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Heart failure is a global health concern, with many patients being unresponsive

to medical therapies. In end-stage disease, left ventricular assist devices (LVADs)

offer an alternative to transplantation, yet their clinical course remains

unfavorable, with up to one in four patients dying within a year. Although

LVAD implantation aims to alleviate left-sided congestion and reduce right

ventricular burden, a significant proportion of patients develop RHF, which is a

major driver of morbidity and mortality. The underlying mechanisms leading to

RHF remain a subject of debate, with no definitive conclusions reached. Due

to the heterogeneity of heart failure pathophysiology, clinical data varies, and

the translation of preclinical findings into effective bedside management

remains challenging. These factors collectively hinder the precise

characterization of RHF mechanisms, with some proposed explanations

remaining speculative. Assessing the risk of RHF development based on

pathophysiological insights is essential. However, predicting the progression of

RHF following LVAD implantation remains difficult due to complex

hemodynamic interactions and the lack of established guidelines, often

leading to missed opportunities for timely right ventricular (RV) support device

implantation. To reduce the incidence of RHF, this review aims to provide

insights into RV failure mechanisms and propose a refined predictive

approach. Although data in this field is rapidly evolving, explanations and

assessment methods have not been significantly updated. This paper

consolidates recent findings, presents updated perspectives, and identifies

remaining gaps in knowledge.
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1 Introduction

Heart failure (HF) affects more than 65 million worldwide,

with many patients being unresponsive to medical therapies (1).

For those with end-stage HF, mechanical circulatory support

(MCS), in the form of left ventricular assist devices (LVADs), has

emerged as a bridge to transplantation, to a decision, or to

myocardial recovery, as well as destination therapy in patients in

whom cardiac transplantation is contraindicated (2).

Despite advances in LVAD indications, the incidence of right

heart failure (RHF) after LVAD implantation remains a major

concern, where the dysfunctional right ventricle (RV)

undermines hemodynamic stability and is a driver of

morbidity and mortality (3, 4). Previous studies report that

10%–35% of patients experience RHF within one month

following LVAD placement (5–8) and the in-hospital mortality

rate of LVAD recipients requiring right ventricular assist

device (RVAD) was up to 50%, while patients undergoing

planned biventricular assist device (BiVAD) placement face a

mortality rate of 30% (6).

Considering that LVADs relieve congestion in the left-side

heart and, consequently, the right side, the underlying

mechanism of RHF is challenging to fully elucidate. Several

contributing factors have been discussed in previous reviews,

including excessive LVAD suction disrupting ventricular

interdependence and increased LVAD flow elevating RV preload,

yet adequate evidence supporting some of these phenomena is

lacking, with speculative components included. Additionally, it

remains unclear which mechanisms are well supported by firm

evidence and which remain hypothetical (9). Most of the current

evidence relies on load-dependent functional parameters, further

raising concerns about their reliability in LVAD patients, where

loading conditions fluctuate dramatically (10–12).

Additionally, planned BiVAD implantation potentially

improves the outcomes as mentioned previously (6), yet the

definitive indication for simultaneous LV and RV support device

implantation is unclear. Although numerous factors have been

proposed as predictors for RHF after LVAD implantation, their

reproducibility remains inconsistent.

To advance our understanding of the mechanism and possibly

improve the prediction of post-LVAD RHF, this review aims to: (i)

examine the recently proposed pathophysiological mechanistic

evidence from the human pressure-volume (PV) loops to capture

load-independent functional parameters such as RV end-systolic

elastance (Ees) and end-diastolic pressure volume relation

(EDPVR); (ii) evaluate existing functional assessment approaches

and risk scores to predict RHF development, and consolidate the

key factors; and, (iii) clarify the current knowledge gaps and

future research directions. To capture the latest insights, we

conducted an extensive literature search in PubMed MEDLINE,

Scopus, Embase, and ClinicalTrials.gov using controlled

keywords, primarily “LVAD” and “RHF.”

Figure 1 illustrates the principal concepts discussed in this

review. The goal of this review is to assist clinicians in

optimizing LVAD management and guiding research, ultimately

to improve patient outcomes.

2 RHF definition

The Interagency Registry for Mechanically Assisted Circulatory

Support (INTERMACS) and the updated Mechanical Circulatory

Support—Academic Research Consortium (MCS–ARC)

definitions of RHF have been widely accepted (13, 14). In the

most recent consensus statement from 2020, RHF is classified

into three categories based on the timing of symptom onset

(Table 1) (14):

1. Early acute RHF,

- requiring concomitant implantation of a temporary

VAD or

- requiring RVAD with an LVAD implantation

2. Early post-implantation RHF,

- requiring a RVAD <30 days or

- failing to wean from inotropes, vasopressors or nitric

oxide within 14 days, or

- death attributable to RHF <14 days from an

LVAD implantation

3. Late RHF,

- requiring a RVAD more than 30 days or

- requiring hospitalization for RHF >30 days after an

LVAD implantation

In addition to these categories, the diagnostic criteria also

include multiple clinical indicators, such as hemodynamic

parameters (elevated central venous pressure, reduced cardiac

index, and reduced venous oxygen saturation), right heart failure

symptoms (e.g., edema, ascites), and end-organ dysfunction (e.g.,

kidney dysfunction, liver failure) (14). Furthermore, the

statement also recommends classifying RHF incidence into three

categories based on its associations: (1) patient-related (e.g.,

valvular heart disease, pulmonary disease, cardiorenal syndrome);

(2) management-related (e.g., surgical procedures, inotrope

withdrawal, volume overload); and (3) device-related (e.g., pump

malfunction, outflow graft compromise). Early RHF occurs most

frequently. In a recent study using the STS INTERMACS

database, the prevalence of de novo RHF at one month (i.e., early

RHF) was as high as 24% (8).

Although the overall prevalence of late RHF remains stable and

less than early RHF at a rate of 8%–10% over their three-year

surveillance, it cannot be underestimated (8). This is because late

RHF is also associated with the least favorable outcome (8, 15).

Takeda et al. demonstrated the prognostic significance of late

RHF after continuous-flow LVAD implantation, with the survival

of patients with RHF progressively worsening compared to that

of patients without RHF (Figure 2) (16).

This definition is widely adopted in most studies and is

therefore used in this review.

3 Mechanisms of RHF

This section outlines the impact of implantation of an LVAD

on the RV and discusses the potential mechanisms driving RHF.
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In the later part of the section, PV loop data from clinical studies

are summarized, as it accurately reflects afterload and preload on

RV and provide load-independent functional parameters such as

Ees and EDPVR (Figure 3). Moreover, PV loops also provide

pulmonary artery (PA) effective arterial elastance (Ea) and the

RV Ees/Ea ratio, commonly referred to as “RV-PA coupling,”

which serve as valuable indices of RV contractility in relation to

the afterload imposed by the PA (17). These approaches will

contribute to a more comprehensive understanding of

RHF mechanisms.

A fundamental understanding of interventricular interaction is

essential to grasp this section, as it plays a critical role in the

pathophysiology of post-LVAD RHF. The Torrent-Guasp helical

model describes the entire heart as composed of two

interconnected loops of the myocardium (18, 19). One loop has

muscle fibers wrapping around both ventricles in parallel with a

short axis at their basement, and the other loop has fibers

spiraling around the left ventricle (LV), including the

interventricular septum. The RV is constructed from these two

fiber systems, with the free wall formed by the first (wrapping)

myocardial loop and the septal wall formed by the second

(helical) structure. This structure is crucial because the “helical”

or “twisting” motion of the secondary loop significantly

contributes to the RV systolic function. This LV “twisting”

contributes to longitudinal motion of RV, while wrapping

myocardium primarily facilitates “transverse (radial)” movement

of RV free wall (20, 21).

According to studies in a canine model by Hoffman and

colleagues, where the RV free wall was replaced with a xenograft

pericardial patch, LV motion accounted for 24%–35% of RV

stroke work (SW) (22). Thus, RV function can be significantly

influenced by the LV through the septal wall, which is key factor

in the occurrence of RHF after LVAD implantation.

