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Background: Hypertension and hyperlipidemia are interconnected conditions that 

heighten cardiovascular risk, yet their intricate multi-scale molecular signatures 

remain inadequately mapped. This study aimed to conduct an integrated multi- 

omics investigation to unravel the key pathways and biomarkers underlying 

hypertension, hyperlipidemia, and both conditions.

Methods: Metabolomic analysis was performed on serum samples and 

metagenomic analysis on fecal samples collected from individuals with 

hypertension (n = 16), hyperlipidemia (n = 19), or both conditions concurrently 

(n = 20). In addition, 20 healthy individuals were recruited as controls.

Results: Metabolomics uncovered altered levels of sphingolipids, 

phosphatidylcholines, glycylprolines, and nucleic acid metabolites, which may be 

associated with changes in vascular tone, lipid and protein homeostasis, and 

thyroid signaling. Metagenomics showed depletion in the abundance of the 

Fibrobacteres phylum. Altered abundances of Escherichia coli and Bacteroides 

vulgatus were also observed, which were correlated with deviations in lipid 

and carbohydrate metabolism. Sphingomyelin d18:1/16:0 and sphingomyelin 

d18:1/24:1(15Z) were the key metabolites that were identified as potential 

diagnostic biomarkers across conditions. Microbial taxa such as Enterococcus 

cecorum, Lachnospiraceae bacterium, Prevotella histicola, and Flavobacterium 

discriminated these diseases. Pathway analysis revealed glycoxylate, amino acid, 

purine, and sphingolipid metabolism alterations intersecting hypertension 

and hyperlipidemia.

Conclusions: This multi-omics landscape of comorbid disease pathways and 

biomarkers lays the foundation for precision diagnosis and treatment of 

prevalent cardiovascular conditions.
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1 Background

Cardiovascular diseases are the leading cause of death worldwide. 

Hypertension, a prevalent cardiovascular ailment, elevates the cardiac 

workload and damages vascular walls (1). Hyperlipidemia, on the 

other hand, fosters atherosclerosis and obstructs blood �ow, which 

therefore escalates the risk of cardiovascular complications (2). 

Hypertension and hyperlipidemia often coexist and are frequently 

concomitant in individuals. Both conditions are major risk factors 

for cardiovascular diseases, and their combined presence can 

significantly increase the risk of heart disease and stroke (3). 

Moreover, hypertension and hyperlipidemia are well known to 

contribute to the development of atherosclerosis, a condition that 

leads to narrowed and hardened arteries, which reduces blood �ow 

and increases the risk of cardiovascular events (4). Hypertension 

and hyperlipidemia are common, intertwined conditions that share 

a significant overlap in underlying risk factors and complications. 

The comorbidity rate of hypertension and dyslipidemia reached 

15.60% in a study of the northwestern Chinese population, which 

is much higher than that of hypertension and diabetes (4.58%) or 

diabetes and dyslipidemia (3.57%) (5). The intertwined conditions 

may collectively hasten the progression of cardiovascular diseases, 

underscoring the importance of understanding their pathogenesis 

and identifying effective biomarkers and therapeutic targets for 

timely intervention.

Innovative research has sought to decode the molecular 

underpinnings of hypertension, hyperlipidemia, and their 

concomitant conditions. The serum levels of aldehydes have been 

found to be associated with hypertension via metabolomics (6). 

Flavanol, a dietary biomarker, is inversely associated with 

cardiovascular diseases like hypertension, and its consumption has 

been shown to effectively reduce blood pressure (7). Disruptions in 

the tricarboxylic acid cycle and associated metabolic acidosis are 

hallmark features of early-stage hypertension (8). They may lead to 

enhanced renal reabsorption of bicarbonate ions (HCO3−) and 

other substances so as to buffer and counteract the excess acidity 

in the body (9). Key hyperlipidemia markers include triglycerides 

(TGs), total cholesterol (TC), low-density lipoprotein cholesterol 

(LDL-C), and high-density lipoprotein cholesterol (HDL-C), which 

also re�ect the metabolic state (10). Carrier proteins such as 

Apolipoprotein A1 (ApoA1) and Apolipoprotein B (ApoB) are 

recognized as superior indicators of atherosclerosis, with the 

ApoB/ApoA1 ratio serving as an effective predictive marker to 

identify patients with hypercholesterolemia (11, 12).

The onset and progression of hypertension, hyperlipidemia, 

or both conditions are multifactorial, involving genetic, 

environmental, and lifestyle factors. Investigating their 

metabolomics and metagenomics offers deeper insights into 

disease pathophysiology, and informs clinical strategies for 

prevention, diagnosis, and management. The multi-scale molecular 

features of hypertension and hyperlipidemia remain incompletely 

understood, and current research lacks comprehensive multi- 

omics integration and sufficient focus on these populations. 

Here, our study conducts a comprehensive analysis of the 

blood metabolome and gut microbiome-based metagenome for 

hypertension, hyperlipidemia, or both conditions. We aimed to 

examine molecular mechanisms through metabolic biomarkers 

and microbiota-metabolite interactions. Our research not only 

explores the molecular mechanisms associated with hypertension, 

hyperlipidemia, but also provides insights into their comorbidities, 

offering a more thorough understanding of their underlying 

biological processes.

2 Methods

2.1 Participant recruitment and 
inclusion criteria

Participants aged 40 and above were recruited in this study from 

Kunming city and Yuxi city, Yunnan Province from September to 

November 2021. This cohort included a total of 55 patients, which 

were divided into three groups: 16 patients with hypertension 

(HT group), 19 with hyperlipidemia (HC group), and 20 with 

concomitant hypertension and hyperlipidemia (H group). Another 

20 age-matched healthy individuals were recruited as controls 

(CTR group) during the same period from the same area. 

Participants had not recently taken antibiotics, probiotics, 

prebiotics, yogurt, or other substances known to significantly affect 

the gut microbiota. They followed a normal, unrestricted diet and 

had no history of coronary heart disease, diabetes, cerebrovascular 

disease, psychiatric disorders, chronic obstructive pulmonary 

disease (COPD), asthma, malignancy, or dementia. None of the 

participants were taking lipid-lowering medications or medications 

for other comorbid conditions. The control group consisted of 

healthy individuals without any chronic diseases. Patients with 

abnormal heart, liver, or kidney function and those on long-term 

medications for blood sugar, or lipid reduction were excluded.

For the HT group, patients with blood pressure ≥140/90 mm Hg 

(three measurements on different days) were included. Those 

with secondary hypertension, hyperuricemia, hyperlipidemia, etc. 

were excluded. For the HC group, patients with total cholesterol 

levels >5.2 mmol/L and/or triglycerides levels >2.26 mmol/L were 

included. Patients were recruited in the H group when blood 

pressure ≥140/90 mm Hg (three measurements on different days), 

as well as total cholesterol levels >5.2 mmol/L and/or triglycerides 

levels >2.26 mmol/L.

There were no significant differences in age, sex distribution, 

smoking, and drinking habits across groups (p > 0.05). A written 

informed consent was acquired from all participants before 
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inclusion. The study was approved by the Medical Ethics Committee 

of Yan’an Hospital in Kunming, Yunnan Province (2020-096-01).

