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Background: Currently, heart failure has become one of the major

complications in the advanced stages of various cardiovascular diseases.

Numerous predictive models have been developed to estimate the mortality

rate of heart failure patients; however, these models often require the

measurement of multiple indicators and the inclusion of various scoring

systems. Critically ill patients are often unsuitable for extensive diagnostic tests,

and many primary care hospitals lack comprehensive diagnostic equipment. In

contrast, blood tests are not only simpler but also reflect the overall health

status of the body. Therefore, using simpler methods to predict mortality in

intensive care unit (ICU) patients has become the focus of this study.

Method: A total of 5,383 cases from the eICU database were utilized for model

development, while 530 cases from the MIMIC-IV database were employed for

external testing. The patients were primarily diagnosed with heart failure, and the

data included demographic information, blood oxygen saturation, white blood

cells, red blood cells, platelets, hemoglobin, electrolytes, lactate, glucose, and

other biochemical and physiological indicators collected during the ICU stay.

Enhance the accuracy of data analysis and improve the universality of the

model, all data underwent rigorous preprocessing prior to training, combined

with data standardization. We utilized a variety of machine learning algorithms

for modeling purposes, including Logistic Regression (LR), Support Vector

Machine (SVM), Decision Trees, Random Forests, Gradient Boosting Machines

(GBM), XGBoost, and Neural Networks. The performance of the model was

assessed through cross-validation and evaluated using the F1-score.

Conclusion: Through feature selection, 15 key variables were ultimately

identified. Among the nine machine learning models evaluated, the Multilayer

Perceptron (MLP) demonstrated the best overall performance. In predicting

mortality (i.e., the deceased population), the MLP achieved an F1 score of

0.54, a recall of 0.71, and a precision of 0.44. The relatively high F1 score of

the MLP highlights its potential clinical application value.
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Introduction

Heart failure (HF) is a significant cardiovascular condition with a high prevalence

and mortality rate worldwide (1). With an aging population and the increasing

prevalencerefere of heart disease, the number of heart failure patients continues to

rise, positioning HF as a significant global public health concern (2, 3).

Approximately 64 million individuals worldwide are currently affected by heart failure
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(HF), and this figure is anticipated to rise in the coming decades,

particularly in low- and middle-income countries (3–5). HF

imposes significant health and economic burdens on patients

and their families, while also presenting a considerable

challenge to healthcare systems. In the Intensive Care Unit

(ICU), heart failure patients often present with more complex

and critical conditions. HF is often associated with a range of

comorbidities, including hypertension, coronary artery disease,

chronic obstructive pulmonary disease, and chronic kidney

disease (6, 7). As a result, ICU physicians must manage a vast

array of clinical data, such as patient medical history, laboratory

test results, imaging data, medication use, and real-time vital

sign monitoring. The diversity and complexity of this data

make it challenging for physicians to rapidly extract key clinical

information, increasing the risk of misdiagnosis and treatment

delays (8). To address this challenge, the medical field has

increasingly adopted artificial intelligence (AI) and big data

technologies to assist ICU physicians (9–11).

Materials and methods

Data sources and outcomes

This study presents a retrospective cohort analysis utilizing

data extracted from the MIMIC-IV 3.1 and eICU databases.

MIMIC-IV 3.1 is derived from data collected from patients in

the Emergency Department and Intensive Care Unit (ICU) at

Beth Israel Deaconess Medical Center in Boston (12). This

hospital is equipped with extensive clinical resources and a

comprehensive electronic medical record system, offering a

large volume of real and detailed patient data. The database

includes demographic data (age, gender, race, admission type,

and admission source) as well as clinical data (heart rate,

blood pressure, body temperature, respiratory rate) and

laboratory results (complete blood count, blood biochemistry,

coagulation function). It also records medical orders

(medications, surgical procedures, diagnostic tests) and

nursing records (fluid intake and output, such as infusion

volume, urine output, and drainage volume). The eICU (2.0)

database is a widely used multicenter database for critical care

research, collecting clinical data from more than 200 ICUs

across the United States (13). It encompasses hospitals of

various regions, sizes, and types, including both teaching and

community hospitals. This multicenter data source

significantly enhances the diversity and representativeness of

the data, making research conclusions more broadly applicable

(14, 15). This study primarily aims to predict in-ICU mortality

in HF patients.

