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This article conducts a systematic literature analysis, focusing on exploring the

etiological factors of coronary in—stent restenosis(ISR). It is found that the

occurrence of ISR is influenced by a variety of factors, including patient—

related biological factors (such as diabetes and smoking), lesion anatomical

factors (such as calcification and lesion length), and factors related to the

surgical procedure (such as incomplete stent expansion and stent

malposition). Regarding the prevention of coronary in—stent restenosis,

individualized treatment strategies need to be developed by combining patient

characteristics, lesion anatomy, and surgical techniques.
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1 Background

In-stent restenosis (ISR) is a key challenge affecting patient prognosis after

percutaneous coronary intervention (PCI). Although the application of drug-eluting

stents (DES) has significantly reduced the incidence of ISR, its pathophysiological

mechanisms are complex and involve the interplay of multiple factors.

2 Main text

Since the advent of percutaneous coronary intervention (PCI) technology, in-stent

restenosis (ISR) has posed a significant challenge to the clinical efficacy of PCI. Despite the

widespread adoption of drug-eluting stents (DES), advancements in the science of coronary

stent materials, and the optimization of clinical medication regimens, the incidence of ISR

in the first year following PCI has markedly decreased from 20%–30% during the bare-

metal stent (BMS) era to 5%–10% (1). Nevertheless, ISR remains the leading cause of stent

failure and the most common indication for repeat coronary revascularization, with

approximately 25% of patients presenting with acute myocardial infarction (AMI) (2).

Notably, compared to PCI patients without ISR, both the incidence and mortality rates are

significantly elevated in those with ISR (3). Therefore, a thorough exploration of the

etiological mechanisms underlying ISR, along with the development of individualized

treatment plans based on a comprehensive assessment of patient characteristics and lesion

features, is of great clinical significance for enhancing patient outcomes.

Traditionally, the ISR is based on the visual assessment of coronary angiography

(CAG), which means that a new lesion appears within the stent or within 5 mm of the
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stent edge, and the diameter stenosis is ≥50% (4). However, in

clinical practice, the definition of ISR is more stringent: in

addition to the stenosis shown by CAG, patients must also have

ischemic symptoms or a blood flow reserve fraction <0.80; even

in the absence of symptoms and signs of myocardial ischemia, a

reduction in lumen diameter of 70% or more can also be

considered as ISR. This comprehensive definition based on

ischemic symptoms, blood flow reserve fraction, and stenosis

degree not only helps to more accurately assess the clinical

significance of restenosis but also provides a basis for the

development of individualized treatment plans (5).

Traditional coronary angiography, while capable of diagnosing

ISR, fails to differentiate the underlying pathological heterogeneity

of restenosis due to its two-dimensional perspective. However, the

advent of intravascular imaging and histopathological research has

elucidated the heterogeneous nature of ISR—distinct classifications

exhibit significant divergence in pathogenesis, treatment response,

and prognosis. To systematically guide clinical decision-making,

contemporary ISR classification integrates a tripartite standard

encompassing angiographic morphology, tissue composition

characteristics, and imaging biomarkers (Table 1). This

classification framework not only delineates the clinical

definitions and features of ISR but also elucidates their

therapeutic implications, thereby providing an objective

foundation for precision interventions (4, 6, 7).

The mechanisms of ISR involve the interaction of multiple

factors (Figure 1), mainly including patient-related biological

factors (Figure 2), lesion anatomical characteristics (Figure 3),

and factors related to the surgical procedure (Figure 4).