2.2 Sample collection

Fasting blood and fecal samples were collected between 7 and 8 

AM following an 8–12 h period without food or drink. Participants 

were instructed to avoid taking probiotics or antibiotic medication 

within one month before sample collection. Blood samples were 

collected on site, centrifuged at 3,500 rpm for 15 min to separate 

the supernatant, which were used for physiological/biochemical 

tests and metabolite detection. Fresh fecal samples were collected 

specifically from the middle to the end of the bowel movement, 

to reduce environmental contamination and better represent the 

gut microbial composition. All samples were preserved at −80 °C 

before analysis.

2.3 Physiological and biochemical assays

A total of 48 physiological and biochemical indicators in serum 

were assessed using a biochemical analyzer. Analysis of variance 

(ANOVA) was employed to analyze differences among the four 

groups. Significant indicators (p < 0.05) were visualized using box 

plots with the ggplot2 function (2_3.4.4) in R software (4.3.1).

2.4 LC-MS-based (chromatography-mass 
spectrometry) liquid metabolomics

Metabolites were extracted from 100 μl of each serum sample. 

First, 400 μl of extraction solution (acetonitrile: methanol = 1:1, 

with isotopically-labelled internal standard mix) was added and 

vortexed, followed by sonication in ice-water bath, and incubation at 

−40 °C for protein precipitation. Samples were then centrifuged 

at 12,000 rpm for 15 min at 4 °C. The obtained supernatant was 

collected for analysis, with QC samples prepared by pooling equal 

volumes of the supernatant of each sample. We used a liquid 

chromatograph mass spectrometer (UHPLC) system (Vanquish, 

Thermo Fisher Scientific) equipped with a Waters BEH Amide 

column, and coupled to a Q Exactive HFX mass spectrometer 

(Orbitrap MS, Thermo). The mobile phase was composed of (A) 

25 mmol/L ammonium acetate and 25 mmol/L ammonia hydroxide 

in water (pH = 9.75), and (B) acetonitrile. Samples were injected at a 

volume of 2 μl and maintained at 4 °C in the auto-sampler.

2.5 Bioinformatics analysis of 
metabolomics data

Raw data were converted to mzXML format with ProteoWizard 

(3.02) and processed with a custom program based on XCMS for 

peak detection, extraction, alignment, and integration. Metabolites 

were annotated using an in-house MS2 database (BiotreeDB) with 

a cutoff value at 0.3. Principal component analysis (PCA) was 

conducted using the prcomp function (13) in R to elucidate the 

intrinsic characteristics of the data. T-tests was performed to 

identify differential metabolites (DIMs) via MetaboAnalyst 5.0, and 

the Benjamini-Hochberg procedure was employed to control the 

false discovery rate (FDR) (14). Visualization was realized via 

volcano plots by ggplot2 (2_3.4.4), and heatmaps using pheatmap 

(1.0.12). Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment of DIMs was depicted with bubble charts. 

Random forest algorithm was conducted by MetaboAnalyst 5.0 to 

classify these metabolites by contribution to classification accuracy 

and receiver operating characteristic (ROC) curves. Data were 

auto-scaled (mean-centered and divided by the standard deviation 

of each variable), followed by automated feature selection and 

performance evaluation using the random forest algorithm. 

To assess model performance, Monte Carlo cross-validation 

(MCCV) with balanced subsampling was applied. In each of the 

50 iterations, two-thirds of the data were randomly selected for 

feature selection and model training, while the remaining one- 

third was used as an independent test set for performance 

evaluation. ROC curves and AUC values were calculated solely 

based on the test data from each iteration. The final performance 

metrics were averaged across all iterations, with 95% confidence 

intervals reported. DIMs among multiple groups were analyzed 

using one-way ANOVA with the aov function in R, and the 

Benjamini–Hochberg method was applied to control the false 

discovery rate (FDR).

2.6 Metagenomics analysis

Fecal samples were homogenized for microbial release, with 

genomic DNA extracted for library construction using the 

NEBNext® Ultra DNA Library Prep Kit (Illumina, USA). Libraries 

were quantified, pooled, and sequenced on an Illumina PE150 

platform. Raw data were quality controlled, assembled, and 

annotated for species identification against the Nucleotide Collection 

(NR/NT) database from the National Center for Biotechnology 

Information (NCBI) (https://www.ncbi.nlm.nih.gov/). PCA and 

ANOVA were used to analyze gene abundances and identify 

differential genes and species. The Benjamini–Hochberg procedure 

was used to control the FDR in ANOVA. The relative abundance 

of species was charted, and significant species biomarkers were 

selected using rank-sum tests and LDA (Linear Discriminant 

Analysis). Finally, gene annotation in KEGG was performed, and 

correlations between gut microbiome and metabolic pathways were 

assessed to explore microbial functions. Biomarker selection was 

facilitated by MetaboAnalyst 5.0 using a random forest algorithm. 

For metagenomics analysis, one sample was collected from one 

participant. Alpha diversity at the species level (Chao1, ACE, 

Shannon, and Simpson indices) and beta diversity (Bray–Curtis 

distance) were calculated using the vegan package in R. Group 

differences in alpha diversity were assessed with the Wilcoxon test, 

while Adonis analysis was applied to evaluate differences in Bray– 

Curtis distances, re�ecting variations in microbial community 

composition. We used the Virtual Metabolic Human (VMH) 

database (https://www.vmh.life) to predict the metabolic capabilities 
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of gut microbes, and integrated these predictions with experimentally 

validated microbe–metabolite–host associations from GutMGene 

(http://bio-annotation.cn/gutmgene), allowing verification of 

predicted relationships with experimental evidence. As these 

resources catalog generic metabolites and species-level or model 

strains, while our biomarkers included lipid subspecies [e.g., PC 

(20:1/20:4)] and strain-level taxa, exact curated links were often 

unavailable. We therefore standardized species to consistent species 

or genus levels and mapped lipid subspecies to their parent classes to 

validate the relevant metabolic pathways and reactants.

2.7 Statistical power and effect size analysis

For pairwise comparisons, statistical power was estimated 

using the pwr.t2n.test function in R based on the observed effect 

sizes and group sample sizes. For overall group comparisons, the 

pwr.anova.test function in R was applied to assess ANOVA- 

based power. Effect sizes were quantified as Cohen’s d (using 

the pooled standard deviation), and 95% confidence intervals 

were calculated for each metabolite and species-level microbial 

feature. All analyses were conducted in R.

3 Results

3.1 Variations in physiological and 
biochemical parameters among groups

In this cross-sectional study, biochemical and hematological 

parameters were assessed, revealing statistically significant 

differences in eight distinct biomarkers among groups (Figure 1). 