Patient research and definition

Patients in the MIMIC-IV and eICU database were

screened based on the following criteria: aged over 18

years, admitted to the ICU for the first time, and diagnosed

with heart failure as the primary condition. Since the

mortality rate of heart failure varies significantly based on

comorbidities, patients with other acute conditions were

excluded from this study (16).

Data collection, variable extraction, and
missing value handling

Data from the two databases were extracted using SQL for 61

independent variables, including age, gender, minimum,

maximum, and mean values of various biomarkers and

physiological indicators (e.g., SpO2, wbc, rbc, platelet count,

hemoglobin, sodium, lactate, glucose, creatinine, albumin, ALT,

total bilirubin, troponin I, BNP, heart rate, respiratory rate, blood

pressure, temperature, sapsii and sofa). The response variable was

defined as in-hospital mortality, as it provides a direct measure

of the patient’s vital status during hospitalization.

The data processing strategy was as follows: Columns with

more than 30% missing values were excluded from the analysis,

while those with less than 30% missing data were imputed using

multiple imputation (17–20).

The flowchart is presented in Figure 1.

Machine learning model construction

Regression models (LR), Support Vector Machines (SVM),

Decision Trees (DT), LightGBM (LGBM), K-Nearest

Neighbors (KNN), Random Forest (RF), Gradient Boosting

Machines (GBM), eXtreme Gradient Boosting (XGBoost) and

Multilayer Perceptron (MLP) were employed for prediction.

Random search combined with 5-fold cross-validation was

employed for model development. Random search optimizes

performance and accelerates the process, but it may become

trapped in local optima. In contrast, grid search requires

enumerating all possible combinations to obtain the

theoretically optimal solution, which is computationally

expensive. Therefore, the advantages of random search

generally outweigh its disadvantages (21–23).

Model evaluation

The final model was evaluated using various metrics derived

from the confusion matrix, including accuracy, F1-score, recall,

the area under the receiver operating characteristic (ROC) curve

(AUC) (24, 25). Given that model accuracy ranges from 80% to

90%, tuning efforts primarily focused on the F1-score, with an

emphasis on optimizing predictive performance for the minority

class. The F1-score was also used as the scoring criterion during

cross-validation.

Wang et al. 10.3389/fcvm.2025.1590367

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1590367
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Statistical analysis

As the model was developed using the eICU dataset, patients

were categorized into two groups based on their survival status

during ICU hospitalization. Subsequently, the median, first

quartile (Q1), and third quartile (Q3) were calculated for each

variable. Categorical and continuous variables were analyzed

using the chi-square test and the Wilcoxon rank-sum test,

respectively. To reduce the risk of false positives due to multiple

comparisons, the Benjamini-Hochberg (BH) correction method

FIGURE 1

Flowchart of this research.
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was applied (26). Model performance was evaluated using the

F1-score during model development with the training dataset.

Result

Baseline characteristics and features

As shown in the Table 1, a total of 5,383 patients with a

primary diagnosis of heart failure were identified from the eICU

database, among whom 286 died and 5,097 survived. The figure

summarizes the baseline characteristics, vital signs, laboratory

parameters, and SAPS II and SOFA scores of the survival and

non-survival groups. Among non-survivors, variables such as

SAPS II, SOFA score, minimum SpO2, mean SpO2, minimum

white blood cell (WBC) count, maximum WBC, mean WBC,

minimum red blood cell (RBC) count, mean RBC, minimum platelet

count, minimum hemoglobin (HGB), mean HGB, maximum anion

gap, mean anion gap, minimum sodium, maximum potassium,

mean potassium, minimum bicarbonate, maximum bicarbonate,

mean bicarbonate, minimum calcium, mean calcium, minimum

blood urea nitrogen (BUN), maximum BUN, mean BUN,

maximum creatinine, mean creatinine, minimum albumin,

maximum albumin, mean albumin, minimum alanine

aminotransferase (ALT/SGPT), maximum ALT, mean ALT,

minimum total bilirubin, maximum total bilirubin, mean total

bilirubin, minimum heart rate (HR), maximum HR, mean HR,

minimum respiratory rate (RR), maximum RR, mean RR,

minimum systolic blood pressure (SBP), maximum SBP, mean

SBP, minimum diastolic blood pressure (DBP), mean DBP,

minimum temperature, and maximum temperature showed

statistically significant differences compared to the survival group

(p < 0.05). In contrast, variables such as sex, age, maximum

SpO2, maximum RBC, mean platelet count, maximum HGB,

TABLE 1 Baseline characteristics, vital signs, laboratory parameters and statistic results of eICU patients.

