRNA network.

4 Discussion

ECs exposed to different milieus undergo dynamic phenotypic

switching, a critical aspect of endothelial heterogeneity that is

essential for maintaining vascular homeostasis, when deregulated,

might result in ED. EndMT is a phenotypic conversion process

FIGURE 7

Construction of ceRNA networks related to EndMT. Upregulated lncRNA-associated ceRNA networks in the comparisons of GLU vs. Con (A), LDL vs.

Con (C), and TG vs. Con (E). (B) Downregulated lncRNA-associated ceRNA networks in the comparisons of GLU vs. Con (B), LDL vs. Con (D), and TG vs.

Con (F). Hub nodes of ceRNA in each group were identified by the MCC method (lncRNAs: rhombus, mRNAs: circle, miRNAs: triangle).
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recognized as a hallmark of numerous cardiovascular diseases (16).

During this process, the expression of endothelial markers (such as

VE-cadherin, CD31), is downregulated, while the expression of

mesenchymal markers (such as FSP-1, α-SMA, Vimentin,

Fibronectin1) is upregulated (17). Recent studies have confirmed

that EndMT is prevalent during atherosclerosis (AS), driving its

progression by increasing the deposition of fibronectin (18) and

adhesion molecules, as well as altering the balance of collagen

and matrix metalloproteinases (19). EndMT is viewed as a

critical step for the initiation and progression of atherosclerosis

(20). While Notch, Wnt, the Nuclear Factor-kappa B (NF-κB),

TNFα, Endothelin-1 (ET-1) and Caveolin-1 (Cav-1) signaling

pathways as well as hypoxia, oxidative stress, hyperglycemia,

dyslipidemia and shear stress forces represent EndMT-inducing

stimuli (21), the downstream signaling pathways of EndMT are

not fully characterized. In this study, we employed RNA

sequencing to comprehensively analyze the profiles of circRNA,

lncRNA, and mRNA in HUVECs under conditions of metabolic

stress. Our results indicate that exposure to hyperglycemia and

hyperlipidemia in vitro leads to the acquisition of a partial

mesenchymal-like epigenetic profile in endothelial cells. Based on

the expression profiles of DE-EndMTs, we developed an AS

model comprising four DE-EndMTs that demonstrated accurate

diagnostic performance and the potential to characterize

biological features in AS. Furthermore, a ceRNA network

targeting the DE-EndMTs were constructed, which enhances our

understanding of post-transcriptional regulatory mechanisms and

aids in the identification of potential therapeutic targets.

Hyperglycemia and hyperlipidemia induce persistent

epigenetic and metabolic changes in ECs, creating a permissive

environment for EndMT. It has been described that ECs use

metabolites/precursors for epigenetic regulation of their subtype

differentiation and maintain crosstalk through metabolites

released by other cell types (22, 23). Consistent with this, the

enrichment of thiamine and butanoate metabolism was observed

in the GLU treatment group. Thiamine plays an important role

in glucose metabolism and thiamine deficiency leads to anaerobic

metabolism and lactate formation (24). TGF-β, a key inducer of

EndMT, is highly expressed in neointimal lesions and critically

regulates lipid metabolism by modulating genes involved in fatty

FIGURE 8

Identification of differentially expressed lncRNAs and mRNAs randomly selected from the ceRNA-network by real-time quantitative polymerase chain

reaction. (A–C) The relative expression levels of mRNAs in peripheral blood from 50 CAD patients and 50 healthy controls were calculated using the 2

(−ΔΔCt) method and presented as the mean ± standard error of the mean (SEM). (D–F) The relative expression levels of lncRNAs in peripheral blood

from 30 CAD patients and 30 healthy controls were determined. The RT-qPCR results represent the mean values of three independent experiments

(n= 3). *Indicates significance less than 0.05, **indicates significance less than 0.01, ***indicates significance less than 0.001.
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acid oxidation and lipid synthesis (25, 26). Yalamanchi et al.