3.1 LVAD-specific effects on RV

The following mechanisms can act individually or in

combination: (1) Loss of LV twist, (2) Leftward shift of the

interventricular septum, (3) Changes in RV Loading Conditions

FIGURE 1

Graphical abstract. Illustration outlines the primary impact of an LVAD on the RV, including underlying mechanisms driving post-LVAD RHF. The table

at the bottom summarizes changes in RV function and loading conditions following LVAD implantation. The column on the right identifies strong

predictors for RHF including non-cardiac factors, all of which are incorporated into at least two representative risk scores and have been identified

as significant predictors in large scale multivariable analyses. LVAD, left ventricular assist device; TR, tricuspid regurgitation; RV, right ventricle; RHF,

right heart failure; MCS, mechanical circulatory support; RV LS, right ventricular longitudinal strain; RVSWi, right ventricular stroke work index;

PAPi, pulmonary artery pulsatility index; RAP, right atrial pressure; PCWP, pulmonary capillary wedge pressure.
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TABLE 1 MCS-ARC definition of right heart failure.

RHF type Criteria for diagnosis

Early Acute RHF • Need for implantation of a temporary or durable RVAD (including ECMO) concomitant with LVAD implantation (i.e., the RVAD is implanted

before the patient leaves the operating room).

Early post-implant

RHF

• Need for implantation of a temporary or durable RVAD (including ECMO) within 30 days following LVAD implantation (for any duration of time);

OR

• Failure to wean from inotropes or vasopressors, or inhaled nitric oxide within 14 days following LVAD implantation; OR

• Need to (re)initiate this support within 30 days of LVAD implantation for a duration of at least 14 days; OR

• Death occurring within 14 days of LVAD implantation in patients who did not receive an RVAD but remained on inotropes or vasopressors at the

time of death and met the diagnostic criteria for RHF (at least 2 clinical findings or 1 manifestation listed below.

• Primary diagnosis of RHF (must have ≥2 of the clinical findings OR ≥1 manifestation):

o Clinical Findings:

▪ Ascites

▪ Functionally limiting peripheral edema (at least moderate level of swelling in the extremities)

▪ Elevated estimated JVP (at least halfway up the neck in an upright patient)

▪ Elevated measured CVP or RA pressure (≥16 mm Hg)

o Manifestations:

▪ Renal failure: serum creatinine >2 × baseline

▪ Liver injury: ≥2 × upper limit normal in AST/ALT, or total bilirubin >2.0 mg/dl

▪ SVO2 < 50%

▪ Cardiac index <2.2 L/min/m2

▪ Reduction in pump flow of >30% from the previous baseline (in the absence of mechanical causes such as tamponade or

▪ tension pneumothorax)

▪ Elevated lactate >3.0 mmol/L.

· · Pediatric Adaptation

The above criteria may be modified for pediatric patients. Primary diagnosis of RHF requires ≥2 of the clinical findings OR ≥1 manifestation

o Clinical Findings:

▪ Ascites

▪ Significant peripheral edema (at least moderate level of swelling in the extremities)

▪ Elevated JVP (visible in an upright patient) or hepatomegaly (3 + cm below costal margin)

▪ Elevated CVP or RA pressure:

- Age 10–18 years: CVP >14 mm Hg

- Age 5–10 years: CVP >12 mm Hg

- Age <5 years: CVP >10 mm Hg

o Manifestations:

▪ Renal failure: serum creatinine ≥1.5 × above baseline.

▪ Liver injury with an elevation of AST, ALT or total bilirubin ≥2 × upper normal.

▪ Decrease in pump flow ≥30% from a recent baseline in the absence of tamponade.

▪ We need to decrease the pump rate ≥20% or more from a recent baseline owing to the poor filling of LVAD in a pulsatile system.

▪ Cardiac Index <2.2 L/min/m2

Late RHF • Need for implantation of an RVAD (including ECMO) ≥30 days after LVAD implantation. This may occur during the index hospitalization for

LVAD placement or any subsequent readmission, OR

• Hospitalization ≥30 days post-implant requiring intravenous diuretics or inotropic support for ≥72 h and associated with RHF by criteria below:

o Diagnosis of RHF (must have ≥2 clinical findings OR ≥1 manifestation:

▪ Clinical Findings

▪ Ascites

▪ Functionally limiting peripheral edema (>2+).

▪ Elevated estimated JVP at least halfway up the neck in an upright patient.

▪ Elevated measured CVP (>16 mm Hg).

o Manifestations:

▪ Renal failure: serum creatinine >2 × baseline value

▪ Liver injury: ≥2 × upper limit normal in AST/ALT, or total bilirubin >2.0 mg/dl

▪ Reduction in pump flow of >30% from the previous baseline (in the absence of tamponade)

▪ SVO2 < 50%

▪ Cardiac index <2.2 L/min/m2

▪ Elevated lactate >3.0 mmol/L

• Pediatric Adaptation

o Requirement for intravenous diuretics or inotropic support of ≥72 h due to new onset right heart failure (i.e., not present continuously since

implantation, with a period of ≥7 consecutive days off intravenous support)

▪ Diagnosis of RHF requires ≥2 of the following clinical findings, or ≥1 manifestations (as above, adjusting for pediatric CVP thresholds and

definitions of ascites, edema, and hepatomegaly)

Above definition of RHF is extracted from the MCS-ARC consensus statement (14). RHF, right heart failure; LVAD, left ventricular assist device; RVAD, right ventricular assist device; ECMO,

extracorporeal membrane oxygenator; AST, aspartate aminotransferase; ALT, alanine aminotransferase; SvO2, venous oxygen saturation; JVP, jugular venous pressure; CVP, central venous

pressure; RA, right atrium.
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Due to LVAD, (4) Worsening of functional tricuspid regurgitation

(TR), (5) Aortic insufficiency (AI). Notably, these mechanisms

remain incompletely characterized in the literature, as studying

the mechanisms of RHF in patients is challenging presumably

due to the heterogeneity of LVAD candidates’ pathophysiology

and the lack of accurate human data.

3.1.1 Loss of LV twist
- Decrease in RV contractility

In LVAD patients, LV twisting motion is primarily impaired due to

two factors: (1) loss of constraint following pericardiotomy, and (2)

constraining of the LV apex and septum.

The relationship between pericardial constraint and LV twist

has been frequently discussed in the past. A preclinical study

demonstrated a decline in LV twist, measured by LV speckle

tracking, following pericardiotomy—due to the loss of pericardial

constraint, suggesting that this constraint plays a significant role

in LV twist. This study was specifically designed to investigate

the role of the pericardium and further revealed that the decline

in LV twist was restored after pericardial closure (23).

Additionally, impaired longitudinal motion of the RV after

pericardiotomy has been reported in clinical settings including

mitral valve surgery, heart transplantation and coronary artery

bypass graft (CABG) surgery, whereas other thoracic surgeries,

such as lung transplantation, did not demonstrate a similar

effect. Given that LV twist plays a significant role in the

longitudinal movement of the RV, RHF after LVAD implantation

may be attributable to the loss of LV twist. Long-term follow-up

studies have reported that this reduction in longitudinal motion

persists for more than one month even after chest closure

(23–26). Clinical data linking the loss of LV twist to

pericardiotomy specifically in LVAD implantation remain sparse,

highlighting the need for further data accumulation to support

this explanation.

Additionally, the LVAD replacement to the LV apex can also

constrain the LV apex and septum, potentially impairing LV

twisting movement (Figure 1). This deformation is considered to

negatively affect RV outflow although clinical research on this

impact remain limited (20). However, data directly supporting

this mechanism also remain scarce, making this impact

somewhat speculative. More detailed data on LV twist in LVAD

patients are needed.

3.1.2 Leftward shift of interventricular septum
- Decrease in RV contractility

- Improvement in RV diastolic compliance

In an LVAD configuration, suction within the LV displaces the

interventricular septum leftward, altering its geometry, reducing

septal motion, and consequently diminishing RV contractility,

while simultaneously improving RV diastolic compliance (9).