2.1 Patient-related biological factors

2.1.1 Diabetes

Diabetes is an important independent risk factor for ISR. The

endothelial dysfunction that is common in diabetic patients not

only accelerates the process of atherosclerosis but also significantly

increases the risk of ISR. Studies (8) have shown that the

neointimal hyperplasia of the coronary arteries in diabetic patients

is more pronounced, and the mechanism may be related to a

hyperglycemic environment promoting the proliferation and

migration of coronary artery smooth muscle cells (9). A recent

large-scale cohort study from Sweden has delved into the

correlation between glycemic control levels in patients with type 2

diabetes mellitus and the risk of stent failure (10). A recent large-

scale cohort study from Sweden, which included 52,457 patients

with type 2 diabetes mellitus who had undergone implantation of

second-generation drug-eluting stents nationwide between 2010 and

2020, stratified glycemic control levels using a reference group with

an HbA1c of 6.1%–7.0%. The primary endpoint of the study was

stent failure, including in-stent restenosis and stent thrombosis. The

results showed that the risk of stent failure increased in a dose-

dependent manner with the elevation of HbA1c levels: when

HbA1c was ≥10.1%, the risk of stent failure was significantly

increased by 33% compared with the reference group (p < 0.01).

The results of sensitivity analysis further supported this conclusion,

confirming that poor glycemic control is significantly associated

with an increased risk of stent failure due to ISR.

Furthermore, substantial evidence indicates that diabetes

modulates the expression of inflammatory cytokines (11, 12),

thereby potentially influencing the pathogenesis of ISR (11).

Specifically, the upregulation of pro-inflammatory factors (such

as IL-6 and TNF-α) in the bodies of diabetic patients may

exacerbate the inflammatory response of the vascular wall,

thereby promoting the occurrence of restenosis (13).

2.1.2 Smoking

Smoking, an established risk factor for cardiovascular disease, has

been widely confirmed as a strong independent predictor for ISR. Its

pathogenic mechanisms mainly involve the activation of oxidative

stress and inflammatory responses. Studies have shown that

smoking can induce the formation of a pro-inflammatory

microenvironment in the arterial intima, characterized by a

significant increase in the levels of inflammatory mediators. These

pathophysiological changes not only accelerate the process of

neointimal hyperplasia but also, by promoting platelet activation

and fibrin deposition, lead to an increased tendency for thrombosis,

thereby further impairing the vessel’s repair capacity (14).

2.1.3 Patients with chronic kidney disease (CKD)
Research conclusions show that the incidence of ISR in patients

with chronic kidney disease (CKD) is significantly higher than that

in individuals with normal renal function (p < 0.01) (15). From a

pathophysiological perspective, this is mainly attributed to the

systemic inflammatory response and vascular calcification

associated with CKD (16). The impact of CKD on the local

microenvironment of stents is mainly reflected in the

exacerbation of intimal hyperplasia and inflammation—mediated

vascular remodeling (17). These pathological changes are all

important promoters of ISR. The systemic chronic inflammatory

state unique to CKD patients significantly increases the risk of ISR.

A retrospective study from China (18) analyzed 164 CKD

patients who underwent coronary stent implantation between

2017 and 2022. The study found that the CHA2DS2-VASc score,

fibrinogen (FIB) levels, and the neutrophil-to-lymphocyte ratio

(NLR) are independent predictors of ISR. Notably, the combined

predictive power of these three indicators is significant, with the

area under the ROC curve (AUC) reaching 0.797 (95% CI:

0.732–0.862), indicating that their combination can effectively

predict the occurrence of ISR in CKD patients. The sample size

Abbreviations

ISR, in-stent restenosis; PCI, percutaneous coronary intervention; DES, drug-
eluting stents; BMS, bare-metal stent; MI, acute myocardial infarction; CAG,
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of this retrospective study is limited (n = 164), and future multi-

center prospective studies are needed to verify the conclusions.

It is worth noting that CKD patients often have multiple

cardiovascular diseases, which not only increase the risk of ISR

but also significantly raise the complexity of clinical treatment

and the incidence of adverse events (19).

2.1.4 Drug tolerance

Some patients may exhibit high on-treatment platelet reactivity

(HPR) after antiplatelet therapy, a phenomenon that can

significantly reduce the clinical efficacy of antiplatelet

treatmentand (20), in turn, increase the risk of ISR. Studies have

shown that the occurrence of HPR is closely related to genetic

factors, especially the polymorphism of the P2Y12 receptor gene

(21), This genetic susceptibility not only limits the choice of

postoperative antiplatelet treatment options but may also increase

the risk of ISR by affecting the effectiveness of platelet inhibition.

