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Atrial fibrillation (AF) is the most prevalent sustained arrhythmia and a major

contributor to stroke and heart failure. Despite progress in management,

challenges persist in early detection, risk stratification, and personalised

treatment. Artificial intelligence (AI), especially machine learning (ML) and deep

learning (DL), has emerged as a transformative tool in AF care. This scoping

review examines the applications of AI across key domains: detection, risk

prediction, treatment optimisation, and remote monitoring. AI-driven models

enhance AF detection by analysing ECGs and wearable device data with high

accuracy, enabling early identification of asymptomatic cases. By incorporating

diverse clinical, imaging, and genomic data, predictive models outperform

conventional risk scores in estimating stroke risk and disease progression. In

treatment, AI assists in personalised anticoagulation decisions, catheter

ablation planning, and optimising antiarrhythmic drug selection. Furthermore,

AI-powered remote monitoring integrates wearable-derived insights with real-

time decision support, improving patient engagement and adherence. Despite

these advances, significant challenges persist, including algorithm

transparency, bias, data integration, and regulatory hurdles. Explainable AI (XAI)

is crucial to ensure clinician trust and facilitate implementation into clinical

workflows. Future research should focus on large-scale validation, multi-

modal data integration, and real-world AI deployment in AF management. AI

has the potential to revolutionise AF care, shifting from reactive treatment to

proactive, personalised management. Addressing current limitations through

interdisciplinary collaboration will be key to realising AI’s full potential in

clinical practice and improving patient outcomes.

KEYWORDS

atrial fibrillation, artificial intelligence, machine learning, ECG, risk stratification, remote

monitoring, personalised medicine

TYPE Review
PUBLISHED 24 June 2025
DOI 10.3389/fcvm.2025.1596574

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1596574&domain=pdf&date_stamp=2020-03-12
mailto:andre.ng@leicester.ac.uk
https://doi.org/10.3389/fcvm.2025.1596574
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1596574/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1596574/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1596574/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1596574/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1596574
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Introduction

Atrial fibrillation (AF) is the most common sustained

arrhythmia worldwide, posing significant public health and

clinical challenges due to its associated risks of stroke, heart

failure, and mortality (1–3). AF management can be challenging,

especially in the developing world, which has limited resources

(4–11). However, AF is often intermittent and asymptomatic,

making timely diagnosis challenging (12).

Artificial intelligence (AI) is the simulation of human

intelligence in computers or machines, enabling them to perform

tasks that typically require cognitive functions such as learning,

reasoning, and problem-solving (13). Within AI, machine

learning (ML) denotes a subset where algorithms learn from data

to make predictions or decisions without being explicitly

programmed (14). For example, ML can identify

electrocardiogram (ECG) data patterns to distinguish between

normal rhythm and atrial fibrillation. A more specialised subset

of ML is deep learning (DL), which utilises layered neural

networks inspired by the human brain. These models can

process complex and high-dimensional data, such as continuous

ECG signals or imaging data, and are particularly adept at

uncovering subtle features that may be imperceptible to

human clinicians.

AI techniques are increasingly employed in AF care to improve

diagnostic accuracy, risk stratification, and treatment

personalisation. For instance, DL algorithms have been shown to

detect paroxysmal AF from sinus rhythm ECGs by learning

subclinical signatures invisible to traditional analyses. Thus, a

foundational understanding of these AI categories is essential for

appreciating their applications in AF management, as explored

throughout this review.

Over the last decade, AI has gained considerable momentum

and is quickly becoming a mature discipline (15, 16). McCarthy

coined the term AI in the late 1950s to denote the simulation of

human intelligence in machines (17). Therefore, AI is not

necessarily a newcomer, although most of its recent popularity is

due to machine learning (ML). ML is a branch of AI that

develops algorithms that use data to make predictions and

improve their accuracy without being explicitly programmed to

do so (18).

AI–particularly ML and DL techniques – have shown

promise in improving AF detection, risk assessment, and

management (19, 20) in recent years. Researchers are exploring

AI across the spectrum of AF care, from early diagnosis using

ECGs and wearables to personalised treatment selection.

Despite encouraging results, there remain significant gaps in

the literature and barriers to clinical implementation. Due

to substantial advantages in big data processing, the use of

AI in cardiovascular fields has recently aroused much

attention. The use of AI in AF research has also increased

significantly since 2012 (21).