A decline in RV contractility by leftward shift of the

interventricular septum is the subject of debate (27), and

FIGURE 2

Comparison of survival rate between patients with and without right heart failure five-year kaplan-meier curve between patients with and without

RHF.. RHF was defined as rehospitalization and medical treatment because of recurrent RHF or patients who required continuous inotropic

support because of persistent RHF >4 weeks after implantation. The survival curve gap between the two groups widens year by year. Reproduced

with permission from “Comparison of survival: non-RHF group versus RHF group. RHF, right heart failure” by Koji Takeda, Hiroo Takayama, Paolo

C. Colombo, Ulrich P. Jorde, Melana Yuzefpolskaya, Shinichi Fukuhara, Donna M. Mancini and Yoshifumi Naka, licensed under CC-BY-NC-ND.
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preclinical studies support this expectation (28, 29). Since the

interventricular septum plays a pivotal role in RV systolic

function, as previously mentioned, excessive LVAD suction can

impair septal wall motion, thereby compromising RV function.

A study on PV loops and septal strain for RV contractility

assessment in LVAD patients found that alterations in RV Ees

during ramp test were significantly correlated with RV septal

strain (r = 0.78, p = 0.02) but not with free wall strain (r = 0.45,

p = 0.26), highlighting the critical role of the interventricular

septum in RV contractility (30). Impaired septal movement can

be compensated by the RV free wall; however, this mechanism

fails in patients with a high afterload. In this context, contractile

impairment significantly affects RV SV, resulting in RV-PA

uncoupling (20).

In contrast to contractility, leftward septal deformation can

enhance RV compliance. Left-sided suction allows the RV to

expand further, even under low end-diastolic pressure, thereby

increasing diastolic compliance, a mechanism that will be

discussed later in the PV loop part (3–2. PV loop in patients

with LVAD). This effect is beneficial to the RV, and does not

directly contribute to RHF (31).

3.1.3 Changes in RV loading conditions due to
LVAD
- Decrease(/Increase) in RV afterload

- Decrease/Increase in RV preload

To avoid confusion, this paper defines afterload/preload as end-

systolic pressure (ESP) and end-diastolic pressure (EDP),

respectively as per Guyton and Hall Textbook (32). LVAD

unloading generally relieves the load on the RV. However,

preload can increase in specific conditions, such as RV

dysfunction, TR, and LVAD-induced AI. Since claims especially

regarding changes in preload after LVAD implantation vary

depending on review papers (33, 34), we present actual

hemodynamic data of ESP and EDP to support our discussion.

RV afterload

Since an LVAD relieves congestion on the left side of the heart and

in the pulmonary circulation, RV afterload is generally expected to

decrease following device placement. Below, we have listed three

papers that report a reduction in RV afterload (ESP) or related

components, including pulmonary capillary wedge pressure

(PCWP) and mean PA pressure.

1. Data from Brener and colleagues demonstrated a slight but

significant decrease in RV afterload during a temporary

increase in LVAD speed (RV ESP 31.58 ± 9.75–

29.58 ± 9.41 mmHg: p = 0.02) (35).

2. Regarding factors related to RV afterload, Masri and colleagues

reported pulmonary artery catheter (PAC) data showing a

significant reduction in PCWP (23.2 ± 7.6–14.9 ± 7.3 mmHg;

p < 0.01) and mean PA pressure (from 35.9 ± 9.9 to

23.3 ± 7.7 mmHg; p < 0.01) within 72 h after LVAD

implantation with a volume displacement pump (63%), axial

pump (26%), and centrifugal pumps (11%) (36).

3. This trend generally continues over the long-term, as another

study reported sustained decreases in PCWP (from 23 [1st

and 3rd interquartile 17, 30] to 12 [7, 17] mmHg) and in

effective arterial elastance (Ea; from 1.31 [0.7, 1.62] to 0.59

[0.42, 0.9] mmHg/ml) over six months after implantation of

axial pumps (28%) and centrifugal pumps (72%) (37).

However, specifically in cases of AI, afterload may increase.

Hemodynamic data comparing pressure parameters showed that

patients who developed AI had higher mean PA pressure and

PCWP compared to those without AI (38, 39).

RV preload

Preload, or RV end-diastolic pressure (EDP), decreases or remains

stable immediately after LVAD implantation because of

LVAD suction.

Below, we have listed three papers that report a reduction or

stabilization in RV preload.

1. PV loop data from Brener and colleagues also demonstrated a

slight decrease in preload (RV EDP 7.95 ± 3.55–

7.42 ± 3.29 mmHg: p = 0.04).

2. Right atrial pressure (RAP) also generally decreases or stabilizes

in the short term (RAP: 11.8 ± 6.5–10.1 ± 5.4 mmHg) after

LVAD implantation with volume displacement pump, axial

pump, and centrifugal pumps (36)

3. This trend generally continues over the long-term (RAP: 11 [1st

and 3rd interquartile 5, 16], 10 [5, 15] mmHg) after

implantation of axial pump and centrifugal pump (37).

Changes aforementioned are slight and biologically insignificant,

suggesting that RV preload remains unchanged after LVAD

FIGURE 3

Pressure-Volume loop and right ventricular and pulmonary artery

coupling. The steady-state RV PV loop (black line) illustrates the

relationship between pressure and volume during a cardiac cycle.

The enclosed area by the PV loop represents RV stroke work. By

reducing preload (e.g., via inferior vena cava occlusion or the

Valsalva maneuver), multiple PV loops can be generated, from

which Ees and EDPVR can be derived. Effective pulmonary arterial

elastance (Ea; blue) is a determinant of RV afterload. The RV Ees/

Ea ratio describes RV-PA coupling, assessing contractility relative

to load. An optimal ratio (1.5–2.0) ensures cardiac efficiency,

whereas uncoupling (0.6–1.0) signifies RV decompensation (17,

20). RV, right ventricle; PV, pressure volume; Ees, end-systolic

elastance; EDPVR, end-diastolic pressure volume relationship; Ea,

effective arterial elastance.
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implantation. However, in the presence of RV dysfunction,

functional TR, or AI, preload may increase (40). The impact of

AI and TR on the RV is discussed later in sections “3-1-4.

Worsening of Functional Tricuspid Regurgitation” and “3-1-5.

Aortic Insufficiency”.

Notably, there is an explanation suggesting that RV preload

increases due to LVAD flow (34), probably based on data

showing an increase in RV EDV (41). However, the studies

examining changes in RV EDP, RAP, or CVP, not EDV,

immediately after LVAD implantation or during ramp test,

generally demonstrate either a decrease or stability in these

values (35, 42, 43). An increase in RV EDV may result from

improved RV compliance due to LVAD-induced suction;

therefore, careful interpretation of these parameters is necessary

to accurately assess true RV preload following LVAD implantation.

However, excessive LVAD speed remains a potential concern in

LVAD management, because excessive LVAD speed may

significantly impair RV contractility by disrupting LV twist and

septal motion. In this dysfunctional RV, increased preload may

be required to maintain stroke volume and circulatory

equilibrium (41).

3.1.4 Worsening of functional tricuspid

regurgitation
- Increase in preload

Leftward shift of the septal wall can enlarge the tricuspid annulus,

potentially inducing functional TR (44, 45). However, the real-

world data has shown that over 50% of moderate-severe TR

improves following LVAD implantation, attributed to the

reduction in afterload (46–48). A particular proportion of

patients (30%) still have persistent TR, and 6%–20% develops

significant TR following surgery (46–48), both of which are

associated with RHF development (44). Nakanishi and colleagues

identified preprocedural tricuspid valve annular diameter as a

predictor of persistent or worsening TR (49) and atrial

fibrillation (AF) has also been reported as a potential predictor

(48, 50). However, a large registry study from INTERMACS did

not demonstrate a prognostic benefit of tricuspid valve

procedures at the time of LVAD implantation, suggesting that

the extent to which TR contributes to the development of right

heart failure (RHF) remains unclear. Rather, TR may be a

consequence of right heart enlargement secondary to RHF (51).