Notably, both HC and H groups demonstrated a substantial 

increase in serum cholesterol (CHOL), low-density lipoprotein 

cholesterol (LDL-CH), triglycerides (TGs), and lymphocyte count 

(LYM#), as compared with healthy individuals. Furthermore, the 

HC group presented with significantly elevated red blood cell 

count (RBC), hematocrit (HCT), and hemoglobin (HGB) 

concentration. In the HT group, a notable decrease in monocyte 

percentage (MON%) was observed, while RBC, HCT, and HGB 

levels were markedly elevated compared with the control group. 

These findings underscored the potential interplay between lipid 

profiles, blood cell parameters, and blood pressure regulation.

3.2 Metabolomic profiling reveals 
differential abundance of metabolites and 
enriched pathways in disease groups

To investigate metabolic differences linked to hypertension, 

hyperlipidemia, and their concurrent conditions, our study 

embarked on an extensive metabolomic evaluation on the control 

and disease groups. Differential analysis of metabolites revealed a 

distinct profile for each patient group compared with the control 

group. The H group presented with 92 DIMs, with 64 upregulated 

and 28 downregulated. The HC group exhibited alterations in 58 

metabolites, with 41 upregulated and 17 downregulated. The HT 

group demonstrated changes in 25 metabolites, 15 of which were 

upregulated and 10 downregulated (Figure 2A). This trend 

re�ected a predominant upregulation of metabolites across all 

three disease groups, with 11 metabolites shared among the 

disease–control comparisons (Figure S1A). In contrast, pair-wise 

comparison among disease groups identified 23 DIMs between HC 

and H, 69 between HT and H, and 46 between HC and HT 

(Figure 2A), with only two metabolites overlapping across all three 

comparisons (Supplementary Figure S1B).

Heatmap analysis of the top 25 most abundant DIMs highlighted 

metabolites that were upregulated in each disease group. In the 

H group, elevated levels of ascorbic acid, glycylproline, and 

cyclohexanecarboxylic acid were observed. The HC group exhibited 

increased abundance of glycylproline, cyclohexanecarboxylic acid, 

and 9−HOTE, while the HT group showed notable elevations 

in LysoPC(20:4(5Z,8Z,11Z,14Z)), glycerophosphocholine, and 

koeniginequinone A, when compared with the control group 

(Figure 2B). A one-way ANOVA across the three disease groups 

identified 11 DIMs, showing an overall tendency for higher levels in 

the H group (Supplementary Figure S1C). Metabolite set enrichment 

analysis revealed significant pathway enrichments in each disease 

cohort. In group H, five pathways were significantly enriched, 

including glyoxylate and dicarboxylate metabolism, citrate cycle 

(TCA cycle), sphingolipid metabolism, pentose phosphate pathway, 

and arginine and proline metabolism. Group HC displayed 

significant enrichment in several metabolic pathways, including the 

pentose phosphate pathway, biosynthesis of antibiotics such as 

neomycin, kanamycin, and gentamicin, galactose metabolism, 

glyoxylate and dicarboxylate metabolism, and pyrimidine 

metabolism. In group HT, metabolic alterations were predominantly 

enriched in two pathways: arginine and proline metabolism and 

pyrimidine metabolism. Moreover, shared pathway enrichments 

were identified between groups, such as glyoxylate and dicarboxylate 

metabolism and the pentose phosphate pathway between group 

H and group HC; arginine and proline metabolism between H and 

HT; and pyrimidine metabolism between HC and HT (Figure 2C).

3.3 Exploration of serum metabolomic 
biomarkers

To identify potential serum metabolomic biomarkers associated 

with hypertension, hyperlipidemia, and their comorbid state, a 

multivariate random forest model was utilized to screen for key 

discriminatory metabolites. We found that a ten-factor model 

provided the highest accuracy for distinguishing group H and group 

CTR, achieving a perfect area under the curve (AUC = 1, Figure 3B). 

Among the top-ranking metabolites were SM(d18:1/24:1(15Z)), 

SM(d18:1/16:0), and stearoyl sphingomyelin (Figure 3A). In the 

comparison between HC and CTR, a five-factor model yielded the 

highest AUC (AUC = 0.972, Figure 3D), with metabolites such as 

SM(d18:1/16:0), SM(d18:1/24:1(15Z)), and SM(d17:1/24:1(15Z)) 

were predominantly selected (Figure 3C). Additionally, when HT 

and CTR were compared, a five-factor model with an AUC of 0.935 

was identified (Figure 3F). Metabolites like SM(d18:1/16:0), SM 
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(d18:1/24:1(15Z)), and methylglutaric acid emerged as key 

discriminatory metabolites (Figure 3E). These findings underscored 

the potential application of serum metabolomic biomarkers in the 

diagnosis of hypertension, hyperlipidemia, and both conditions. 

Notably, SM(d18:1/16:0) and SM(d18:1/24:1(15Z)) were consistently 

identified across all three disease groups. Their recurrent selection 

underscores their potential as shared metabolic signatures associated 

with cardiovascular and lipid-related pathophysiology.

3.4 A metagenomic insight into gut 
microbiome variances among groups

To delve deeper into gut microbiome alterations associated 

with hypertension, hyperlipidemia, and their comorbidity, we 

performed metagenomic sequencing of fecal samples from each 

participant. PCA revealed a similarity in gene abundance patterns 

across groups (Supplementary Figure S2A), while the correlation 

heatmap further confirmed the repeatability of the biological 

samples (Supplementary Figure S2B). Non-redundant genes 

(Supplementary Figure S2C) and shared genes (Supplementary 

Figure S2D) between groups were also detected. We compared the 

alpha diversity among groups and found that for Shannon and 

Simpson, the control group exhibited the highest diversity, while 

the H group showed the lowest (Supplementary Figure S3A). 

Furthermore, beta diversity analysis revealed significant differences 

in community composition among the groups (adonis: R2 = 0.163, 

P < 0.05) (Supplementary Figure S3B).

At the phylum level, the microbial composition and structure 

were similar across the four groups, with some degree of intra- 

group differences. Actinobacteria and Bacteroidetes showed 

distributions in the majority of samples across all groups 

FIGURE 1 

Box plots of significantly different physiological and biochemical parameters. CHOL, cholesterol concentration (mmol/L); LDL-CH, low-density 

lipoprotein cholesterol concentration (mmol/L); TG, triglyceride concentration (mmol/L); LYM#, represents the number of lymphocytes (10e9/L); 

MON%, the percentage of monocytes (%); RBC, red blood cell count (10e12/L); HCT, hematocrit (%); HGB, hemoglobin concentration (g/L). 

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by the Wilcoxon rank-sum test. CTR: control group; H: concomitant hypertension and 

hyperlipidemia; HC; hyperlipidemia; HT: hypertension.
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(Figure 4A). Only Fibrobacteres showed an inter-group difference, 

with a significantly lower relative abundance in the H group 

compared with the CTR group. However, no differences were 

observed between the HC and HT groups (Figure 4B).

At the genus level, both intra-group and inter-group differences 

were observed. Notably, the H group harbored a higher relative 

abundance of Prevotella compared with other groups. The HC 

group had a higher abundance of Roseburia but lower abundance 

of Ruminococcus compared with the CTR and H groups. The 

HT group was higher in the abundance of Faecalibacterium, but 

lower in Ruminococcus (Figure 4C). Overall, 25 genera exhibited 

significant differences in relative abundance across groups. 