2.1.5 Postoperative antiplatelet therapy

Postoperative antiplatelet therapy is a cornerstone strategy for

preventing ISR. As a key measure to prevent local thrombosis and

systemic ischemic events after PCI, antiplatelet therapy reduces the

risk of ischemia while also increasing the incidence of bleeding

complications (22). With the innovation of stent technology and the

in-depth understanding of the mechanisms of ischemia recurrence

after PCI, the antiplatelet treatment strategy has undergone

significant evolution over the past few decades. In particular, dual

antiplatelet therapy (DAPT), as the main strategy for preventing

thrombosis after PCI, has been widely used in clinical practice for

nearly 30 years. DAPT can significantly reduce the risk of stent

thrombosis, especially in the acute and subacute phases after PCI (23).

2.1.6 Neointimal hyperplasia

Neointimal hyperplasia is the core pathophysiological

mechanism of ISR. The underlying mechanisms of the

development of neoatherosclerosis are not yet clear.

Neoatherosclerosis may occur months to years after PCI, while

atherosclerosis of the native coronary artery takes decades to

develop. In-stent neoatherosclerosis (NA) has become an

important clinical issue after PCI. ISR and stent thrombosis are

the two major complications after coronary stent placement,

which seriously affect patient prognosis. As a common

pathological basis for these two complications, NA plaques are

different from natural atherosclerotic plaques and usually grow

around residual oxidized lipids and stent struts. The main

component is foam cells formed by vascular smooth muscle cells

(VSMCs) engulfing oxidized lipids at the sites of lipid residues

(24). Histologically, it is characterized by the accumulation of

lipid-rich foamy macrophages within the neointima, with or

without a necrotic core and/or calcification (7). Stent

implantation can cause vascular injury and local blood flow

disturbances related to endothelial dysfunction, leading to the

TABLE 1 Current classification systems for in-stent restenosis (ISR).

Classification basis Type Definition and features Clinical implications

Angiographic classification Type I: focal Stenosis confined within the stent or margins (length

≤10 mm)

Best prognosis; drug-coated balloon (DCB) efficacy

>90%

Type II: diffuse Stenosis extending beyond focal margins but confined within

the stent (length >10 mm)

Requires intravascular imaging assessment; DCB or new

stent implantation

Type III: proliferative Diffuse stenosis extending beyond stent borders (length

>10 mm)

High restenosis risk; often requires atherectomy + new

stent

Type IV: total

occlusion

100% stent occlusion Worst prognosis; requires mechanical recanalization or

bypass surgery

Histopathological

classification

Neointimal

hyperplasia

Dominant smooth muscle cell proliferation with low lipid

content (OCT: homogeneous high signal)

Responsive to antiproliferative agents (e.g., paclitaxel)

Neoatherosclerosis Foam cell/cholesterol crystal accumulation with thin-cap or

calcification (OCT: low-signal lipid core)

High late thrombosis risk; requires intensive lipid-

lowering + anti-inflammatory therapy

Intravascular imaging

classification

Calcified pattern Calcium arc >180° on OCT or calcium thickness >0.5 mm on

IVUS

Requires plaque modification (atherectomy/shockwave

balloon)

Stent underexpansion Minimal stent area (MSA) <4.5 mm² or expansion ratio

<80%

Post-dilation optimization critical

Stent fracture Discontinuity of stent struts on IVUS/OCT Requires bioresorbable scaffold or surgical intervention

FIGURE 1

The mechanisms of ISR.
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activation of inflammatory cells, increased thrombosis, and reduced

β-lipoprotein efflux, followed by the accumulation of lipoproteins

within the neointima. Immature endothelial cells with increased

permeability also promote the migration of monocytes (25).

Underlying native atherosclerotic plaques may also be a cause of

the pathogenesis of NA. However, early pathological reports did

not describe the anatomical correlation with the original

atherosclerotic tissue (26).