3.1.5 Aortic insufficiency
- Increase in preload and afterload

AI increases preload on the LV and, ultimately RV (52). Indeed, AI

has been linked to worsening mitral regurgitation following LVAD

implantation, further supporting significant volume overload on

the LV and subsequent negative effects on RV (53). Given its

gradual progression, AI may contribute to late RHF.

Aortic insufficiency (AI) can develop over time due to LVAD

outflow into the aorta. According to the STS INTERMACS

registry, 15% of patients developed AI ≥moderate at 2 years after

LVAD implantation, which was associated with poor outcomes

(53). Importantly, this percentage gradually rose after LVAD

implantation, having reached 37.6% within three years (54, 55).

At the time of LVAD implantation, it is reasonable to consider

concomitant procedures on the aortic valve for more than mild AI

and the outflow graft anastomosis should be oriented downstream

to prevent the development of or progression of AI. However,

outcome data on these interventions remain conflicting, and the

effectiveness has not been clearly demonstrated (56). Following

implantation, optimizing LVAD flow is also required to avoid

excessive output to the aorta (54).

3.2 PV loop in patients with LVAD

This section summarizes data on the RV PV loop during a

ramp test in patients with an LVAD, to capture true or intrinsic

change of RV function due to LVAD suctioning.

Brener et al. published data in HeartMate3 recipients (n = 19)

recruited from two sites (35). Based on the statistical analysis of

ramp tests including all patients, they concluded the impact of

an LVAD on the RV is as follows:

1. No significant decline in RV contractility

2. Improvement in RV diastolic compliance

3. Reduction in RV afterload

Notably, contractility did not significantly change, which

contradicts the commonly held view that RV contractility

declines due to loss of LV twist and impaired septum motion. In

their study population, as pump speed was increased from 5,000

to 5,800 rpm, the RV PV loop expanded rightward and shifted

downward, indicating an increase in SV and SW in response to

higher pump speed. This change is attributed to “an

improvement in diastolic compliance (EDPVR), also referred to

as adaptive diastolic compliance in response to LVAD

suctioning,” as well as “a reduction in afterload” (Figure 4A).

From this perspective, therefore, the RV may accommodate the

increased flow generated by the LVAD through enhanced

diastolic function. In contrast, part of RVs in their study show

inability to improve EDPVR, referred to inadaptive diastolic

compliance, and only afterload is decreased in response to

increased LVAD flow (Figure 4B), where PV loop shifts only

downwards without rightward shift. These RVs failing to increase

RV diastolic compliance, may be unable to generate a

comparable SV, which may result in compromised

hemodynamics and RHF.

Although the authors (35) concluded that contractility did not

change, this interpretation should be treated with caution given the

study limitation: (1) all patients were stable outpatients in a late

postoperative phase, with a median of 144.5 days (interquartile

range: 53.5–357 days) after LVAD implantation; (2) the small

sample size (n = 19) limits the generalizability of the findings:

and (3) only temporary changes were considered in this study,

leaving uncertainty regarding the chronic impact of LVAD

support. Further research with a larger, more heterogeneous

cohort and longitudinal assessments is needed to draw more

definitive conclusions about systolic function.

Besides, Scheel et al. also reported the measurement of RV Ees

using conductance catheters in HeartMate 3 (Abbott, Chicago, IL)
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and HeartWare (Medtronic, Minneapolis, MN) recipients (n = 13)

(30). During their ramp test (low, intermediate, and high speeds,

increased by 100–200 rpm), RV Ees declined in specific cases.

These findings differ from those reported by Brener et al.,

suggesting a heterogeneous impact on a case-by-case basis and

underscoring that the negative effect of LVAD pump suction on

RV contractility still cannot be overlooked.

Of note, all cases studied in the above reports were stable

outpatients from 1 to 12 months after LVAD implantation, and

thus their RVs may have been stable and managed well. Based

on these results and previous data, we summarized the impact of

LVAD on RV in the table on Figure 1.

3.3 RHF mechanism and knowledge gaps

Based on the latest evidence, we propose the following LVAD-

specific mechanisms of RHF:

1. Inadequate Adaptation of Diastolic Function to Increased Flow:

While diastolic compliance generally improves to accommodate

the increased flow and generate more SV comparable to

LVAD-generated SV, some RVs with unchanged diastolic

compliance fail to provide the necessary SV, possibly leading

to RHF (Figure 4B).

2. Reduced Contractility: RV contractility declines due to the loss

of LV twist and reduced mobility of the septal wall caused by

LVAD suction. Compromised contractility leads to RV-PA

uncoupling and RHF, particularly in patients with high

afterload, where the RV free wall fails to compensate for

impaired septal movement.

3. Elevation of Preload: Dysfunctional RV and other factors (e.g.,

functional TR and AI) can increase preload chronically and

result in RHF.

This represents the simplest scenario; however, other factors—such

as the progression of underlying RV or pulmonary vessel diseases

and de novo AF—can further compromise RV function and

hemodynamic conditions. HF is invariably heterogenous.

The knowledge gap identified from the literature search is the

scarcity of firm clinical evidence on proposed mechanisms,

particularly on LV twist, and load-independent functional

assessments using PV loop derived parameters such as Ees,

EDPVR and Ees/Ea in real-world LVAD recipients. These

limitations restrict the understanding of RHF within the expected

range. Further data from human studies, including heterogenous

patients are required to achieve a more definitive understanding.

4 Functional parameters and predictive
value

Functional assessment of RV is essential to predict the

likelihood of RHF following LVAD implantation (6). Severely

depressed RV function prior to LVAD placement is one of the

most significant predictors [odds ratio [OR] 1.60; 95% confidence

interval [CI] 1.17–2.20; p = 0.004] in the multivariable analysis of

STS–INTERMACS database (5–8). However, accurately assessing

FIGURE 4

Transformation in right ventricular pressure-volume loop during ramp test. Depicted is the schematic illustration of RV PV loop transformation based

on the current study (35). With the increase in LVAD pump speed, the EDPVR curve leans downwards, and the inclination of Ea line gets smaller

(rightward/downward shift in RV PV loop), meaning that diastolic compliance improves, and afterload decreases (A) However, they identified

certain recipients whose EDPVR does not improve and only RV afterload decreases (only downward shift) in response to pump speed, susceptive

of inadaptive diastolic compliance, which may compromise hemodynamics and causes RHF (B) RV, right ventricle; PV, pressure-volume; Ea,

effective arterial elastance; Ees, end-systolic elastance; EDPVR, end-diastolic pressure-volume relationship; SW, stroke work; SV, stroke volume;

LVAD, left ventricular assist device; RVSWi, right ventricular stroke work index; RHF, right heart failure.
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RV function remains a long-standing challenge. In end-stage HF,

loading conditions fluctuate dramatically, undermining the

reliability of functional parameters. To enhance the prediction of

post-LVAD RHF, this section summarizes the relevant functional

parameters, highlighting their utility and identifying the existing

knowledge gaps.

The latest consensus statement recommends evaluating

tricuspid annular plane systolic excursion (TAPSE), systolic tissue

Doppler velocity of the tricuspid annulus (RV S’), right

ventricular fractional area change (RV FAC), and right

ventricular longitudinal strain (RV LS) prior to LVAD

implantation (57). Echocardiography is the initial imaging

modality of choice accessible for severely ill patients, with CT

and MRI considered if echocardiographic findings remain

inconclusive. Beyond these imaging modalities, right heart

catheterization (RHC) parameters provide incremental value for

assessing RV function in a load-independent manner, such as

RVSWi, and pulmonary artery pulsatility index (PAPi) (58, 59).

Although RAP/PCWP does not typically reflect RV function, it is

included in this section as it is also derived from a RHC. This

section highlights the predictive value (Tables 2–6), and

limitations of these indices.