Specifically, Pseudobutyrivibrio and Fibrobacter were significantly 

enriched in the control group. Coprobacillus, Ruminococcus, and 

Azospirillum were more abundant in the H group, while 

Pseudobutyrivibrio, Merdibacter, and Lachnotalea were enriched in 

the HC group. The HT group showed significantly higher 

abundances of genera such as Millionella, Mediterranea, 

Chryseobacterium, Flavobacterium, and Pedobacter, compared with 

other groups (Figure 4D).

LEfSe analysis identified distinct differential taxa across all 

taxonomic levels in each disease group. In the H group, two 

differential taxa were detected, namely Bacteria and Chlamydia 

psittaci. The HC group demonstrated eight differential taxa, 

including Erysipelotrichales, Erysipelotrichia, and Holdemanella 

biformis. In contrast, the HT group had seven, such as Prevotella 

sp. GAG_386, Prevotella sp. CAG_604, and Chlamydia trachomatis 

(Figure 4E).

FIGURE 2 

Metabolomic profiling reveals differential abundance of metabolites and enriched pathways in disease groups. (A) Distribution of fold changes in 

group comparisons (Padj < 0.05, |log2FC| > 0). The top 10 largest positive (upregulated) and 10 largest negative (downregulated) log2FC values in 

each comparison are highlighted with snowflake symbols. (B) Heatmap of the top 25 DIMs with the highest relative abundance. DIMs were first 

identified through pairwise group comparisons. To facilitate visualization, the top 25 DIMs with the highest overall relative abundance across all 

comparisons were selected for heatmap analysis. (C) Bubble chart of significantly enriched metabolic pathways.
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3.5 Discrepancies in metabolic functions 
across groups

Functional annotation and pathway analysis were performed on 

the metagenomes to investigate differences in metabolic functions 

among the microbial communities. KEGG-based annotation 

revealed gene assignments across six primary level 1 categories, 

namely: cellular processes, environmental information processing, 

genetic information processing, human diseases, metabolism, and 

organismal systems. At the secondary level, these categories 

encompassed 4, 3, 4, 11, 11, and 7 pathways, respectively. Notably, 

the metabolism category exhibited the greatest number of 

FIGURE 3 

Biomarker analysis of hypertension, hyperlipidemia, and both conditions. Metabolite selection frequency for optimal area under the curve (AUC) 

between CTR and H (A), CTR and HC (C), and CTR and HT (E) Multivariate ROC curves between CTR and H (B), CTR and HC (D), and CTR and 

HT (F).
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annotated secondary pathways and genes (Figure 5A). Subsequent 

correlation analysis between secondary metabolism pathways and 

microbial species revealed several significant associations. For 

instance, E. coli exhibited strong correlations with lipid metabolism 

and six additional pathways. Bacteroides vulgatus was related to 

glycan biosynthesis and metabolism, along with four other 

pathways. Alistipes sp. CAG.514 showed correlations with 

metabolism of cofactors and vitamins, as well as biosynthesis of 

other secondary metabolites. Prevotella copri was significantly 

correlated with metabolism of terpenoids and polyketides, while 

Prevotella sp. CAG.386 with nucleotide metabolism. Notably, these 

pathways exhibited lower relative abundance in the three disease 

FIGURE 4 

Gut microbiome variances among groups. (A) Bar chart showing relative abundances of top 10 microbial phyla. (B) Box plot showing the relative 

abundance variances of Fibrobacteres among groups. (C) Bar chart showing relative abundances of top 10 microbial genera. (D) Heatmap 

showing the relative abundance of differential microbial genera across groups. E: Distribution of linear discriminant analysis (LDA) scores for 

differential microbial taxa (LDA score >4).
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groups than in the control group (Figure 5B), suggesting that their 

correlated microorganisms might in�uence the metabolic pathway 

functions associated with these diseases. At level 3, eight pathways 

exhibited significant differences among groups. In the H group, 

mismatch repair, terpenoid backbone biosynthesis, zeatin 

biosynthesis, vitamin B6 metabolism, and ribosome biogenesis in 

eukaryotes were suppressed, while sulfur metabolism, biotin 

metabolism, and Type I diabetes mellitus pathways were 

activated. The HC group showed similar suppression of zeatin 

biosynthesis, vitamin B6 metabolism, and ribosome biogenesis in 

eukaryotes, alongside activation of sulfur and biotin metabolism 

pathways. In the HT group, mismatch repair, vitamin B6 

FIGURE 5 

Metabolic function distinctions among groups. (A) KEGG microbial gene pathway annotation. (B) Heatmap showing the correlation between the top 

10 microbial species and secondary pathways within the metabolism category, alongside the relative abundance of these secondary pathways. Left 

heatmap: correlation between microbial species and pathways, with color blocks representing correlation strength (red: positive; green: negative). 

P < 0.05, P < 0.01. Right heatmap: relative abundance of secondary pathways, with color intensity representing average relative abundance (Pink 

colors indicate higher abundance). (C) Heatmap of significantly enriched pathways at Level 3. Color intensity represents average relative 

abundance, with darker colors indicating higher relative abundance. *P < 0.05.
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metabolism, and ribosome biogenesis in eukaryotes pathways 

were suppressed (Figure 5C).

3.6 Identification of gut microbiome 
biomarkers using multivariate random 
forests

To further identify fecal microbiome biomarkers for 

hypertension, hyperlipidemia, and their comorbidity, we employed 

a multivariate random forest model at the species level to pinpoint 

key microbial species. A five-factor model demonstrated the 

highest classification accuracy in distinguishing the H group from 

the CTR group (AUC = 1). Compared with the control group, 

Lachnospiraceae bacterium AD3010, Prevotella oulorum, Hallella 

seregens, Prevotella histicola, and P. bacterium MN60 were 

frequently selected in the H group, suggesting their potential as 

efficient microbial markers to differentiate healthy individuals 

from those with concurrent hypertension and hyperlipidemia 

(Figure 6A). In the HC group, species such as E. cecorum, 

Spirosoma sp. 209, Clostridiisalibacter paucivorans, Peptoniphilus 

rhinitidis, and Saccharomyces cerevisiae exhibited high selection 

frequencies, indicating their potential roles in identifying and 

predicting hyperlipidemia (Figure 6B). For the HT group, 

Flavobacterium sp. LM5, Clostridiales bacterium VE202-26, 

Lachnospiraceae bacterium 3-1, Bacteroides fragilis CAG:558, and 

Bacteroides sp. Marseille-P3208T were frequently selected, which 

may serve as microbial markers distinguishing hypertensive 

patients from healthy individuals (Figure 6C).