2.1.7 Inflammatory responses

Inflammatory responses significantly affect the development of

ISR in both the acute and chronic phases after stent implantation.

The mechanical injury to the vascular wall caused by stent

implantation can trigger a local inflammatory response, recruiting

inflammatory cells such as macrophages and neutrophils to the

site of injury. These cells release inflammatory mediators such as

tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β),

which VSMCs and promote their proliferation and migration,

ultimately leading to neointimal hyperplasia (27). “Chronic

inflammatory responses and endothelial dysfunction can promote

the deposition of lipoproteins in the intima, accelerating the

formation of NA. Studies have shown that the incidence of NA in

first—generation DES is significantly higher than that in BMS.

Specifically, the incidence of NA in first—generation DES is 35%,

while it is 10% in BMS (27). High—sensitivity C—reactive

protein (hs—CRP) and interleukin—6 (IL—6) are inflammatory

markers that are closely related to the risk of ISR. A large—scale

cohort study showed that the risk of major adverse cardiovascular

events (MACE) in patients in the highest quartile of hs—CRP

levels was 90% higher than that in the lowest quartile (aHR 1.90,

95% CI: 1.39–2.59; P < 0.001) (28). Therefore, monitoring

inflammatory markers such as hs—CRP helps identify patients at

high risk of ISR and guide the development of individualized

treatment strategies. Given the key role of inflammatory responses

in ISR, anti—inflammatory treatment may emerge as a new

strategy for preventing ISR (28).

Some studies have confirmed that anti-inflammatory drugs

such as statins and colchicine can significantly reduce hs-CRP

levels and decrease the incidence of ISR (29).

2.1.8 Endothelial proliferation delay

After stent implantation, the timely proliferation and migration

of vascular endothelial cells are crucial for achieving complete

endothelialization. Incomplete or delayed endothelialization can

lead to platelet aggregation and thrombosis, significantly

increasing the risk of ISR (30). Under physiological conditions,

FIGURE 2

Patient-Related biological factors.

Bai et al. 10.3389/fcvm.2025.1585102

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1585102
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


endothelial cells can rapidly cover the damaged vascular wall after

stent implantation, forming a functional endothelial layer, which

inhibits the migration of smooth muscle cells and thrombosis.

However, factors such as mechanical injury, chronic

inflammatory response, and anti—proliferative drugs released by

DES may interfere with the endothelial repair process, leading to

delayed endothelialization (>3 months), which in turn promotes

the occurrence of ISR. Bioresorbable vascular scaffolds (BVS)

provide a new approach to solving this problem. BVS can

gradually degrade after completing the vascular support function

(usually 6–12 months), avoiding the chronic inflammatory

response and endothelial dysfunction caused by the long—term

retention of traditional metal stents (31).

2.2 Lesion anatomical characteristics

2.2.1 Lesion length
Lesion length is significantly associated with the incidence of

ISR. Multiple studies have shown that both longer lesion length

and stent length are associated with a higher risk of ISR.

A angiographic follow-up study involving 1,181 patients (32)

showed that in 87% of the cases, the stent length exceeded the

lesion length (mean lesion length: 12.4 ± 6.3 mm; mean stent

length: 20.0 ± 7.9 mm; mean difference: 7.6 ± 7.9 mm). During the

follow-up period of 6–9 months, the mean percentage of diameter

stenosis was 39.1% ± 20.1%. The results of multivariate regression

analysis showed that for every 10 mm increase in in—stent lesion

length, the absolute value of percentage diameter stenosis

increased by 7.7% (p < 0.0001); and for every 10 mm increase in

stent length, it independently increased the percentage diameter

stenosis by 4.0% (p < 0.0001). In addition, the increase in stent

length was significantly associated with the risk of target lesion

revascularization at 9 months (odds ratio: 1.12; 95% CI: 1.02–1.24).