Variable Total (n= 5,383) Survival (n = 5,097) Death (n = 286) p

Gender, n (%)

0 2,559 (47.5) 2,423 (47.5) 136 (47.6) 1

1 2,824 (52.5) 2,674 (52.5) 150 (52.4)

Sapsii score, median (Q1, Q3) 16.0 (12.0–18.0) 16.0 (12.0–18.0) 18.0 (15.0–22.0) <0.001

Sofa score, median (Q1, Q3) 2.0 (1.0–3.0) 1.0 (0.0–3.0) 3.0 (1.0–5.0) <0.001

Age, median (Q1, Q3) 71.0 (61.0–79.0) 71.0 (61.0–79.0) 74.0 (65.0–81.0) 0.15477

Min SpO2, median (Q1, Q3) 83.0 (74.0–89.0) 84.0 (75.0–89.0) 59.0 (38.8–73.0) <0.001

Max SpO2, median (Q1, Q3) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 100.0 (100.0–100.0) 1

Mean SpO2, median (Q1, Q3) 96.3 (94.9–97.7) 96.4 (95.0–97.7) 95.1 (92.7–96.7) <0.001

Min WBC, median (Q1, Q3) 7.2 (5.6–9.3) 7.2 (5.6–9.2) 8.4 (6.3–10.8) <0.001

Max WBC, median (Q1, Q3) 11.6 (8.6–15.4) 11.5 (8.5–15.1) 15.9 (11.7–21.9) <0.001

Mean WBC, median (Q1, Q3) 9.3 (7.2–11.8) 9.2 (7.2–11.6) 12.2 (9.1–14.8) <0.001

Min RBC, median (Q1, Q3) 3.5 (2.9–4.1) 3.5 (3.0–4.1) 3.2 (2.7–3.9) <0.001

Max RBC, median (Q1, Q3) 4.0 (3.5–4.6) 4.1 (3.5–4.6) 3.9 (3.4–4.5) 0.34971

Mean RBC, median (Q1, Q3) 3.7 (3.2–4.3) 3.7 (3.2–4.3) 3.5 (3.0–4.0) 0.00317

Min platelets, median (Q1, Q3) 176.0 (132.0–226.2) 177.0 (133.0–227.0) 151.0 (103.0–208.0) <0.001

Max platelets, median (Q1, Q3) 240.0 (186.0–307.0) 240.0 (186.0–306.0) 242.0 (184.0–316.0) 1

Mean platelets, median (Q1, Q3) 205.0 (159.0–258.7) 206.0 (159.6–259.2) 196.2 (149.2–247.5) 1

Min HGB, median (Q1, Q3) 10.0 (8.5–11.7) 10.0 (8.5–11.8) 9.2 (7.8–10.8) <0.001

Max HGB, median (Q1, Q3) 11.7 (10.3–13.4) 11.8 (10.3–13.5) 11.3 (9.9–13.3) 1

Mean HGB, median (Q1, Q3) 10.7 (9.3–12.4) 10.7 (9.4–12.5) 10.1 (8.9–11.8) 0.0126

Min anion gap, median (Q1, Q3) 8.0 (6.0–11.0) 8.0 (5.9–11.0) 8.6 (6.0–12.0) 0.82852

Max anion gap, median (Q1, Q3) 13.0 (10.3–16.0) 13.0 (10.0–16.0) 16.0 (12.0–20.0) <0.001

Mean anion gap, median (Q1, Q3) 10.4 (8.0–13.1) 10.3 (8.0–13.0) 12.5 (9.0–15.3) <0.001