We then performed correlation analysis between the identified 

key microbial biomarkers and previously detected metabolite 

biomarkers. The results revealed notable positive correlations 

between S. cerevisiae and PC (20:1(11Z)/20:4(5Z,8Z,11Z,14Z)), 

B. sp. Marseille-P3208T and acetaminophen glucuronide, and F 

sp. LM5 and dethiobiotin. In contrast, negative correlations were 

observed between P. histicola and PC(16:0/16:0), P. bacterium 

MN60 and hydrogen phosphate, as well as L. bacterium 3-1 and 

acetaminophen glucuronide (Figures 6D–E, Supplementary 

Table S1). These findings suggest potential associations between 

these microbial species and specific metabolite levels. Significant 

microbe–metabolite pairs were also cross-checked against VMH 

(Supplementary Table S2) and GutMGene (Supplementary 

Table S3). Collectively, these findings suggest that the gut 

microbiota may exhibit distinct enrichment patterns among 

FIGURE 6 

Detection of gut microbiome biomarkers. (A–C) Microbial selection frequency for optimal area under the curve (AUC) between CTR and H (A), CTR 

and HC (B), and CTR and HT (C,D) Heatmap of correlation analysis between key differential microbial species and differential metabolites. The color 

blocks denote the strength of correlation, with red indicating a positive correlation and blue signifying a negative correlation. (E) Correlation network 

analysis between key differential microbial species and differential metabolites. Nodes represent microbial species (green) and metabolites (red), 

while edges indicate significant correlations (P < 0.05). Red edges denote positive correlations, and blue edges represent negative correlations. 

The size of each node corresponds to the strength (degree) of its associations, with larger nodes indicating higher connectivity.
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groups, and these associations may provide preliminary evidence 

of biologically plausible connections to disease phenotypes.

To assess the in�uence of sample size and group effects on 

statistical power, we conducted a one-way ANOVA power 

analysis based on the average group size (power ≈ 0.95, 

assuming an effect size f = 0.5), as well as pairwise comparisons 

assuming a mean difference of 0.8 standard deviations (power = 

0.64–0.68). These results suggest that the current sample size 

provides sufficient power to detect large effect sizes, but may be 

underpowered for medium or small effects. Detailed results of 

the power analysis are provided in Supplementary Table S4.

4 Discussion

Hyperlipidemia principally refers to elevated serum levels of total 

cholesterol, triglycerides, and low-density lipoprotein (LDL), or 

reduced high-density lipoprotein (HDL) levels. This study found 

that compared with patients with hyperlipidemia alone, those with 

concomitant hypertension and hyperlipidemia exhibited not only 

the typical hyperlipidemic profile of high cholesterol and 

triglycerides, but also slightly elevated LDL levels, suggesting that 

hypertension may exacerbate lipid abnormalities. Moreover, 

changes in lymphocyte and monocyte levels may re�ect alterations 

in immune regulatory mechanisms, while variations in red blood 

cell count and hemoglobin concentration correlated with changes 

in hemorheology (15). Significant shifts in these indicators in 

concomitant hyperlipidemia and hypertension suggested that this 

particular medical condition may engage multiple metabolic and 

immune regulatory pathways, in�uencing the physiological state 

of the blood.

Clinically, hypertension and hyperlipidemia manifest metabolic 

imbalance, and our study discovered that the differential 

metabolites predominantly related to lipid, protein, and nucleic 

acid metabolism. Individuals characterized by lower serum levels 

of lysophosphatidylcholine (PC), a biomarker of hypertension, face 

a 3.8-fold increased risk of early vascular aging compared with 

those with higher levels (16). Differential metabolites identified 

in this study, such as phosphatidylethanolamines (PEs), 

phosphatidylinositols (PIs), phosphatidylcholines (PCs), and 

sphingomyelins (SMs), are common in sphingolipid metabolism. 

For instance, PCs were found to be associated with endothelial 

function, potentially through regulation of endothelial-derived 

nitric oxide, a vasodilator involved in maintaining vascular tone 

(17). Additionally, PCs are involved in triglyceride synthesis 

and metabolism, which may in�uence cholesterol transport and 

overall lipid balance, which in turn in�uences blood triglyceride 

levels (18, 19). PIs, a universal signaling molecule, were associated 

with cell activity by directly interacting with membrane proteins 

such as ion channels and G protein-coupled receptors (GPCRs), 

or by recruiting cytoplasmic proteins to the membrane. These 

processes likely involve thyroid hormone signaling (20). SMs, a key 

component of the cell membrane, have been reported to be 

involved in the synthesis and release of thyroid hormones (21). 

Previous studies suggest that impairments in the release and 

signaling of thyroid hormones could lead to hypothyroidism, 

which may contribute to the development of hypertension and 

hyperlipidemia (22, 23). Protein metabolism is primarily re�ected 

in the synthesis of amino acids such as glycine, proline, and 

glutamate, which are involved in protein and lipid synthesis. 

These amino acids in�uence the transport of cholesterol and 

triglycerides, and are intimately connected with the excretion and 

reabsorption of sodium (24). Certain proteins, especially peptides, 

may regulate vascular tension, affecting vascular relaxation and 

contraction. For example, neuropeptides like angiotensin 

and catecholamines play non-negligible roles in hypertension 

development (25, 26). Metabolites involved in nucleic acid 

metabolism, such as 2−O−Methylcytosine and 3−Methylguanine, 

primarily modify bases and DNA. Nucleic acid is associated with 

lipid metabolisms, especially in the purine and pyrimidine 

pathways, where their metabolites can in�uence lipid biosynthesis 

and degradation (27). The differential metabolites between disease 

groups and healthy individuals were significantly enriched in 

pathways related to amino acid metabolism, purine metabolism, 

and glycolipid metabolism. These findings suggest that these 

metabolites may in�uence disease progression through lipid, 

protein, and nucleic acid metabolic pathways, especially during the 

pre-symptomatic phase.

In exploring the gut microbiome composition of patients with 

hypertension, hyperlipidemia, and both conditions, we discovered 

a notable decrease in the abundance of a particular microbial 

phylum—Fibrobacteres—in the H group. An imbalance in 

gut microbiota may be associated with immune and metabolic 

diseases (28). We hypothesized that hyperlipidemia may cause 

dysregulation in the immune system and metabolism, particularly 

lipid metabolism, thus leading to a lower abundance of 

Fibrobacteres (29). At the genus level, common genera such as 

Clostridiisalibacter, Allobaculum, and Bariatricus can produce 

beneficial short-chain fatty acids (SCFAs), such as propionate, 

butyrate, and acetate. These SCFAs play a crucial role in the 

breakdown of complex polysaccharides, thereby facilitating 

their intestinal absorption (30). Gut microbiota dysbiosis can lead 

to the secretion of large amounts of amyloid proteins and 

lipopolysaccharides, which have been implicated in conditions like 

obesity, type 2 diabetes, and hyperglycemia, all of which are 

associated with lipid dysregulation (28, 31). Most genera showed 

differential abundance in the HC group, leading us to conjecture 

that gut microbiota profoundly in�uence hyperlipidemic diseases. 

This is particularly true for genera involved in polysaccharide 

breakdown or lipopolysaccharide secretion, as their overabundance 

may be a risk factor for the development of hyperlipidemia.

Metabolic functions were the most affected by alterations in 

the microbiome in patients from the disease groups. Specifically, 

E. coli, B. vulgatus, and an unidentified species of Alistipes were 

significantly related to multiple pathways, including lipid 

metabolism, carbohydrate metabolism, and energy metabolism. 