4.1 Systolic function

TAPSE, RV S’, RV FAC, and RV LS are the most commonly

used parameters for measuring RV systolic function. A meta-

analysis demonstrated that TAPSE, RV FAC, and RV global

longitudinal strain (GLS) reliably distinguish between patients

who do and do not develop RHF (60). Among these parameters,

RV free-wall longitudinal strain (FWLS) is specifically

TABLE 2 Performance of systolic function parameters.

Study (population) Performance Cut off Outcome Comparison

TAPSE

Raymer et al. (2019)

(n=) (96)

AUC 0.67 RHFa PAPi (AUC 0.63)

Patil et al. (2015)

(n = 152) (97)

AUC 0.85 12.5 mm

(Sens 84% Spec 75%)

RVAD implantation

RV S’

Kato et al. (2013)

(n = 68) (67)

AUC 0.81 4.4 cm/s

(Sens 87.5% Spec 68.2%)

RHFa E/e’ (AUC 0.72)

RV LS (AUC 0.75)

Dandel et al. (2010)

(n = 205) (98)

AUC 0.90 8 cm/s

(Sens 84% Spec 90%)

RHFb

RV FAC

Morita et al. (2018)

(n = 80) (99)

AUC 0.80 15.9%

(Sens 77.3% Spec 54.5%)

RVAD implantation

Raina et al. (2013)

(n = 55) (100)

AUC 0.67 31%

(Sens 82% Spec 52%)

LAVI (AUC 0.71)

RV LS

Liang et al. (2022) (n = 55) (101) RVGLS

OR 1.44

GLS −9.7%

(Sens 0.89 Spec 0.78)

RHFa FWLS (OR 1.23)

TAPSE (OR 0.37)

FAC (OR 0.91)

Dufendach et al. (2021) (n = 137) (102) RVFWLS

C-index 0.65

OR 1.14

1-year mortality TAPSE (OR 0.44)

PVR (OR 1.03)

Gumus et al. (2018)

(n = 54) (77)

FWLS

AUC 0.94

FWLS −15.5%

(Sens 86.4% Spec 95.2%)

RHF3 RVSWI (AUC 0.82)

FAC (AUC 0.72)

RV EF (AUC 0.71)

Magunia et al. (2018)

(n = 26) (103)

FWLS

AUC 0.91

RVAD or inotropes >14 days RVEF (AUC 0.88)

Comeli et al. (2013)

(n = 10) (104)

FWLS

AUC 0.93

RHFa GLS (AUC 0.81)

FAC (AUC 0.61)

RV S’ (AUC 0.43)

TAPSE (AUC 0.33)

Grant et al. (2012)

(n = 177) (105)

FWLS

AUC 0.70

FWLS −9.6%

Sens 68%/Spec 76%

RVAD or Inotropes >14 days RVFRS (AUC 0.66) (14)

TAPSE, tricuspid annular plane systolic excursion; AUC, area under the curve; RHF, right heart failure; PAPi, pulmonary artery pulsatility index; RVAD, right ventricular assist device; RV S’,

right ventricular tissue Doppler S’ wave; RV LS, right ventricular longitudinal strain; FAC, fractional area change; FWLS, free wall longitudinal strain; RVGLS, right ventricular global

longitudinal strain; GLS, global longitudinal strain; E/e’, ratio of early mitral inflow velocity to mitral annular early diastolic velocity; LAVI, left atrial volume index; RVEF, right

ventricular ejection fraction; RVSWI, right ventricular stroke work index; PVR, pulmonary vascular resistance; RVFRS, University of Michigan right ventricular failure risk score.
aPost-implant inotropic support >14 days, RVAD implantation for intra-operative or post-operative RHF, or death within 14 days due to RHF.
bNeed for the previously unplanned insertion of a RVAD after LVAD implantation or the necessity of both prolonged reduction of PVR by nitric oxide or iloprost inhalation and intravenous

inotrope therapy for >10 consecutive days to increase the cardiac index >2 L/min per m2.
cThe mean arterial pressure <55 mmHg, central venous pressure or right atrial pressure >16 mmHg, cardiac index <2 L/min/m2, requirement of prolonged postimplant inotropes (inotropic

score >20 units), or inhaled nitric oxide or intravenous vasodilators continued beyond postoperative day 14 following LVAD implant or requiring RVAD or extracorporeal membrane

oxygenation support.
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recommended for evaluating subclinical RV dysfunction in LVAD

candidates (57). Indeed, RV LS generally demonstrates superior

performance in predicting RHF and adverse events, in

comparison to TAPSE, RV FAC (Table 2).

Limitations: However, it is important to note that these parameters

represent geographic or volumetric changes in the RV, rather than

“contractility” or “Ees” derived from the PV loop, strictly speaking

(61). Consequently, they have load-dependency, which is a critical

limitation in capturing intrinsic RV function data in severe heart

failure, where afterload and preload can dramatically fluctuate

(10–12). Although Ees derived from the PV loop is considered

the gold standard for assessing contractility independently of

loading conditions, its routine use in daily clinical practice is

limited by the invasiveness, analytical complexity, and high cost

(62).

Additionally, all these assess only regional function, and

TAPSE and RV S’ have angle dependency, thus requiring

clinicians to be cautious when interpreting actual values (61).

Given the complex structure of the RV, three-dimensional

ejection fraction would be ideal to capture more global motion

(63), yet this approach is technically challenging to accurately

visualize and is not widely available in real-world clinical

settings, as indicated in current guidelines (64).

Moreover, the median values of TAPSE (1.03–1.61 cm), RV

FAC (18.7%–40.4%), and RV GLS (6.7%–12.6%) in patients who

developed RHF vary widely across studies (60), suggesting their

unreliability as definitive predictors of RHF. Therefore, careful

consideration of simultaneous loading conditions, or other load-

dependent indices is highly recommended.

4.2 Diastolic function

Given the discussion in the previous section of

pathophysiology, the adaptability of diastolic function can be a

key contributor to post-LVAD RHF development, yet the data

remains particularly scarce (65). In echocardiography or MRI,

trans-tricuspid E/A ratio, deceleration time of peak E velocity,

E/e’, RV diastolic strain rate (DSR), or right atrial (RA) strain are

used to assess RV diastolic function (66). E/e’ is associated with

RV filling pressure, and E/e’ > 10 may be helpful in predicting

post-LVAD RHF. However, the supporting evidence is limited to

univariable analysis, and further investigation is warranted (67).

In addition, impaired peak RA strain, which also reflects RV

filling pressure or RA reservoir function, was reported as another

independent predictor of subsequent RVAD implantation (68).

Their analysis demonstrated excellent predictive values of

diastolic functional parameters including peak RA strain and late

diastolic strain rate, outperforming RV LS.

Furthermore, catheter-derived RA waveforms show better

predictive values for RHF. A deeper Y descent compared to

X descent, indicative of impaired RV diastolic compliance,

demonstrated a high OR of 10.5 (95% CI 1.75–63.5), surpassing

other catheter-derived parameters such as central venous

pressure (CVP)/PCWP, PAPi, and RVSWi (69).

Limitations: As a significant knowledge gap, evidence pertaining to

diastolic function remains extremely limited, and even studies

investigating systolic function often do not compare their

findings to diastolic function parameters (Table 3). However, the

data on diastolic function parameters identified thus far have

demonstrated excellent utility in predicting post-LVAD RHF or

mortality, comparable or even superior to RV LS, and further

studies are strongly warranted.

4.3 RV-PA coupling

RV Ees/Ea, or RV-PA coupling, serves as a mediator of RV

contractility while accounting for PA elastance or afterload, and

is primarily measured using a conductance catheter and PV loop.

Scheel and colleagues demonstrated that a lower RV Ees/Ea

(below 0.35) was associated with more frequent heart failure

symptoms compared to a RV Ees/Ea ≥0.35 (71% vs. 17%,

p = 0.048), suggesting that this parameter effectively captures an

uncoupled, abnormal RV state by incorporating loading

conditions (30, 42). However, as previously mentioned, data

TABLE 3 Performance of diastolic function parameters.