The following article provides a structured overview of key

research areas, highlighting current advances, unmet needs, and

potential methodologies for future exploration.

AI-driven early detection and diagnosis

AI algorithms can greatly enhance the early detection of AF by

analysing large volumes of heart rhythm data from ECGs and

wearable devices (22). Some currently available wearable devices

are demonstrated in Figure 1. A traditional while the 12-lead

ECG is considered the diagnostic gold standard for confirming

AF, its sensitivity is limited in detecting paroxysmal AF (23).

This is because the 12-lead ECG captures only a brief moment of

cardiac electrical activity; thus, if the arrhythmia is not active

during the recording, it may be missed. In contrast, wearable

devices and continuous monitors can provide longer-duration

rhythm surveillance, increasing the likelihood of detecting

intermittent or asymptomatic episodes. ML models have shown

high accuracy in detecting AF from single-lead ECGs or

photoplethysmography (PPG) signals. For example, deep neural

networks have achieved sensitivities and specificities in the 90%–

99% range for classifying AF vs. normal rhythm using wearable

ECG or PPG inputs (24, 25). Smartwatches equipped with FDA-

cleared AF detection algorithms (using PPG and occasional ECG

recordings) are increasingly popular and can reliably identify

irregular pulse rhythms consistent with AF (26, 27). Notably, one

smartphone-based PPG algorithm showed ∼89% sensitivity and

∼99% specificity compared to ECG diagnosis (28), highlighting

the potential of ubiquitous devices for screening. This was also

supported by a recent meta-analysis showing sensitivity of 92%

and specificity of 96% in detecting AF on a single-lead ECG (29).

AI can also detect subtle patterns in normal sinus ECGs that

predict AF onset – in one study, an AI model predicted AF up

to 4 h before an episode with an area under the curve (AUC) of

0.94. Another study of 180,922 patients showed that an AI-

enabled ECG taken in normal sinus rhythm allows identification

at the point of care of patients with AF (30).

Furthermore, the AI model predicts future episodes of AF with

AUC 0.79 (0.72–0.86) in 122,394 patients, achieving the best

prediction performance for males older than 70 years (31). These

advances enable the detection of silent AF that would otherwise

go unnoticed, allowing earlier interventions (e.g., starting

anticoagulation to prevent stroke in asymptomatic patients) (32,

33). Despite promising accuracy, the real-world implementation

of AI-driven AF detection faces challenges. Wearable-based

algorithms can produce false positives or inconclusive alerts that

require confirmatory traditional ECG (34–36). Many patients

identified through smartwatch screening do not follow up with a

physician, limiting clinical impact (37). Data from large digital

health studies (Apple Heart Study and Huawei Heart Study)

suggest that while technology can detect AF and even reduce

stroke or hospitalisation rates when accompanied by proper

follow-up, ensuring adherence to alerts by patients and providers

is challenging (37, 38). There is also variability in performance

across different devices and patient populations due to data

quality and algorithm differences.

Future research may improve signal processing and ML

robustness to reduce false alarms (for example, using ensemble

models that combine ECG, PPG, and accelerometer data for
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contextual intelligence). Unsupervised learning might uncover new

AF-related patterns (e.g., in heart rate variability) that aid earlier

detection (39). Moreover, integrating wearable data into clinical

workflows via secure health information systems can ensure that

clinicians are notified of significant events (40). Developing

patient engagement strategies (adaptive app notifications or

health coaching chatbots) to encourage prompt action after an

AF alert will also be crucial to translating early detection into

improved outcomes. While early detection of AF through

wearable or implantable devices offers clear benefits, such as

stroke prevention and timely intervention, it also raises concerns

about overdiagnosis and overtreatment. The number needed to

screen (NNS) to prevent one stroke varies depending on the

population risk profile and screening method, with estimates

ranging from 83 to 300 in moderate-risk populations. However,

this remains an area of ongoing investigation (41).

Moreover, treating every detected AF episode with

anticoagulation, especially short, asymptomatic episodes, may not

be warranted. Recent evidence from the NOAH-AFNET 6 and

ARTESiA trials suggests that oral anticoagulation in patients with

device-detected subclinical AF may not significantly reduce

stroke risk and might increase bleeding risk, particularly in

patients without other high-risk features (42, 43). These findings

highlight that not all AF episodes carry equal clinical risk, and

treatment decisions should consider AF burden, episode

duration, comorbidities, and patient-specific stroke risk.