E. coli, one of the most common bacterial species in the human 

gut, plays in a vital role in the decomposition and absorption of 

food. It aids the host in nutrient acquisition and vitamins K/B 

complex synthesis. In addition, E. coli also modulates immune 

responses and maintains intestinal immune balance by interacting 

with host immune system (32). B. vulgatus engages in the 
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fermentation of carbohydrates, utilization of nitrogenous substances, 

and biotransformation of bile acids and other sterols. It maintains 

homeostasis and prevents bacterial and viral infections through 

immune regulation (33). Further correlation analysis revealed 

that lipid metabolites, particularly PCs and SMs, were more 

susceptible to the in�uence of gut microbiota. Notably, Gram- 

negative genera such as Prevotella, Flavobacterium, and 

Prevotellaceae exhibited negative correlations with PCs and SMs, 

whereas Gram-positive Clostridiisalibacter, Peptoniphilus, and 

Enterococcus showed positive correlations. These differences may 

be attributed to the distinct cell wall and membrane structures 

between Gram-negative and Gram-positive bacteria, with PCs and 

SMs being major components of their cell membranes. In 

particular, lipopolysaccharides in the outer membrane of Gram- 

negative bacteria might interact with membrane components like 

phosphatidylcholine, potentially in�uencing cellular signaling and 

immune responses (34, 35). While this observation may represent 

a novel mechanistic link between microbial composition and host 

lipid metabolism, further studies are necessary to validate this 

hypothesis. Moreover, we identified notable positive correlations 

between specific microbes and metabolites, including S. cerevisiae 

with PC (20:1(11Z)/20:4(5Z,8Z,11Z,14Z)), B. sp. Marseille-P3208T 

with acetaminophen glucuronide, and F. sp. LM5 with 

dethiobiotin. It has been reported that S. cerevisiae can synthesize 

fatty acids, a key component in lipid synthesis (36, 37). 

Acetaminophen glucuronide is known to participate in liver 

metabolism, particularly in glucuronidation and sulfation pathways 

(38). This suggests the possibility that B. sp. Marseille-P3208T is 

linked to host metabolic processes. In summary, our findings 

highlight significant correlations between gut microbiota and 

metabolites relevant to hypertension, hyperlipidemia, and their 

coexistence, suggesting potential but non-causal links between 

microbial composition and host metabolic pathways.

Our study provides a preliminary analysis of the molecular 

mechanisms underlying hypertension, hyperlipidemia, and their 

comorbidities through multi-omics approaches. However, several 

limitations should be noted. First, the relatively small sample 

size with uneven group distribution may reduce the statistical 

power and limit the generalizability of our findings. Future 

studies with larger, independent cohorts are warranted to 

validate the identified features and confirm the robustness and 

predictive value of our models. Second, factors such as recent 

dietary intake, circadian rhythms, and physical activity were not 

uniformly controlled, which may have introduced variability in 

the metabolomic and microbiome profiles. Future studies should 

adopt more standardized sampling protocols to minimize these 

sources of biological variation. Third, this study employs a 

cross-sectional design, which limits the ability to infer causal 

relationships of diseases. While differences in metabolite levels, 

microbial community composition, and other factors have been 

identified between the disease and control groups, it remains 

unclear whether these differences are causes or consequences of 

the diseases. Longitudinal studies are needed to elucidate the 

directionality and potential mechanistic relevance of these 

associations. Finally, this study lacks functional validation of key 

findings. While Flavobacterium sp. LM5 was identified as a 

hypertension biomarker, in vitro experiments are required to 

confirm its role in hypertensive patients.

5 Conclusions

In conclusion, our multi-omics investigation revealed notable 

molecular signatures across the blood metabolome and gut 

microbiome that are associated with hypertension, hyperlipidemia, 

and their comorbid conditions. Key DIMs were linked to 

disruptions in sphingolipid, amino acid, and nucleotide 

metabolism, which may be related to changes in vascular tone, 

lipid homeostasis, and thyroid signaling. Reduced abundances of 

beneficial gut microbes like Fibrobacteres and enriched species 

including E. coli and B. vulgatus were correlated with deviations in 

lipid and carbohydrate metabolism. These integrated omics 

analyses provide a systems-level view of the molecular pathways 

driving these medical conditions, offering potential diagnostic 

biomarkers and illuminating targets for therapeutic manipulation. 

It must be emphasized that the identified metabolites and 

microbial taxa are candidate biomarkers and need functional 

validation before any clinical application can be considered. 

Further multi-omics examination encompassing broader patient 

cohorts can serve to validate and refine the mechanistic models 

towards enabling personalized therapeutic interventions. Overall, 

our work lays the foundation for unraveling the intricate disease 

networks underlying these prevalent cardiovascular risks, offering 

insights into risk stratification, diagnosis, and treatment outcomes.

Data availability statement

The original contributions presented in the study are publicly 

available. The raw metagenomic data can be found in the NCBI 

Sequence Read Archive (SRA) under the BioProject accession 

number PRJNA1277202. The metabolomics data can be found 

in the MetaboLights repository under the accession number 

MTBLS13039.

Ethics statement

The studies involving humans were approved by the Medical 

Ethics Committee of Yan’an Hospital in Kunming, Yunnan 

Province (2020-096-01). The studies were conducted in 

accordance with the local legislation and institutional 

requirements. The participants provided their written informed 

consent to participate in this study. Written informed consent 

was obtained from the individual(s) for the publication of any 

potentially identifiable images or data included in this article.

Author contributions

WL: Writing – review & editing, Writing – original draft, Formal 

analysis, Project administration, Data curation, Supervision, 

Li et al.                                                                                                                                                                  10.3389/fcvm.2025.1593688 

Frontiers in Cardiovascular Medicine 12 frontiersin.org



Methodology. DZ: Formal analysis, Writing – original draft, Data 

curation, Software. YJ: Investigation, Writing – review & editing, 

Data curation, Methodology. HT: Methodology, Investigation, 

Project administration, Visualization, Writing – review & editing. 

NM: Visualization, Software, Conceptualization, Writing – review 

& editing, Methodology. JL: Investigation, Methodology, Writing – 

review & editing, Visualization. NG: Visualization, Methodology, 

Writing – review & editing. XH: Conceptualization, Investigation, 

Methodology, Writing – original draft, Visualization. 

MD: Visualization, Investigation, Writing – review & editing, 

Conceptualization. XJ: Funding acquisition, Resources, 

Supervision, Conceptualization, Project administration, Validation, 

Writing – review & editing.

Funding

The author(s) declare that financial support was received for 

the research and/or publication of this article. This work was 

supported by the Central Government Guides Local Science and 

Technology Development Fund Projects under the Science 

and Technology Department of Yunnan Province (No. 