Study (population) Performance Cut off Outcome Comparison

Trans tricuspid E/e’

Kato et al. (2013) (n = 68) (67) OR 1.32 RVAD or inotropes >14 days TAPSE (OR 0.32)

S’ (0.22)

RV GLS (OR 1.26)

RA reservoir strain

Charisopoulo et al. (2019) (n = 70) (68) AUC 0.91

OR 2.5

10.5%

(Sens 94% Spec 65%)

RVAD FWLS

(AUC 0.62; OR 1.3)

Catheter-derived RA waveform

Samura et al. (2019) (n = 71) (69) Deep Y descent

OR 10.5

RVAD or inotropes >14 days CVP/PCWP(OR2.02)

PAPi (OR 1.13)

RVSWi (OR 0.95)

RVAD, right ventricular assist device; TAPSE, tricuspid annular plane systolic excursion; S’, myocardial tissue Doppler systolic velocity; RV GLS, right ventricular global longitudinal strain;

FWLS, free wall longitudinal strain; CVP, central venous pressure; PCWP, pulmonary capillary wedge pressure; PAPi, pulmonary artery pulsatility index; RWSWi, right ventricular stroke

work index.
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obtained using conductance catheters and PV loops

remains limited.

Recently, the ratio of echocardiographic systolic parameters,

such as TAPSE, RV S’, RV LS, and approximated pulmonary

artery systolic pressure (PASP), have been employed as a

surrogate of RV Ees/Ea (61). This echocardiographic surrogate

has been adopted across various patient populations (70), yet the

utility in LVAD population is unclear, with studies

indicating that this parameter lacks predictive value for RHF

development (71–73).

Limitations: A few limitations should be considered: (1) PASP

estimation is challenging in cases of severe or greater TR due to

the widened regurgitant orifice, which hinders the accurate

capture of the pressure gradient; (2) TAPSE, RV S’, and RV LS

do not fully capture global RV systolic function, as they provide

only regional assessments, which is problematic in an enlarged,

dysfunctional RV; (3) in end-stage RV dysfunction, PASP may

not increase as expected due to the RV’s inability to generate

sufficient flow and pressure, being critical to use PASP as a

surrogate of Ea (66, 70). Although RV-PA coupling is reliable

indices, adoption of echocardiography estimate in LVAD is not

clearly explored.

4.4 RVSWi

The right ventricular stroke work index (RVSWi) reflects the

RV external workload, representing the area enclosed by the PV

loop. It is obtained from PV loops using a conductance catheter

or estimated using RHC-derived parameters based on the

following formula:

RVSWI ¼ (mean PA pressurendashCVP)�SVindex ( �0:0136)

RVSWi is considered a load-independent parameter and is

particularly useful in evaluating complex pathophysiology, where

loading conditions are highly variable (74). In general, RVSWi

decreases in dysfunctional RV because low Ees and impaired

EDPVR are unable to generate sufficient external workload (74).

Specifically, RVSWi <250, 300, or 400 mmHg L/m2 are used for

cut-off points for predicting post-LVAD RHF (75–77).

The recent meta-analysis demonstrated the highest standard

mean difference of RVSWI (0.58) among various RV

hemodynamic and functional parameters such as TAPSE, RV

FAC, and RV LS, although PAPi and RAP/PCWP were not

included in this analysis (7).

Limitations: RVWSi is frequently used in LVAD populations

(Table 4), yet most RVSWi measurements used in clinical, or

research settings are derived from RHC-derived parameters.

These estimations do not necessarily capture true workload as

measured from PV loops and are susceptible to errors in

hemodynamic measurements (77). Moreover, there are also some

studies that have shown limited predictive capacity of RVSWi in

multivariable analyses (78). The specific situation or population

where its performance becomes unreliable is still unclear, it

should be noted that functional assessment should be multifaceted.

4.5 PAPi

The pulmonary artery pulsatility index (PAPi) is a measure

initially developed for use in MI and MCS conditions and it has

demonstrated a good predictive value for RHF development or

mortality after LVAD implantation either (79). PAPi is calculated

using the following formula:

PAPi ¼ (systolic - diastolic PA pressure)= RA pressure,

where PA pulse pressure provides an estimate of RV pulsatile load

and contractile strength, and RA pressure acts as a mediator of

preload (80). Lower PAPi indicates impaired RV function.

A systematic review incorporating 32 studies found that patients

who developed RHF had a significantly lower preoperative PAPi

than those who did not (2.17 vs. 2.87; p < 0.001) (79) (Table 5).

In analysis on PAPi, the utility of simulation test has been

proposed in addition to the resting value. Cacioli and colleagues

TABLE 4 Performance of RVSWi.

Study (population) Performance Cut off Outcome Comparison

RVSWI

Gumus et al. (2019) (n = 57) (77) AUC 0.82 400 mmHgaml/m2 RHFa FWLS (AUC 0.94)

FAC (AUC 0.72)

RV EF (AUC 0.71)

Bellavia et al. (2017)

(n = 4428) (7)

SMD 0.58 Depends on the paper CVP (SMD 0.47)

TAPSE(SMD 0.29)

FAC (SMD 0.29)

Kormos et al. (2010)

(n = 484) (75)

OR 2.9 300 mmHgaml/m2 RVAD or inotropes >14 days RAP/PCWP(OR 2.5)

RWSWi, right ventricular stroke work index; AUC, area under the curve; SMD, standardized mean difference; RHF, right heart failure; FWLS, free wall longitudinal strain; FAC, fractional area

change; RV EF, right ventricular ejection fraction; CVP, central venous pressure; TAPSE, tricuspid annular plane systolic excursion; RAP, right atrial pressure; PCWP, pulmonary capillary

wedge pressure.
aThe mean arterial pressure <55 mmHg, CVP or RAP >16 mmHg, cardiac index <2 L/min/m2, requirement of prolonged postimplant inotropes (inotropic score >20 units), or inhaled nitric

oxide or intravenous vasodilators continued beyond postoperative day 14 following LVAD implant or requiring RVAD or extracorporeal membrane oxygenation support.
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reported PAPi measured after administering sodium nitroprusside

(NTP) had the potential to predict RHF development. By

administrating the vasodilator and reducing pulmonary vascular

resistance, post-NTP PAPi was considered capable of assessing

(1) reversibility of pulmonary hypertension and (2) the reserve in

RV function. Indeed, the post-NTP PAPi improved predictive

value, and when combined with RV FAC and systolic PA

pressure, the area under the curve (AUC) increased up to 0.95 in

their study (81). Hsi and colleagues also reported the efficacy of

PAPi measured in a micro-axial flow pump (mAFP) test to

predict RHF before LVAD implantation (82). These dynamic

changes in parameters during simulation testing may help

capture the intrinsic adaptability of the RV and improve the

prediction of RHF (83). Although this was also suggested in the

study by Brener and colleagues where they proposed RVSWi

(35), available data remains limited.

Limitations: A concern regarding PAPi is that pulmonary circulation

factors—including resistance and compliance—can significantly affect

its value. Not only RV dysfunction but also pulmonary embolism and

PA diseases can diminish PAPi value since pulse pressure declines in

these conditions (84).

Another concern is the variable cutoff value reported in

literature. From 0.88 to 3.3 have been reported as an effective

cutoffs, and median values also vary across studies (85). Even

small changes in RA pressure can significantly affect PAPi,

precise measurement of catheter parameters is essential.

4.6 RAP (CVP)/PCWP

RAP (or CVP)/PCWP includes the LV component when

evaluating the RV preload, thereby reflecting right-sided

preload relative to the left side and implying RV’s adaptability

towards certain volume condition, not representing RV

function (86). With respect to prediction, RAP/PCWP ratio

shows excellent predictive values (87, 88). A higher RAP/

PCWP ratio indicates excessively accumulated preload in the

RV, suggesting inadequate adaptation of RV to certain volume

TABLE 5 Performance of PAPi.