Min sodium, median (Q1, Q3) 135.0 (132.0–138.0) 135.0 (132.0–138.0) 134.0 (130.0–137.0) 0.00685

Max sodium, median (Q1, Q3) 141.0 (138.0–143.0) 141.0 (138.0–143.0) 141.0 (137.0–146.0) 1

Mean sodium, median (Q1, Q3) 138.0 (135.2–140.4) 138.0 (135.3–140.4) 137.4 (134.1–140.8) 1

Min glucose, median (Q1, Q3) 89.0 (74.0–105.0) 89.0 (75.0–105.0) 88.0 (68.0–111.2) 1

Max glucose, median (Q1, Q3) 211.0 (153.0–293.0) 210.0 (152.8–293.0) 214.0 (162.8–293.2) 1

Mean glucose, median (Q1, Q3) 136.4 (114.1–169.3) 136.0 (113.7–169.2) 141.1 (120.9–171.7) 1

Min potassium, median (Q1, Q3) 3.6 (3.2–3.9) 3.6 (3.2–3.9) 3.6 (3.2–4.2) 1

Max potassium, median (Q1, Q3) 4.7 (4.3–5.2) 4.7 (4.3–5.2) 5.1 (4.6–5.8) <0.001

Mean potassium, median (Q1, Q3) 4.1 (3.8–4.4) 4.1 (3.8–4.4) 4.3 (3.9–4.8) <0.001

Min chloride, median (Q1, Q3) 97.0 (93.0–101.0) 97.0 (93.0–101.0) 96.0 (92.0–100.0) 1

Max chloride, median (Q1, Q3) 104.0 (100.0–107.0) 103.0 (100.0–107.0) 104.0 (100.0–109.0) 1

Mean chloride, median (Q1, Q3) 100.3 (96.7–103.6) 100.2 (96.7–103.5) 100.4 (96.1–104.1) 1

Min bicarbonate, median (Q1, Q3) 24.0 (21.0–28.0) 24.0 (21.0–28.0) 21.0 (17.0–26.0) <0.001

(Continued)
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minimum anion gap, maximum sodium, mean sodium, minimum

glucose, maximum glucose, mean glucose, minimum potassium,

mean chloride, maximum calcium, minimum creatinine, and

mean temperature showed no statistically significant differences

between the survival and non-survival groups (p > 0.05).

We employed a feature selection strategy based on Boruta

combined with feature importance. Traditional feature selection

methods, such as Pearson correlation and stepwise selection,

primarily capture linear relationships and often fail to account

for interactions among variables (27–29). Therefore, we adopted

the Boruta algorithm in conjunction with feature importance.

Boruta is an automated feature selection algorithm based on

random forests that uses statistical methods to identify features

significantly associated with the target variable. Its core

principle involves generating “shadow features” as noise

benchmarks to distinguish truly important variables. This

method offers several advantages, including automated

thresholding to reduce manual intervention, retention of weak

but stable features, robustness to multicollinearity, enhanced

model interpretability, and applicability to high-dimensional

heterogeneous data.

We selected the following features: minimum SpO2, minimum

SBP, mean SBP, minimum RR, minimum HR, minimum albumin,

minimum DBP, maximum BUN, mean BUN, maximum HR, mean

SpO2, maximum creatinine, maximum WBC, mean WBC, and

mean DBP.

Shapley additive explanations (SHAP)

The SHAP (SHapley Additive exPlanations) algorithm was

applied to interpret the MLP model. Among the 15 selected

features, the top 10 in terms of importance were min SpO2, min

albumin, mean wbc, mean SpO2, mean sbp, mean bun, min rr,

mean dbp, min hr, and min sbp. A reduction in minimum

oxygen saturation (min SpO2) was generally associated with

increased mortality risk. Lower levels of minimum albumin (min

albumin) were also linked to increased mortality risk. The

TABLE 1 Continued

Variable Total (n= 5,383) Survival (n = 5,097) Death (n = 286) p

Max bicarbonate, median (Q1, Q3) 30.0 (27.0–34.3) 30.0 (27.0–35.0) 28.0 (25.0–33.0) <0.001

Mean bicarbonate, median (Q1, Q3) 27.3 (24.4–30.8) 27.5 (24.6–31.0) 24.5 (22.0–29.4) <0.001