2.2.2 Stent diameter and lesion vessel diameter

Vessel diameter is a key anatomical factor affecting ISR and it is

also an important predictor of ISR after BMS and DES

implantation (33). Studies have shown that smaller vessel

FIGURE 3

Lesion anatomical characteristics.
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diameter is significantly associated with a higher incidence of ISR,

mainly due to the fact that in small—diameter vessels, stents are

more prone to mechanical complications such as incomplete

expansion and malapposition.

A secondary retrospective analysis involving 2,522 PCI patients

showed that a larger stent diameter was an independent protective

factor for target vessel revascularization (TVR), especially in the

delayed PCI subgroup (34). It is worth noting that this ‘bigger is

better’ protective effect is particularly significant in stents with

diameters ranging from 2.5 to 2.9 mm (p < 0.01). For the

treatment strategy of small—diameter vessel lesions, it is

recommended to use high—resolution intravascular imaging

techniques, such as optical coherence tomography (OCT). OCT

can provide accurate measurements of the vessel lumen and

assessment of stent apposition, which helps to optimize the

surgical outcome and thus reduce the incidence of ISR (35).

2.2.3 Coronary artery calcification (CAC)
Coronary artery calcified lesions are one of the major technical

challenges faced by PCI. Calcified lesions not only increase the risk

of incomplete stent expansion and positioning deviation during the

procedure but are also closely associated with the occurrence of ISR

after surgery (36). A study exploring the correlation between CAC

and ISR showed that CAC is an independent predictor of ISR, and

patients with severe calcified lesions had a significantly increased

risk of ISR and MACE (p < 0.01) (37). Therefore, adequate

plaque pre—treatment before stent implantation in calcified

lesions is crucial. Adequate pre—treatment can ensure optimal

stent apposition and long—term patency, with specific strategies

including the use of cutting balloons, rotational atherectomy, or

shock wave balloons, etc.

2.2.4 The degree of vascular tortuosity

The degree of vascular tortuosity is one of the key anatomical

factors affecting stent implantation outcomes. Highly tortuous

vessels may not only impede wire passage and affect the precise

positioning of the catheter and stent but also lead to incomplete

stent expansion, malapposition, and even cause mechanical

deformation or displacement, thereby significantly increasing the

risk of ISR (38).

FIGURE 4

Factors related to surgical procedures.
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A study exploring the relationship between coronary artery

tortuosity (CAT) and clinical outcomes indicated that CAT is an

independent predictor of early and late MACE. During long—

term follow—up, the incidence of ISR and TVR in patients with

tortuous lesions was significantly higher than that in patients

without tortuous lesions (p < 0.01) (39). Another study further

analyzed the correlation between the severity of CAT and in—

stent stenosis. The results showed that in patients with stable and

unstable angina, the severity of CAT was significantly positively

correlated with in—stent stenosis (40).

2.2.5 High thrombus burden
High thrombus burden is an important pathological factor

affecting ISR, influencing the entire process from pre—to post—

surgery. In patients with acute coronary syndrome (ACS), a high

thrombus burden may lead to incomplete stent expansion during

the procedure and early stent thrombosis after surgery. This is

because large—volume thrombi are difficult to completely remove

through routine thrombus aspiration or thrombolytic therapy, and

residual thrombus can significantly affect stent apposition quality

and expansion effect (41). A study exploring the correlation

between high thrombus burden and stent thrombosis indicated

that a high thrombus burden is an independent risk factor for

stent thrombosis and can increase the risk of ISR (42).

2.2.6 Chronic total occlusion (CTO)
Chronic total occlusion (CTO) of coronary atherosclerosis is the

most challenging subtype in the treatment of coronary artery disease,

which significantly increases the risk of ISR. CTO lesions are usually

accompanied by severe fibrosis and calcification, which not only

increase the technical difficulty of vascular recanalization and stent

implantation but also may lead to an increased incidence of ISR

after surgery (43). A study exploring the correlation between

coronary collateral circulation and ISR used the Rentrop grading

system to assess the degree of collateral circulation. The results

showed that although good collateral circulation (Rentrop grades

2–3) was more common in right coronary artery occlusion, and

poor collateral circulation (Rentrop grades 0–1) was more often

seen in left anterior descending artery occlusion, there was no

significant difference in ISR incidence between the two groups

during an average follow—up of 18 months (12.7% vs. 20.2%,

p = 0.148). Multivariate regression analysis indicated that age,

history of diabetes, and reference CTO vessel diameter were

independent predictors of ISR, while the Rentrop collateral grade

was not significantly associated with ISR (44).