202307AB110005), (No. 202107AA110003), National Natural 

Science Foundation of China (81460209), the Yunnan Provincial 

Science and Technology Department and Kunming Medical 

University Joint Special Fund (No. 202401AY070001-320), the 

Kunming Municipal Health Commission Scientific Research 

Project (No. 2023-03-01-003), the Open Project of Yunnan 

Provincial Key Laboratory of Cardiovascular Diseases 

(No.2024SPR-07), Key Laboratory of Cardiovascular Disease 

of Yunnan Province, China (2018DG008), Clinical Medical 

Center for Cardiovascular Disease of Yunnan Province 

(ZX-2019-08-01), Clinical Medical Research Center for 

Cardiovascular disease of Yunnan Province (202102AA310003), 

Key Laboratory of Tumor Immune Control of Yunnan Province 

(No. 2017DG004-01), and Kunming Health Science and 

Technology Talent Program: Reserve Talent in Medical Science 

and Technology (2023-SW (Reserve)-10).

Conflict of interest

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could 

be construed as a potential con�ict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 

article has been generated by Frontiers with the support of 

artificial intelligence and reasonable efforts have been made to 

ensure accuracy, including review by the authors wherever 

possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 

authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or 

claim that may be made by its manufacturer, is not guaranteed 

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found 

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2025. 

1593688/full#supplementary-material

References

1. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering 
treatment on cardiovascular outcomes and mortality: 13—benefits and adverse events 
in older and younger patients with hypertension: overview, meta-analyses and meta- 
regression analyses of randomized trials. J Hypertens. (2018) 36(8):1622–36. doi: 10. 
1097/HJH.0000000000001787

2. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay 
between lipids and immune cells. Curr Opin Lipidol. (2016) 27(3):209–15. doi: 10. 
1097/MOL.0000000000000302

3. Lee KJ, Ryu J-K, Cho Y-H, Shin WY, Kim JS, Yoon YW, et al. Effectiveness 
and safety of a fixed-dose combination of valsartan and rosuvastatin (rovatitan® 

tablet) in patients with concomitant hypertension and hyperlipidemia: an 
observational study. Drug Des Devel Ther. (2023) 17:1047–62. doi: 10.2147/DDDT. 
S391288

4. Ning B, Chen Y, Waqar AB, Yan H, Shiomi M, Zhang J, et al. Hypertension 
enhances advanced atherosclerosis and induces cardiac death in watanabe heritable 
hyperlipidemic rabbits. Am J Pathol. (2018) 188(12):2936–47. doi: 10.1016/j.ajpath. 
2018.08.007

5. Qiu L, Wang W, Sa R, Liu F. Prevalence and risk factors of hypertension, 
diabetes, and dyslipidemia among adults in northwest China. Int J Hypertens. 
(2021) 2021:1–10. doi: 10.1155/2021/5528007

6. Xu Z, Yang J, Hu J, Song Y, He W, Luo T, et al. Primary aldosteronism in 
patients in China with recently detected hypertension. J Am Coll Cardiol. (2020) 
75(16):1913–22. doi: 10.1016/j.jacc.2020.02.052

7. Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, et al. 
Biomarker-estimated �avan-3-ol intake is associated with lower blood pressure in 
cross-sectional analysis in EPIC norfolk. Sci Rep. (2020) 10(1):17964. doi: 10.1038/ 
s41598-020-74863-7

8. Akira K, Hichiya H, Morita M, Shimizu A, Mitome H. Metabonomic study on 
the biochemical response of spontaneously hypertensive rats to chronic taurine 
supplementation using 1H NMR spectroscopic urinalysis. J Pharm Biomed Anal. 
(2013) 85:155–61. doi: 10.1016/j.jpba.2013.07.018

9. Tinawi M. Pathophysiology, evaluation and management of metabolic acidosis. 
Arch Clin Biomed Res. (2021) 5(1):85–109. doi: 10.26502/acbr.50170153

10. Tian L, Fu M. The relationship between high density lipoprotein subclass profile 
and plasma lipids concentrations. Lipids Health Dis. (2010) 9(1):1–9. doi: 10.1186/ 
1476-511X-9-118

11. Shapiro MD, Fazio S. Apolipoprotein B-containing lipoproteins and 
atherosclerotic cardiovascular disease. F1000Res. (2017) 6:134. doi: 10.12688/ 
f1000research.9845.1

Li et al.                                                                                                                                                                  10.3389/fcvm.2025.1593688 

Frontiers in Cardiovascular Medicine 13 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2025.1593688/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1593688/full#supplementary-material
https://doi.org/10.1097/HJH.0000000000001787
https://doi.org/10.1097/HJH.0000000000001787
https://doi.org/10.1097/MOL.0000000000000302
https://doi.org/10.1097/MOL.0000000000000302
https://doi.org/10.2147/DDDT.S391288
https://doi.org/10.2147/DDDT.S391288
https://doi.org/10.1016/j.ajpath.2018.08.007
https://doi.org/10.1016/j.ajpath.2018.08.007
https://doi.org/10.1155/2021/5528007
https://doi.org/10.1016/j.jacc.2020.02.052
https://doi.org/10.1038/s41598-020-74863-7
https://doi.org/10.1038/s41598-020-74863-7
https://doi.org/10.1016/j.jpba.2013.07.018
https://doi.org/10.26502/acbr.50170153
https://doi.org/10.1186/1476-511X-9-118
https://doi.org/10.1186/1476-511X-9-118
https://doi.org/10.12688/f1000research.9845.1
https://doi.org/10.12688/f1000research.9845.1


12. Panayiotou A, Griffin M, Georgiou N, Bond D, Tyllis T, Tziakouri-Shiakalli C, 
et al. Apob/ApoA1 ratio and subclinical atherosclerosis. Int Angiol. (2008) 27(1):74.

13. Holland SM. Principal Components Analysis (PCA). Athens, GA: Department of 
Geology, University of Georgia (2008). p. 30602 (2501).

14. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. 
Metaboanalyst 5.0: narrowing the gap between raw spectra and functional insights. 
Nucleic Acids Res. (2021) 49(W1):W388–96. doi: 10.1093/nar/gkab382

15. Paquette M, Bernard S, Baass A. Hemoglobin concentration, hematocrit and 
red blood cell count predict major adverse cardiovascular events in patients with 
familial hypercholesterolemia. Atherosclerosis. (2021) 335:41–6. doi: 10.1016/j. 
atherosclerosis.2021.09.015

16. Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, 
Melander O, et al. Metabolomic signature of early vascular aging (EVA) in 
hypertension. Front Mol Biosci. (2020) 7:12. doi: 10.3389/fmolb.2020.00012

17. Zhang Q, Yao D, Rao B, Jian L, Chen Y, Hu K, et al. The structural basis for the 
phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat Commun. 
(2021) 12(1):6869. doi: 10.1038/s41467-021-27244-1

18. Furse S, White SL, Meek CL, Jenkins B, Petry CJ, Vieira MC, et al. Altered 
triglyceride and phospholipid metabolism predates the diagnosis of gestational diabetes 
in obese pregnancy. Mol Omics. (2019) 15(6):420–30. doi: 10.1039/C9MO00117D