Min calcium, median (Q1, Q3) 8.3 (7.9–8.7) 8.4 (7.9–8.7) 7.9 (7.3–8.5) <0.001

Max calcium, median (Q1, Q3) 9.1 (8.7–9.5) 9.1 (8.8–9.5) 9.0 (8.5–9.5) 0.18182

Mean calcium, median (Q1, Q3) 8.7 (8.4–9.1) 8.7 (8.4–9.1) 8.5 (8.0–8.9) <0.001

Min bun, median (Q1, Q3) 23.0 (16.0–36.0) 23.0 (16.0–35.0) 32.0 (20.0–44.2) <0.001

Max bun, median (Q1, Q3) 42.0 (28.0–63.0) 41.0 (27.0–62.0) 62.0 (44.8–85.2) <0.001

Mean bun, median (Q1, Q3) 33.0 (22.4–48.4) 32.3 (22.0–47.6) 45.6 (32.2–61.5) <0.001

Min creatinine, median (Q1, Q3) 1.2 (0.9–1.8) 1.2 (0.8–1.8) 1.3 (0.9–1.9) 1

Max creatinine, median (Q1, Q3) 1.7 (1.2–2.8) 1.7 (1.2–2.8) 2.4 (1.7–3.5) <0.001

Mean creatinine, median (Q1, Q3) 1.4 (1.0–2.2) 1.4 (1.0–2.2) 1.8 (1.3–2.6) <0.001

Min albumin, median (Q1, Q3) 2.9 (2.5–3.4) 3.0 (2.5–3.4) 2.5 (2.1–2.9) <0.001

Max albumin, median (Q1, Q3) 3.3 (2.9–3.7) 3.4 (3.0–3.7) 3.1 (2.6–3.5) <0.001

Mean albumin, median (Q1, Q3) 3.1 (2.7–3.5) 3.1 (2.8–3.5) 2.8 (2.4–3.1) <0.001

Min alt SGPT, median (Q1, Q3) 21.0 (14.0–34.0) 21.0 (14.0–34.0) 24.0 (15.0–53.0) 0.01158

Max alt SGPT, median (Q1, Q3) 27.0 (17.0–49.8) 26.0 (17.0–47.0) 52.0 (24.0–180.0) <0.001

Mean alt SGPT, median (Q1, Q3) 24.0 (16.0–42.5) 24.0 (16.0–40.0) 41.9 (21.0–112.8) <0.001

Min total bilirubin, median (Q1, Q3) 0.6 (0.4–0.9) 0.6 (0.4–0.9) 0.8 (0.5–1.2) <0.001

Max total bilirubin, median (Q1, Q3) 0.7 (0.5–1.2) 0.7 (0.5–1.2) 1.2 (0.7–2.2) <0.001

Mean total bilirubin, median (Q1, Q3) 0.6 (0.4–1.0) 0.6 (0.4–1.0) 1.0 (0.6–1.6) <0.001

Min HR, median (Q1, Q3) 65.0 (56.0–74.0) 65.0 (57.0–74.0) 59.0 (30.5–72.5) <0.001

Max HR, median (Q1, Q3) 107.0 (92.0–125.0) 106.0 (92.0–123.0) 128.0 (109.0–144.0) <0.001

Mean HR, median (Q1, Q3) 83.0 (73.5–93.5) 82.7 (73.2–93.0) 90.7 (80.6–103.8) <0.001

Min RR, median (Q1, Q3) 13.0 (10.0–16.0) 13.0 (10.0–16.0) 9.0 (0.0–14.0) <0.001

Max RR, median (Q1, Q3) 31.0 (26.0–38.0) 30.0 (26.0–37.0) 36.0 (30.0–42.8) <0.001

Mean RR, median (Q1, Q3) 20.2 (18.3–22.6) 20.1 (18.3–22.5) 21.3 (18.6–24.7) <0.001

Min SBP, median (Q1, Q3) 90.0 (77.0–104.0) 90.0 (78.0–105.0) 68.0 (54.0–83.0) <0.001

Max SBP, median (Q1, Q3) 158.0 (139.0–180.0) 158.0 (139.5–180.0) 148.0 (128.0–167.0) <0.001