demonstrated that lactic acid significantly enhances the activity of

TGF-β peptides (TGF-β1, TGF-β2, and TGF-β3), TGF-β

receptors (R1, R2, and R3), and TGF-β function, creating a

favorable environment for cell transdifferentiation (27). Butyrate

is a well-established Histone Deacetylase (HDAC) inhibitor,

which is unique among fatty acids (FAs), plays a critical role in

epigenetic regulation (28). Aberrant HDAC expression and

activity can promote Epithelial-Mesenchymal Transition (EMT)

and cancer metastasis, while HDAC inhibitors can prevent EMT

(29–31). Additionally, Mesenchymal cells derived from EndMT

process reprogram their metabolism and show defective FA

metabolism (32). Lipid metabolism dysregulation has been

closely linked to the TGF-β/Smad signaling pathway (33), which

aligns with the observed enrichment of the TGF-β/Smad

signaling pathway in the high-fat groups (LDL group and TG

group). Zhao et al. observed in a chronic kidney disease (CKD)

model that increased expression of extracellular matrix (ECM)

components, such as TGF-β1, connective tissue growth factor

(CTGF), and type I collagen, was accompanied by disturbances in

purine, lipid, and amino acid metabolism (34). Interestingly,

predictions of target genes for DElncRNAs revealed that the target

genes were primarily enriched in molecular functions related to the

remodeling of ECM components and cell adhesion which serve as

important extracellular clues of EndMT (35). Those findings

collectively suggests that metabolic stress triggered the process of

EndMT via remodeling the epigenetic landscape of endothelial cells

and activating the fibrotic and inflammatory signaling pathways.

EndMT is a process that is classified as a specialized form of

EMT, in which endothelial cells lose their endothelial

characteristics and gain a mesenchymal phenotype (36). To

identify genes associated with EndMT activation under metabolic

stress, we established an EMT dataset based on a search of the

KEGG and GO databases, which identified 223 genes linked to

the TGF-β pathway. Further integration with the dbEMT2.0

database revealed a total of 1,164 EndMT-related genes, among

which 54 were differentially expressed. Previous studies have

proposed that EndMT markers may hold potential for disease

staging and prognosis prediction (37). For instance, The PDAC

tissues with positive EndoMT index were significantly correlated

with T4-staging and showed positive for M2-macrophage index

(38). By utilizing machine learning algorithms, we established a

diagnostic model based on four differentially expressed genes

(CD36, IRS2, ISG15, and HSPB2). Cluster of Differentiation 36

(CD36), which was widely expressed on the surface of

endothelial cells in the aorta (39), binds with TGF-β1 to activate

the fibrosis process (40). Inhibition of CD36 has been shown to

suppress EMT and block the Wnt/β-catenin and TGF-β signaling

pathways (41). Insulin receptor substrates 2 (IRS2) is the primary

isoform of insulin receptor substrate expressed in ECs (42),

dysregulation of IRS1/IRS2 contributes to the metabolic disorder,

obesity and diabetes (43, 44). IRS proteins can undergo Ser/Thr

phosphorylation induced by TGF-β1 (45), a modification that

may play a role in regulating downstream processes of the TGF-

β1 signaling pathway. Additionally, siRNA-mediated reduction of

IRS2 expression markedly increases basal levels of E-cadherin

mRNA and protein in kidney epithelial cells (46), indicating that

IRS2 may influence EMT through the modulation of E-cadherin

expression. ISG15 (interferon-stimulated gene 15) is a ubiquitin-

like protein with chemotactic function that recruits neutrophils

in the sites of inflammation (47). The deficiency of ISG15 can

lead to systemic type I interferon-mediated inflammation in

humans (48). In vitro and in vivo experiments showed that

upregulation of ISG15 inhibited EMT in lung adenocarcinoma

(49). Heat shock protein family B member 2 (HSPB2) is a novel

and unique member of the small heat shock proteins (HSP)

family, mainly expressed in skeletal and heart muscles (50, 51).

HSPB2 could regulate glucose metabolism, Warburg effect, and

ROS level by affecting metabolic genes, including the synthesis of

hexokinase II (HK2) and cytochrome c oxidase 2 (SCO2) (52).

HK2 is known to be a key metabolic enzyme by promoting

glucose uptake in cells and facilitating the Metabolic

reprogramming (53). In mouse models of breast cancer

metastasis, HK2 deficiency decreases SNAIL protein levels and

inhibits SNAIL-mediated epithelial mesenchymal transition and

metastasis (54). Furthermore, recent publications have suggested

that ECs directly contribute to vascular calcification through

EndMT and the extent of EndMT is correlated with plaque

instability (18, 19, 55, 56). Tom Alsaigh et al. conducted single-

cell analyses on calcified atherosclerotic core (AC) plaques and

patient-matched proximal adjacent (PA) portions of carotid

artery tissue, identifying differential expression of CD36, IRS2,

ISG15, and HSPB2 in ECs. Further single-cell analysis of the

GSE253903 dataset reveals that ISG15 and IRS2 are significantly

upregulated in endothelial cells of symptomatic arteries.

Collectively, although alternative explanations for the observed

gene expression changes, such as general inflammatory responses

rather than EndMT-specific effects, cannot be ruled out, the

evidence from previous studies suggests that the four

differentially expressed genes may play a role in EndMT,

warranting further investigation.