19. Pownall HJ, Ehnholm C. Enhancing reverse cholesterol transport: the case for 
phosphatidylcholine therapy. Curr Opin Lipidol. (2005) 16(3):265–8. doi: 10.1097/01. 
mol.0000169345.15450.4b

20. Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4, 5-bisphosphate and 
diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. 
Cell Calcium. (2009) 45(6):574–82. doi: 10.1016/j.ceca.2009.02.007

21. Xu Z, Ikuta T, Kawakami K, Kise R, Qian Y, Xia R, et al. Structural basis of 
sphingosine-1-phosphate receptor 1 activation and biased agonism. Nat Chem Biol. 
(2022) 18(3):281–8. doi: 10.1038/s41589-021-00930-3

22. Jankauskas SS, Morelli MB, Gambardella J, Lombardi A, Santulli G. Thyroid 
hormones regulate both cardiovascular and renal mechanisms underlying 
hypertension. J Clin Hypertens. (2021) 23(2):373. doi: 10.1111/jch.14152

23. Mavromati M, Jornayvaz FR. Hypothyroidism-associated dyslipidemia: 
potential molecular mechanisms leading to NAFLD. Int J Mol Sci. (2021) 
22(23):12797. doi: 10.3390/ijms222312797

24. Luo J, Yang H, Song B-L. Mechanisms and regulation of cholesterol homeostasis. 
Nat Rev Mol Cell Biol. (2020) 21(4):225–45. doi: 10.1038/s41580-019-0190-7

25. Herichova I, Szantoova K. Renin-angiotensin system: upgrade of recent knowledge 
and perspectives. Endocr Regul. (2013) 47(1):39–52. doi: 10.4149/endo_2013_01_39

26. Segal S, Wang SY. The effect of maternal catecholamines on the caliber of 
gravid uterine microvessels. Anesth Analg. (2008) 106(3):888–92. doi: 10.1213/ane. 
0b013e3181617451

27. Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, et al. De novo pyrimidine 
biosynthetic complexes support cancer cell proliferation and ferroptosis defence. 
Nat Cell Biol. (2023) 25:836–47. doi: 10.1038/s41556-023-01146-4

28. Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 
diabetes mellitus on organ metabolism and the immune system. Front Immunol. 
(2020) 11:1582. doi: 10.3389/fimmu.2020.01582

29. Wang Y, Yu H, He J. Role of dyslipidemia in accelerating in�ammation, 
autoimmunity, and atherosclerosis in systemic lupus erythematosus and other 
autoimmune diseases. Discov Med. (2020) 30(159):49–56.

30. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut 
microbiota and their impact on human metabolism. Gut Microbes. (2016) 
7(3):189–200. doi: 10.1080/19490976.2015.1134082

31. Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer’s 
disease. J Alzheimer’s Dis. (2017) 58(1):1–15. doi: 10.3233/JAD-161141

32. Mateus A, Hevler J, Bobonis J, Kurzawa N, Shah M, Mitosch K, et al. The 
functional proteome landscape of Escherichia coli. Nature. (2020) 588(7838):473–8. 
doi: 10.1038/s41586-020-3002-5

33. Tan H, Zhai Q, Chen W. Investigations of Bacteroides spp. Towards next-generation 
probiotics. Food Res Int. (2019) 116:637–44. doi: 10.1016/j.foodres.2018.08.088

34. Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A 
journey from structure to function of bacterial lipopolysaccharides. Chem Rev. 
(2021) 122(20):15767–821. doi: 10.1021/acs.chemrev.0c01321

35. Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, et al. Dong C: 
structural basis for outer membrane lipopolysaccharide insertion. Nature. (2014) 
511(7507):52–6. doi: 10.1038/nature13464

36. Mlynarska E, Wasiak J, Gajewska A, Bilinska A, Stec G, Jasinska J, et al. Gut 
Microbiota and gut-brain axis in hypertension: implications for kidney and 
cardiovascular health-A narrative review. Nutrients. (2024) 16(23):4079. doi: 10. 
3390/nu16234079

37. van Roermund CW, Waterham HR, Ijlst L, Wanders RJ. Fatty acid metabolism 
in Saccharomyces cerevisiae. Cell Mol Life Sci. (2003) 60(9):1838–51. doi: 10.1007/ 
s00018-003-3076-x

38. Noda T, Kato R, Ozato Y, Kawai Y, Yamamoto M, Kagawa Y, et al. Decreased 
plasma Acetaminophen glucuronide/Acetaminophen concentration ratio warns the 
onset of Acetaminophen-induced liver injury. Biopharm Drug Dispos. (2022) 
43(3):108–16. doi: 10.1002/bdd.2316

Li et al.                                                                                                                                                                  10.3389/fcvm.2025.1593688 

Frontiers in Cardiovascular Medicine 14 frontiersin.org

https://doi.org/10.1093/nar/gkab382
https://doi.org/10.1016/j.atherosclerosis.2021.09.015
https://doi.org/10.1016/j.atherosclerosis.2021.09.015
https://doi.org/10.3389/fmolb.2020.00012
https://doi.org/10.1038/s41467-021-27244-1
https://doi.org/10.1039/C9MO00117D
https://doi.org/10.1097/01.mol.0000169345.15450.4b
https://doi.org/10.1097/01.mol.0000169345.15450.4b
https://doi.org/10.1016/j.ceca.2009.02.007
https://doi.org/10.1038/s41589-021-00930-3
https://doi.org/10.1111/jch.14152
https://doi.org/10.3390/ijms222312797
https://doi.org/10.1038/s41580-019-0190-7
https://doi.org/10.4149/endo_2013_01_39
https://doi.org/10.1213/ane.0b013e3181617451
https://doi.org/10.1213/ane.0b013e3181617451
https://doi.org/10.1038/s41556-023-01146-4
https://doi.org/10.3389/fimmu.2020.01582
https://doi.org/10.1080/19490976.2015.1134082
https://doi.org/10.3233/JAD-161141
https://doi.org/10.1038/s41586-020-3002-5
https://doi.org/10.1016/j.foodres.2018.08.088
https://doi.org/10.1021/acs.chemrev.0c01321
https://doi.org/10.1038/nature13464
https://doi.org/10.3390/nu16234079
https://doi.org/10.3390/nu16234079
https://doi.org/10.1007/s00018-003-3076-x
https://doi.org/10.1007/s00018-003-3076-x
https://doi.org/10.1002/bdd.2316

	Exploring the molecular intersection for hypertension, hyperlipidemia and their comorbid conditions through multi-omics approaches
	Background
	Methods
	Participant recruitment and inclusion criteria
	Sample collection
	Physiological and biochemical assays
	LC-MS-based (chromatography-mass spectrometry) liquid metabolomics
	Bioinformatics analysis of metabolomics data
	Metagenomics analysis
	Statistical power and effect size analysis

	Results
	Variations in physiological and biochemical parameters among groups
	Metabolomic profiling reveals differential abundance of metabolites and enriched pathways in disease groups
	Exploration of serum metabolomic biomarkers
	A metagenomic insight into gut microbiome variances among groups
	Discrepancies in metabolic functions across groups
	Identification of gut microbiome biomarkers using multivariate random forests

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