As such, integrating AI-powered monitoring must complement

clinician oversight and risk-based interpretation rather than

automatically escalate to treatment. Future AI tools may help

stratify the most clinically relevant episodes, aligning screening

with personalised therapeutic thresholds. Many AI models using

wavelets and ECG signals have shown high classification

performance in AF detection, often exceeding 95% accuracy.

These models vary in complexity and validation methods, as

summarised in Table 1. High-quality studies, including large

prospective cohorts and randomised trials assessing wearable-

based AF detection, are summarised in Table 2.

AI for risk stratification and prediction
of stroke or complications

Risk stratification is vital in AF to identify high-risk stroke,

heart failure, or disease progression patients. Traditional clinical

risk scores like CHA₂DS₂-VA are widely used for estimating

stroke risk, but they have only modest discriminatory ability

(C-statistic around 0.60) and ignore potentially important factors

(70, 71). AI-based models offer a more individualised approach.

Machine learning algorithms can ingest a wide range of clinical

features – including demographics, comorbidities, lab results,

imaging findings, and even social determinants of health – to

predict adverse outcomes. Studies have shown that ML models

FIGURE 1

Some of the market’s most used wearable devices to diagnose atrial fibrillation and their mechanism of detection. PPG, photoplethysmography; AF,

atrial fibrillation; PPG; photoplethysmography.
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outperform conventional scoring. For example, a convolutional

neural network model achieved an AUC of 0.70 for predicting

near-term stroke in AF patients, significantly better than the

<0.50 AUC of CHA₂DS₂-VA in the same cohort. Researchers

note that current scores are “rudimentary”, AI can capture

additional risk predictors (like chronic kidney disease, prior heart

failure, or socio-environmental factors) that improve accuracy

(72, 73). Likewise, ML has been applied to predict other

complications: one report used an AI algorithm on clinical and

imaging data to identify patients likely to progress from

paroxysmal to persistent AF or to develop heart failure (19).

Another model could predict postoperative AF (a common

surgical complication) with ∼87% sensitivity and 83% specificity,

enabling prophylactic strategies (74).

Stroke prediction and other outcomes

A major focus is AI use for stroke risk prediction in AF beyond

standard scoring. ML models have been trained on extensive

electronic health record datasets to calculate stroke risk

automatically; these models can incorporate nuanced patterns

(e.g., burden of AF, patterns of blood pressure control, or brain

imaging markers) that static clinical scores cannot (75). Early

results are encouraging, but validation is still required. Similarly,

AI models have demonstrated the ability to predict AF

recurrence after catheter ablation, guiding follow-up intensity and

additional therapy. For instance, a DL algorithm using

procedural data and patient characteristics predicted post-

ablation AF recurrence with approximately 85% accuracy (76).

TABLE 1 Performance of selected major AF classification studies using wavelets and AI on ECG.

Study and year Year AI model Evaluation method Accuracy

Xu et al., (44) 2021 SVM-KNN-DT-ELM Fold cross validation 98.6%

Singh et al., (45) 2020 SVM-LSTM Fold cross validation 99.4%

Abdullah et al. (46) 2020 CNN-LSTM Fold cross validation 98.1%

Ullah et al. (47) 2020 2-D CNN Fold cross validation 99.1%

Zhao et al. (48) 2020 DCNN Fold cross validation 87.8%

Nurmaini et al. (49) 2020 CNN-RNN-DNNs Fold cross validation 99.1%

Kora et al. (50) 2019 SVM-KNN Not published 94%-99.5%

Chashmi et al. (51) 2019 NN-SVM 10-fold cross validation 99%

Alarsan et al. (52) 2019 DT-RF-GDB Fold cross validation 98%

Anwar et al. (53) 2018 NN 3-fold cross validation 99.8%

Lassoued et al. (54) 2017 ANN-MLP and neurofuzzy GD +Momentum 99%

Xin et al. (55) 2017 SVM Not published 92%

Filos et al. (56) 2017 SVM Not published 93.8%

Kaya et al. (57) 2017 DT-SVM-NN Fold cross validation 98.9%-99.3%

Saraswat et al. (58) 2017 PNN Fold cross validation 100%

Dewangan et al. (59) 2016 ANN Not published 87%

Thomas et al. (60) 2015 ANN Fold cross validation 94.6%

Barmase et al. (61) 2013 Markov Fold cross validation 99.8%

Sarkaleh et al. (62) 2012 MLP-NN Fold cross validation 96.5%

Kim et al. (63) 2011 ELM Not published 97.9%

SVM, support vector machines; KNN, K-nearest neighbour; DT, decision trees; ELM, extreme learning machine; LSTM, long short-term memory; CNN, convolutional neural network; RNN,

recurrent neural network; DNN, deep neural network; NN, neural network; RF, random forests; GBD, gradient-boosted trees; ANN, artificial neural network; MLP, multilayer perceptron; PNN,

probabilistic neural network.