Recently, the role of noncoding RNAs, including lncRNA,

miRNA, and circular RNA, has been validated in various

processes related to EndMT and endothelial dysfunction. For

instance, lncRNA MALAT1 modulated TGF-β1-induced EndMT

by the down-regulation of miR-145 in neointimal hyperplasia

(57). LncRNA H19 overexpression prevented high-glucose-

induced EndMT via a TGF-β1-dependent but Smad-independent

pathway, regulated through the ERK1/2 MAPK pathway (58).

Furthermore, the proposition and validation of the ceRNA

hypothesis have provided additional insights into potential

mechanisms underlying EndMT. Consequently, a ceRNA

regulatory network targeting these 52 genes was constructed in

our study, offering a new reference for mechanistic

understanding and targeted therapy.

Upregulated Hub lncRNAs (DANT2, AC109460.3, PP7080,

LINC02381, AC015726.1, AL161891.1, AL035071.1, and

VPS9D1-AS1) and downregulated Hub lncRNAs (SNHG20,

DLEU2, PWAR5, AC009065.4, AC027288.3, AC016065.1, and

SNHG25) were selected from the ceRNA networks. Existing

evidence indicates that lncRNA DLEU2 influences biological

processes such as EMT and cancer stem cell (CSC) enrichment

Sun et al. 10.3389/fcvm.2025.1585030

Frontiers in Cardiovascular Medicine 14 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1585030
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


in breast cancer through the DLEU2/ROR1 axis (59). Others

studies have shown that the silencing of DLEU2 inhibited the

TGF-β1-induced proliferation, migration and EMT (60).

VPS9D1-AS1, has been demonstrated to be overexpressed in

various cancer types and identified as a target of Wnt/c-Myc

signaling (61). In endometrial cancer, VPS9D1-AS1 promotes

tumor progression by acting as a molecular sponge for miR-

377-3p, thereby upregulating SGK1 expression and enhancing

cell proliferation, invasion, and EMT (62). SNHG20, a newly

identified lncRNA, has been found to participate in the process

of vasculogenic mimicry (63) and was associated with pulmonary

fibrosis through the microRNA 490-3p (miR-490-3p)/TGFBR1

axis (64). LINC02381,was reported to affect ox-LDL-induced

endothelial cell injury through the miR-491-5p/transcription

factor 7 axis (65). TCF7, a key factor in the Wnt/β-catenin

signaling pathway (66), promotes EndMT under ox-LDL

conditions. Accordingly, the hub lncRNAs selected in the present

study are likely associated with EndMT through various

pathways, warranting further in vivo or in vitro investigations.

Moreover, in order to verify the application value of our

established ceRNA network, we randomly selected three lncRNAs

and their corresponding target mRNAs for verification.

Up-regulation or down-regulation of genes in serum samples

from patients with atherosclerosis are consistent with the results

of ceRNA.

Admittedly, there are several limitations to our study. Firstly,

the establishment and validation of the EndMT model were

performed on public datasets with small samples; a large-sample

validation and optimal cutoff determination are required before

clinical translation. Secondly, expression validation cohort was

relatively small, It would have a lot more value if a larger sample

size were concluded; furthermore, the recruitment, activation,

and regulatory roles of these genes in ECs as well as the ceRNA

regulatory network require validation in further in vitro and in

vivo experiments.

Despite these limitations, our study offers valuable preliminary

insights into the role of EndMT-associated genes in ED. We hope

that these findings will lay the groundwork for the future clinical

application of these markers in the diagnosis and prognosis of

AS and other cardiovascular diseases. In our future work, we

plan to validate the regulatory mechanisms of the identified

genes in EndMT through gene knockdown and overexpression

studies, using animal models for in vivo verification.

Additionally, we aim to collect more clinical samples to assess

the diagnostic potential of these biomarkers across different

stages of cardiovascular disease.

5 Conclusion

In conclusion, this study utilized pooled human serum to more

effectively replicate the endothelial microenvironment associated

with metabolic-induced endothelial dysfunction, with a particular

focus on biological pathways and changes in gene expression. We

identified a novel AS model based on the expression profiles of

four DE-EndMTs, which demonstrated significant diagnostic

potential and the capability to characterize biological features

associated with AS. Furthermore, we constructed a ceRNA

network targeting these DE-EndMTs, which elucidates the post-

transcriptional regulatory mechanisms involved in ECs and

provides insights into potential therapeutic targets. While our

findings offer valuable insights into the molecular foundations of

ED, further experimental validation is necessary to confirm these

results and to explore the therapeutic implications in greater depth.
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