Mean SBP, median (Q1, Q3) 121.6 (108.1–136.8) 122.7 (109.1–137.6) 105.5 (95.2–117.7) <0.001

Min DBP, median (Q1, Q3) 45.0 (36.0–54.0) 45.0 (36.0–54.0) 33.0 (22.0–46.0) <0.001

Max DBP, median (Q1, Q3) 97.0 (84.0–112.0) 97.0 (84.0–112.0) 96.0 (81.0–113.0) 1

Mean DBP, median (Q1, Q3) 65.6 (58.7–73.4) 65.9 (59.0–73.8) 60.5 (54.1–66.0) <0.001

Min temp, median (Q1, Q3) 36.1 (35.8–36.4) 36.2 (35.8–36.4) 36.0 (35.5–36.3) <0.001

Max temp, median (Q1, Q3) 37.2 (37.0–37.7) 37.2 (37.0–37.7) 37.6 (37.0–38.4) <0.001

Mean temp, median (Q1, Q3) 36.7 (36.5–36.9) 36.7 (36.5–36.9) 36.7 (36.4–37.1) 1

HGB, hemoglobin; ALT SGPT, alanine aminotransferase/serum glutamic - pyruvic transaminase.
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clinical significance of the mean white blood cell count (mean wbc)

is complex; both abnormally low and elevated levels may be

indicative of adverse outcomes. A decrease in average oxygen

saturation (mean SpO2) may reflect inadequate oxygenation,

thereby increasing the risk of mortality. Lower mean systolic

blood pressure (mean sbp) was found to be associated with

higher mortality. Elevated blood urea nitrogen (mean bun),

potentially indicating renal dysfunction, was also linked to

increased mortality. A decreased minimum respiratory rate (min

rr) was associated with increased risk of death. Lower mean

diastolic blood pressure (mean dbp) was related to higher

mortality risk. Severely reduced minimum heart rate (min hr)

was also associated with elevated mortality risk. Finally,

decreased minimum systolic blood pressure (min sbp) was

strongly associated with elevated mortality risk.

Discussion

Upon ICU admission, a total of 61 features were collected from

patients. To improve prediction accuracy, the collected data were

processed to include minimum, maximum, and mean values,

accounting for dynamic changes in patients’ conditions and the

evolving nature of mortality prediction. Data from the two

groups were processed separately to preserve the independence of

the datasets. The MIMIC database was not involved in model

development and was used solely as an external test set.

Through feature selection using Boruta and feature importance

analysis, 15 features were identified Figure 2. Subsequently, the

SHAP additive explanation method was applied to analyze the

top-performing model (MLP) Figure 3. The top 10 features were

identified as follows: minimum oxygen saturation (min SpO2),

minimum albumin level (min albumin), mean white blood cell

count (mean WBC), mean oxygen saturation (mean SpO2), mean

systolic blood pressure (mean SBP), mean blood urea nitrogen

(mean BUN), minimum respiratory rate (min RR), mean

diastolic blood pressure (mean DBP), minimum heart rate (min

HR), and minimum systolic blood pressure (min SBP).

Heart failure patients exhibit significant clinical heterogeneity,

and multiple treatment strategies are available. Rapid prediction

of patient mortality would allow for timely adjustment of

treatment plans, thereby significantly improving patient

outcomes. In this study, nine models were selected: Logistic

Regression, SVM, Decision Tree, LGBM, KNN, Random Forest,

GBM, XGBoost, and MLP. These models were trained using

random search and cross-validation. While AUC reflects the

overall predictive accuracy, it is limited in assessing performance

on the minority class (Figure 4). Therefore, the F1-score was

selected as the primary evaluation metric, as it more accurately

captures the model’s ability to predict mortality by providing a

better balance between false negatives (FN) and false positives

(FP) (Figure 5) (30, 31).

In this study, the eICU dataset was used as the development

set to train the models, while the MIMIC-IV dataset served as an

independent external test set to evaluate model performance.