2.3 Factors related to surgical procedures

2.3.1 Stent material

Studies have shown that there is a significant correlation

between stent material selection and the incidence of ISR. The

metal stents used in the early days were mainly made of

materials such as stainless steel and cobalt-chromium alloy.

These materials may cause local inflammatory responses and

subacute thrombosis due to mechanical injury and sustained

vascular wall expansion after implantation (45).

With the advancement of material science, the development of

stent surface modification techniques (such as coating treatment)

has significantly improved stent performance. Surface

modification can enhance the anticoagulant properties of the

material, effectively reducing platelet adsorption and aggregation,

thereby lowering the incidence of ISR (46). Among them, DES

can specifically inhibit the proliferation and migration of VSMCs

by coating the stent surface with anti—proliferative drugs (such

as sirolimus or paclitaxel), thereby reducing neointimal

hyperplasia and significantly lowering the risk of ISR (1).

2.3.2 Stent underexpansion and malapposition
Stent underexpansion and malapposition are important

surgically related factors for ISR. Stent underexpansion is

common in areas with severe calcification or tortuous vessels.

These anatomical features restrict the complete expansion of the

stent, leading to local hemodynamic abnormalities. In clinical

practice, stent underexpansion is often caused by vascular

calcification or high plaque burden. It is worth noting that stent

malapposition often coexists with underexpansion, and both can

significantly increase the risk of ISR. Intravascular imaging

techniques, such as OCT, can provide real-time assessment of

stent expansion, guiding the selection of appropriate stent types

and expansion pressures during the procedure. OCT can offer

detailed images of the vessel lumen and stent struts, allowing for

precise evaluation of stent expansion and apposition. If

underexpansion is detected, the operator can use the information

to adjust the stent size or apply higher expansion pressures to

ensure optimal stent deployment. This real-time feedback helps

to minimize the risk of ISR by addressing potential issues

immediately during the surgery (47).

A prospective multicenter registry study analyzed the

OCT imaging characteristics of 297 patients who presented

with coronary artery syndrome related to ISR (48). All patients

underwent OCT assessment before intervention, which

included ISR phenotype, stent layer number, and stent

expansion status. The study found that 57% of patients had

neoatherosclerosis (of which 52% were calcified), 43% had

neointimal hyperplasia (of which 58% were homogeneous),

43% had stent underexpansion (minimum stent area

<4.5 mm2), and 30% had multiple stent layers. OCT assessment

changed the treatment strategy in 30% of the cases. The final

treatment approaches included DES implantation (61.6%) and

drug-eluting balloon (DEB) angioplasty (36.1%), but only

63.2% of the patients achieved optimal treatment outcomes. At

1—year follow—up, the target vessel failure rate was 11% (95%

CI, 9%–13%). Notably, stent underexpansion was associated

with a significantly higher target vessel failure rate [19% [95%

CI, 14%–24%] vs. 7% [95% CI, 5%–9%], P = 0.01]. Studies

have confirmed that OCT can effectively identify

neoatherosclerosis and neointimal hyperplasia, and that stent

underexpansion is relatively common and associated with

adverse clinical outcomes.
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Long—term follow—up studies have further confirmed that

stent underexpansion significantly increases the risk of ISR and

TVR. Compared with the group with good stent expansion, the

long—term incidence of ISR and TVR in the underexpanded

group was significantly higher (P < 0.01) (49).