Study (population) Performance Cut off Outcome Comparison

PAPi

Akamkam et al. (2024)

(n = 170) (95)

AUC 0.68 2.84 3-month mortality

Sheel et al. (2024)

(n = 33) (106)

AUC 0.80 RV Ees/Ea <0.35 RVSWI (AUC 0.51)

RAP/PCWP (AUC 0.52)

CI (AUC 0.77)

Cacioli et al. (2022)

(n = 54) (81)

Post NTP

AUC 0.95

Post NTP

PAPi 3.2

RHFa CRITT score (AUC 0.72)

EUROMACS (AUC 0.72)

Morine et al. (2016)

(n = 132)

AUC 0.94 1.85 RVAD or inotropes >14

days

RAP/PCSP (AUC 0.84)

RVSWI (AUC 0.69)

PAPi, pulmonary artery pulsatility index; AUC, area under the curve; RAP, right atrial pressure; PCWP, pulmonary capillary wedge pressure; CI, cardiac index; RWSWi, right ventricular stroke

work index; NTP, normalized transpulmonary pressure; RHF, right heart failure; CRITT, cardiac risk, inflammatory response, timing of support, technical difficulty score; EUROMACS,

European registry for patients with mechanical circulatory support; RVAD, right ventricular assist device; PCSP, pulmonary capillary systolic pressure; RV, right ventricular; Ees/Ea, end-

systolic elastance to arterial elastance ratio.
aPost-implant inotropic support >14 days, right ventricular assist device (RVAD) implantation for intra-operative or post-operative RV failure, or death within 14 days due to RV failure.

TABLE 6 Performance of RAP (CVP)/PCWP.

Study (population) Performance Cut off Outcome Comparison

RAP (CVP)/PCWP

Beneyto et al. (2024)

(n = 224) (73)

HR 1.35

AUC 0.62

0.33 6-month mortality TR (HR 5.13)

PVR (HR 1.11)

Mehra et al. (2022)

(n = 1312) (93)

HR 1.57 0.60 1-year mortality LVEDD <5.5 cm (HR 1.86)

Ruiz-Cano et al. (2020) (n = 80) (107) OR 4.0 0.55 RHFa TAPSE (p = 0.17)

Severe TR (p = 0.34)

Akin et al. (2020)

(n = 2,689) (108)

OR 1.46 90-day mortality PAPi (OR 0.88; p < 0.001)

RVSWI (OR 0.91; p < 0.001)

TAPSE (OR 0.99; p = 0.48)

Samura et al. (2019)

(n = 115) (88)

OR 2.02 RVAD or inotropes >14

days

RVSWI (OR 0.95)

PAPi (OR 1.13)

RAP, right atrial pressure; CVP, central venous pressure; PCWP, pulmonary capillary wedge pressure; HR, hazard ratio; OR, odds ratio; AUC, area under the curve; RHF, right heart failure;

RVAD, right ventricular assist device; TR, tricuspid regurgitation; PVR, pulmonary valve resistance; TAPSE, tricuspid annular plane systolic excursion; PASP, pulmonary artery systolic

pressure; PAPi, pulmonary artery pulsatility index; LVEDD, left ventricular end-diastolic dimension; RWSWi, right ventricular stroke work index.
aEvidence of CVP >16 mm Hg with a CI <2.3 L min−1m−2 (in the absence of elevated PCWP, tamponade, ventricular arrhythmias or pneumothorax) after LVAD implantation requiring

previously unplanned temporary RVAD) or the necessity of nitric oxide (iNO) and intravenous inotropes beyond postoperative day 14.
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conditions or afterloads. In general, 0.55–0.6 are considered as

cutoff values (58) (Table 6).

Regarding this parameter, data are available not only for its

resting value at a single time point but also from a simulation

test of LVAD suctioning. In terms of this parameter, there is a

data of utility by simulation test of LVAD, not only rest value

at one point. Hsi and colleagues reported the efficacy of a

simulation test with mAFP in assessing the RAP/PCWP ratio

either (82). In their study, the ratio decreased significantly after

mAFP insertion in patients who did not develop RHF,

compared to those who did (non-RHF group: 0.61 → 0.38; RHF

group: 0.46 → 0.40) (82). Simulation test performed before

implantation may further improve the predictive value of this

parameter as PAPi. RAP/PCWP is simple to obtain and has a

high predictive reliability; therefore, its assessment is reasonable

and recommended.

Limitations: As a limitation, this ratio can be low when PCWP is

particularly high. Amsallem and colleagues reported that 43% of

patients with a low RAP/PAWP ratio (≤0.54) and high RAP

(≥15 mmHg) developed RHF after LVAD implantation,

suggesting that the absolute value of RAP itself should also be

considered (89).

5 Risk sores and significant items for
prediction

Various scoring models, many of which do not focus solely on

RV factors, have been developed to predict the incidence of post-

LVAD RHF. Although incorporating the non-RV-centered factors

helps further identify high-risk patients for developing RHF prior

to LVAD implantation, comprehensive validation of these models

and comparisons of their performance remains limited.

This section outlines several risk scores validated externally

(Table 7). Components of these scores can be classified as

follows: (1) baseline characteristics/presentation; (2) treatment-

related factors (e.g., vasopressors, inotropes, MCS); (3) right

heart conditions (hemodynamics, and RV function); (4)

laboratory data. Most scores define RHF as the need for MCS or

RVAD, iNO ≥48h, or inotropes ≥14 days, same as MCS-ARC

early RHF definition (14).

As summarized in Table 7, the discrimination performances of

most scores are generally “fair” or “moderate,” with C-index or

AUC values less than 0.7, and comparable results observed in

external validations. Scores relatively recently developed,

including STOP-RVF Score, EUROMACS Score, and CRITT, are

derived from cohort all with continuous flow pump, whereas that

for other scores included pulsatile flow pump. Kalogeropoulos

and colleagues compared six existing risk scores in their cohort

who were all recipients of continuous flow LVAD, with the

Michigan Right Ventricular Failure Risk Score (RVFRS)

achieving the highest C-index of 0.62 (Figure 5). They attribute

the limited performance to: (1) Variability in RHF definitions,

(2) The inclusion of non-RV markers as surrogates for RV

dysfunction, and (3) Differences in the cohorts used for model

derivation, as older scoring systems included fewer patients

receiving destination therapy and continuous-flow pumps (90).

The most recent risk prediction model, called “STOP-RVF

score”, derived using a machine learning approach, has

demonstrated superior performance, achieving a C-statistic of

0.75 even in external validation, outperforming other scores such

as the Kormos et al. score [C statistic, 0.5 (75)] and score from

the University of Utah [C statistic, 0.627 (91)] (87).

Noticeably, four items—(1) liver/renal dysfunction, (2) MCS/

catecholamine dependency (or INTERMACS profile 1/2) before

implantation, (3) pre-existing severe RV dysfunction, and (4)

high RAP/PCWP—are included in at least two scoring models

and thus, should be incorporated certainly when evaluating the

RHF risk (Figure 1). Meta-analysis or large-scale registry studies

(n > 1,000) conducting multivariable analysis for the incidence of

post-LVAD RHF, also demonstrated the statistical significance of

the aforementioned four factors (7, 8, 92, 93).

Unfortunately, “severe RV dysfunction” is not clearly defined

in most studies including risk score deviation paper (76, 88, 94),

yet, given their superior predictive capacities discussed in

previous section, RV LS, RVSWi, and PAPi should be evaluated.

Considering preimplantation RV LS ≥16% (77), RVSWi <250–

300 mmHg L/m2 (75–77), or PAPi <2.0–3.0 (95) as a critical

factor strongly indicative of RV dysfunction, patients with

additional risk factors—such as liver/renal dysfunction, MCS/

catecholamine dependency, or high RAP/PCWP (0.5–0.6)—

should be strongly considered for RVAD implantation.

6 Conclusion

This review consolidates the latest insights into the

pathophysiology of and predictive models for RHF following

LVAD implementation.

As highlighted in Figure 1, both the loss of LV twist and LVAD

suction on the septal wall are LVAD-specific factors that negatively

impact RV contractility. Although LVAD suction improves

diastolic compliance, insufficient adaptation to increased flow

may contribute to RHF. Furthermore, functional TR and AI can

additionally promote congestion.