Each dataset underwent preprocessing: eICU data were handled

through missing value imputation, multiple imputation,

oversampling, and data normalization. The models were then

trained under cross-validation. Since tree-based models do not

require data normalization, the Decision Tree, Light Gradient

Boosting Machine (LGBM), Random Forest, Gradient Boosting

Machine (GBM), and Extreme Gradient Boosting (XGBoost)

were not normalized. After missing value handling, the

MIMIC-IV dataset was also used with unnormalized data for

prediction in the tree-based models. Ultimately, the Multilayer

Perceptron (MLP) demonstrated the best predictive

performance, providing evidence of its ability to predict patient

mortality risk Table 2. Although machine learning models

must still be integrated with clinical decision-making, they can

offer valuable auxiliary support in the absence of

detailed examinations.

A decrease in minimum saturation of peripheral oxygen (min

SpO2) is associated with an increased risk of mortality, as low

oxygen saturation reflects impaired cardiopulmonary function,

which affects oxygen supply and poses a life-threatening risk

(32, 33). A reduction in minimum albumin (min albumin) may

also increase the risk of mortality, as low albumin levels suggest

poor nutritional status or impaired liver synthesis, indicating

overall body dysfunction (34, 35). The significance of mean

white blood cell count (mean wbc) is more complex; a low

count may increase mortality risk due to immune system

dysfunction, while a high count may indicate an excessive

inflammatory response or other adverse factors, which does not

necessarily correlate with a reduction in risk (36, 37).

A decrease in mean saturation of peripheral oxygen (mean

SpO2) is linked to an increased risk of mortality, as adequate

oxygenation is essential for vital functions, and a low mean

oxygen saturation suggests inadequate oxygen supply (38).

A reduction in mean systolic blood pressure (mean sbp) may

also increase mortality risk, as low systolic blood pressure

reflects issues with cardiac output or peripheral circulation (39,

40). An elevated mean blood urea nitrogen (mean bun) level

may indicate impaired renal function, thus increasing mortality

risk; however, a lower value is generally considered favorable,

though it is not necessarily inversely correlated with mortality

(40). A significantly low minimum respiratory rate (min rr)

may indicate severe suppression of respiratory function,

increasing mortality risk (41, 42). A decrease in mean diastolic

blood pressure (mean dbp) may reflect cardiovascular

abnormalities and is associated with an increased risk of

mortality (43). A very low minimum heart rate (min hr) may

indicate severe cardiac dysfunction, leading to a higher

mortality risk (44, 45). A decrease in minimum systolic blood

pressure (min sbp) typically reflects a sudden deterioration in

cardiac pumping ability or peripheral circulation, thus

increasing the risk of mortality.

The study has several limitations. First, this is a retrospective

study, which is subject to selection bias and has not been

validated by prospective research. Second, the model used in this

study was derived from existing databases and is therefore

limited by the quality of the original data. Third, the F1-score of

the study remains low, which limits its clinical applicability.
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FIGURE 2

Feature importance ranking.

Wang et al. 10.3389/fcvm.2025.1590367

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1590367
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

The shap analysis of MLP.

FIGURE 4

Summary of the ROC curves of all models.
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Conclusion

Among the nine models, the Multi-Layer Perceptron

(MLP) achieved the highest recall rate (0.64), identifying the

greatest number of true positives and minimizing the risk of

missed diagnoses. It also exhibited superior overall

performance, with the highest Macro F1 score (0.74) and

Weighted F1 score (0.88), effectively balancing performance

across all categories.
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FIGURE 5

Summary of f1 scores of all models.

TABLE 2 The final scores of all models.

Models Accuracy Precision (1) Recall (1) F1 (1) Macro F1 Weighted F1

LR 0.88 0.54 0.50 0.52 0.73 0.88

SVM 0.81 0.18 0.14 0.15 0.52 0.80

DT 0.87 0.47 0.32 0.38 0.65 0.86

LGBM 0.89 0.75 0.14 0.23 0.58 0.85

KNN 0.88 0.53 0.38 0.44 0.69 0.87

RF 0.88 0.62 0.20 0.30 0.62 0.86

GBM 0.88 0.67 0.12 0.21 0.57 0.85

MLP 0.87 0.49 0.64 0.56 0.74 0.88

XGBoost 0.86 0.47 0.65 0.54 0.73 0.87

Bold font indicates the highest value achieved for this metric.
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