2.3.3 Stent malposition
Stent malposition is a common surgical—related complication

leading to ISR, often caused by imprecise stent implantation

procedures or improper use of equipment during surgery. Stent

malposition can result in local intimal mechanical injury,

triggering a persistent inflammatory response, which in turn

promotes neointimal hyperplasia and the occurrence of ISR (50).

Intravascular ultrasound (IVUS) and OCT are intravascular

imaging techniques that can provide real—time and accurate

stent positioning monitoring. Studies have shown that stent

implantation guided by IVUS/OCT can significantly reduce the

incidence of stent malposition (51). These technologies provide

high—resolution cross—sectional images of the blood vessels,

helping the operators to promptly identify and correct

stent malposition.

2.3.4 Excessive stent gap or excessive overlap

length
Stent gaps or overlaps are common technical challenges in

multi—stent implantation procedures, mainly related to the

operator’s lack of experience or misjudgment during the surgery.

These technical issues can significantly affect local hemodynamic

characteristics: excessive stent gaps can lead to blood flow

disturbances and vortex formation, increasing the risk of

thrombosis; while excessive stent overlap may trigger an excessive

intimal hyperplasia response (52), thereby causing stent

lumen narrowing.

2.3.5 Small minimum lumen area after PCI

The minimum lumen area (MLA) after surgery is one of the

key indicators for evaluating the effectiveness of PCI. Inadequate

MLA can lead to restricted blood flow and accelerate the

progression of ISR. Clinical studies have shown that ideal stent

implantation should achieve an expansion close to 100% of the

original vessel diameter, and even a slight overexpansion

(recommended range: 100%–110%) may be appropriate to obtain

the best clinical outcomes (53).

2.3.6 Stent fracture

Stent fracture is one of the important mechanical

complications of ISR, which often occurs in areas of stress

concentration (such as vascular flexion) (54). The fracture of the

stent under abnormal shear force or excessive expansion force

not only may induce acute stent—thrombosis but also carries the

risk of perforating the vessel wall, leading to serious clinical

consequences (55).

Intravascular imaging (IVUS/OCT) has revolutionized

percutaneous coronary intervention by overcoming the

limitations of conventional angiography and enabling precision

guidance. The landmark OCTIVUS trial (56) established these

modalities as the gold standard for complex PCI, demonstrating

that meticulous correction of suboptimal stent deployment

significantly reduces risks of restenosis and stent thrombosis.

3 Conclusion

ISR is a key issue affecting clinical outcomes after PCI. Its

occurrence mechanism involves the complex interplay of

multiple factors, including patient biological characteristics,

lesion anatomical structure, and surgical procedures. Among

patient—related factors, diabetes, smoking, and chronic kidney

disease significantly increase the risk of ISR through

inflammatory responses, endothelial dysfunction, and metabolic

abnormalities; lesion anatomical characteristics such as long

lesion length, small vessel diameter, calcification, and vascular

tortuosity promote ISR occurrence through mechanical stress,

hemodynamic changes, and neointimal hyperplasia; Among

surgical—related factors, the choice of stent material,

insufficient expansion, poor apposition, and technical defects in

the procedure directly affect the long—term patency of the

stent. Although the widespread use of DES and the

advancement of intravascular imaging technology have

significantly reduced the incidence of ISR, individualized

intervention strategies for high—risk patients and complex

lesions still need further optimization.

Future research should focus on the following directions: delve

into the molecular mechanisms of ISR, especially the regulatory

network of inflammatory signaling pathways and neointimal

hyperplasia; develop new types of biodegradable stents and

targeted anti—proliferative drugs to balance the contradiction

between endothelial repair and excessive proliferation; promote

the clinical application of intravascular imaging techniques (such

as OCT and IVUS) to achieve precise stent implantation and

postoperative evaluation; establish risk prediction models based

on multi—omics data to formulate stratified management

strategies for high—risk patients. Through multi—disciplinary

collaboration and technological innovation, it is expected to

improve the prevention and treatment effects of ISR while

further promoting the development of the field of coronary heart

disease interventional treatment.
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