To predict this unfavorable outcome, guidelines and expert

consensus recommend several RV functional parameters from

imaging modalities or RHC. Among these, RV LS, RVSWi, and

PAPi, exhibit strong predictive value in large-scale studies. Since

none of these parameters alone provide definitively high

predictive accuracy, and each reflects different aspects of RV

function, considering multiple parameters in combination may

enhance the prediction of RHF.

Although several risk scores have been developed for

prediction, most have demonstrated only “fair” performance in

discriminating RHF during external validation. Across these

score models, four specific factors recur and have demonstrated

consistent performance in meta-analysis either, thereby we

propose multiparametric approach for RHF prediction,

specifically focusing on four factors—(1) liver/renal dysfunction,
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TABLE 7 Summary of existing risk scores.

Risk score Included Risk factors
(weight)

Performance Definition of
RHF

Performance in validation
(comparison)

STOP-RHF Score

(n = 798) Taleb et al.

(2024) (87)

Baseline background/presentation:

• NICM (Yes/No)

• INTERMACS 1–2 (Yes/No)

Therapy:

• IABP (Yes/NO)

• Impella/VA-ECMO (Yes/No)

• LVAD configuration (Centrifugal/

axial)

• ACEi (Yes/No)

Right heart:

• RAP/PCWP (value)

Laboratory data:

• Albumin (value)

• Creatinine (value)

• Platelet (value)

Serum sodium (value)

C-index 0.75

AUC 0.75

1) and/or 2) within

30 days

1. Right-side

circulatory support

2. inotropes therapy

for ≥14 days

1) C-index 0.73 (University of Utah: C-index

0.62) (87)

EUROMACS-RHF

(n = 2,000)

Soliman et al. (2018) (88)

Baseline background/presentation:

• INTERMACS class 1–3 (2 points)

• ≥3 intravenous inotropes (2.5 points)

Right heart:

• Severe RV dysfunction (2 points)

• RAP/PCWP > 0.54 (2 points)

Laboratory data:

haemoglobin ≤10 g/dl (1 point)

C-index 0.70

(cut off 2.5 pts Sens 74%/Spec

57%)

At least one of three

1. need for right

side MCS

2. inotropic support

for ≥14 days

iNO for ≥48 h

1) C-index 0.67 (88)

2) AUC 0.64

(CRIIT: AUC 0.64/

University of Utah: AUC 0.57/

RVFRS: AUC 0.58) (109)

3) AUC 0.67 (110)

4) AUC 0.59 (111)

CRIIT score

(n = 218)

Alturi et al. (2013) (94)

Baseline background/presentation:

• Pre-operative intubation (1 point)

• Tachycardia >100 (1 point)

Right heart:

• Severe RV dysfunction (1 point)

• CVP >15 mmHg (1 point)

Severe tricuspid regurgitation (1 point)

C-index 0.8 AUC 0.80 (95% CI

0.72–0.88)

sens 84%/spec 63% (cut off 2

pts)

Need for

biventricular

support

1) C-index 0.60 (University of Utah: C-index

0.59/ University of Pennsylvania: C-index

0.56) (90) 2) AUC 0.64 (109)

University of Utah

(n = 175) Drakos et al.

(2010) (91)

Baseline background/presentation:

• Destination therapy (3.5 points)

• Obesity (2 points)

Therapy:

➢ IABP (4 points)

➢ Inotrope dependency (2.5 points)

• ACEi/RAS (2.5 points)

• β blocker (2 points)

Right heart:

Increased PVR (1–4 points)

Points and RHF (%) ≤5.0 (11%)

5.5–8 (37%) 8.5–12 (56%) ≥12.5

(83%)

At least one of the

three

1. iNO for ≥48 h

2. Iinotropes for >14

days

RVAD implantation

1) C-index 0.59 (90)

2) AUC 0.57 (109)

3) C-index 0.62 (87)

RVFRS (n = 197)

Matthews et al. (2008)

(112)

Therapy:

• Vasopressor (4 points)

Laboratory data:

• AST ≥80 IU/L (2 points)

• Bilirubin ≥2.0 mg/dl (2.5 points)

Creatinine ≥2.3 mg/dl (3 points)

AUC 0.73 At least one of the

four

1. Inotropes for >14

days;

2. iNO for ≥48 h;

3. right-sided

circulatory support

4. hospital discharge

with inotrope

1) C-index 0.62 (90) 2) AUC 0.61 (90) 3)

AUC 0.58 (109)

University of Pennsylvania

(n = 266) Fitzpatrick et al.

(2008) (76)

Baseline background/presentation:

• SBP ≤96 mm Hg (13 points)

• Cardiac index ≤2.2 L/min/m2 (18

points)

Right heart:

• RVSWI ≤0.25 mm Hg L/m2 (18

points)

• Severe pre-VAD RV dysfunction (16

points)

Laboratory data:

• Creatinine ≥1.9 mg/dl (17 points)

Sens 83%/spec80%

(cut off 50 pts)

Need for MCS C-index 0.56 (90)

Discrimination performance generally ranges from “fair (AUC 0.5–0.7)” to “acceptable (AUC 0.7–0.8)”. Of them, liver/renal dysfunction, MCS/catecholamine dependency, and high RAP/

PCWP are factors used in at least two scoring models and thus should be incorporated certainly to evaluate the risk of RV development.

AST, aspartate aminotransferase; AUC, area under curve; BiVAD, biventricular assist device; CVP, central venous pressure; IABP, intra-aortic ballon pumping; INR, international normalised

ratio; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; LVAD, left ventricular assist device; NICM, non-ischaemic cardiomyopathy; RA/PCWP, right atrium

to pulmonary capillary wedge pressure ratio; RHF, right heart failure; RV, right ventricle; RVSWI, right ventricular stroke work index; SBP, systolic blood pressure; VAD, ventricular

assist device.
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(2) MCS/catecholamine dependency (or INTERMACS profile 1/2),

(3) pre-existing severe RV dysfunction (impairment in RV LS,

RVSWi, and PAPi), and (4) high RAP/PCWP (Figure 1).

We identified the following knowledge gaps and future

directions:

1. Incomplete Clinical Evidence on RV Pathophysiology in LVAD

Candidates

The proposed pathophysiological mechanisms are largely derived

from preclinical studies or estimations based on imaging

modalities or RHC, where contractility and diastolic compliance

cannot be accurately assessed. More robust evidence on proposed

mechanisms, particularly the loss of LV twist, along with

comprehensive, larger-scale evaluations of the RV PV loop in

human patients, is needed.

2. Evaluation of Diastolic Compliance

Although diastolic compliance may significantly influence how the

RV adapts to the increased flow from an LVAD, standard

assessment methods via imaging modality or RHC for diastolic

function remain limited. Further research is required to collect

data on current diastolic function metrics and develop reliable

parameters.

3. Simulation and Intraoperative Testing

Simulation studies that replicate LVAD hemodynamics, as well as

short-term intraoperative tests just before LVAD implantation,

could enhance predictive accuracy by providing more precise

assessments of RV functional reserve. However, comprehensive

and refined data are still needed.

Addressing these gaps is crucial for improving LVAD

management and enhancing quality of life for patients reliant on

LVAD support.
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FIGURE 5

Comparison of discrimination of risk scores. Kalogeropoulos et al.

compared existing risk scores in 116 patients with continuous-flow

LVAD, either the HeartMate II (Thoratec, Inc.) or the HeartWare

HVAD (Heart-Ware, Inc.), in single center. Although the Michigan

score showed the highest value, the C-indexes of all scores

remained around 0.6. Reproduced with permission from

“Comparative Receiver Operating Characteristic Curve Plots with

Right Ventricular Failure Prediction as the Outcome of Interest for

the Scores Evaluated” by Andreas P. Kalogeropoulos, Anita Kelkar,

Jeremy F. Weinberger, Alanna A. Morris, Vasiliki V. Georgiopoulou,

David W. Markham, Javed Butler, J. David Vega and Andrew L.

Smith, licensed under CC-BY-NC-ND.
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