TABLE 2 Key evidence from high-quality studies on wearables for AF detection.

Study name and
year

Study type Device/technology Sample size Main findings

Apple Heart Study, (64) Prospective cohort

study

Apple Watch (PPG-based) 419,297 PPV: 84% for irregular rhythm notification indicating AF

Huawei Heart Study, (38) Prospective cohort

study

Huawei Watch (PPG-based) 246,541 PPV of irregular pulse notifications: 91.6%; confirmed AF in 87%

mSToPS Trial, (65) RCT Zio XT patch (ECG-based) 2,659 AF newly diagnosed in 6.3% of actively monitored vs. 2.3% in controls

REHEARSE-AF Trial,

(66)

RCT AliveCor Kardia (single-lead

ECG)

1,001 AF detection significantly increased (3.8% vs. 1%) using wearable vs.

routine care

SCREEN-AF Trial, (67) RCT AliveCor KardiaMobile ECG 856 aged ≥ years

old

Increased AF detection in high-risk elderly patients (5.3% vs. 0.5% in

routine care)

Fitbit Heart Study, (68) Prospective cohort

study

Fitbit PPG 455,699 High accuracy (PPV: 98%) for AF detection in individuals with

irregular heart rhythm alerts

Huawei heart study, (69) Prospective cohort

study

Huawei PPG 246,541 PPV: 91.6%, Both suspected AF and identified AF markedly increased

with age

AF, atrial fibrillation; ECG, electrocardiogram; PPG, photoplethysmography; PPV, positive predictive value; RCT, randomised controlled trial.
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Including advanced phenotypic data like left atrial fibrosis on

magnetic resonance imaging (MRI) or anatomical features on

cardiac computed tomography (CT) is a promising avenue to

further refine such predictions (77).

While many AI risk models have been developed, prospective

validation and clinical uptake are key gaps. Few have been tested in

randomised trials to show improved patient outcomes or cost-

effectiveness (19). Future research should emphasise external

validation of AI risk tools across diverse populations to ensure

generalizability. Creating large, standardised, and labeled datasets

(potentially through multi-center or federated learning

collaborations) will help address current data heterogeneity issues

(78). Moreover, researchers are exploring explainable AI techniques

to identify which risk factors drive predictions, which could reveal

novel modifiable risk factors (for example, an explainable model

highlighted how combinations of social and clinical factors

influence stroke risk in AF (79, 80). Such insights might inform

more holistic risk management strategies. In summary, AI-driven

risk stratification promises to move beyond one-size-fits-all metrics

toward nuanced, precision risk profiles for each AF patient.

AI-assisted treatment optimization
(medications and ablation planning)

Managing AF involves choices between rate vs. rhythm control,

various antiarrhythmic drugs, anticoagulation strategies, and

interventional therapies like catheter ablation. AI can assist

clinicians in tailoring these decisions to individual patients. One

emerging application uses ML to determine which patients

benefit most from a given therapy. For example, an AI-based

causal forest model was recently developed using data from over

700,000 AF patients to personalise stroke prevention therapy

(81). This model analyses patient characteristics to decide

whether a patient would have better outcomes with lifelong

anticoagulation (using a direct oral anticoagulant, DOAC) or a

left atrial appendage occlusion (LAAO) procedure. Notably, it

can identify subgroups of patients for whom LAAO provides a

positive net benefit (reducing stroke risk without undue bleeding

risk) vs. those who fare better on medication (81). Such AI-

driven decision support could fill an important gap in current

practice, where selecting candidates for LAAO vs. DOAC is often

unclear. Similarly, ML has been applied to recommend optimal

rate or rhythm control strategy by predicting outcomes like

symptom improvement or hospitalisation risk under each

approach (82). However, more research is needed in this area.

A significant gap is the lack of clinical trial evidence

demonstrating that AI-guided treatment decisions improve long-

term outcomes in AF. Ongoing studies will reveal the real-world

impact, particularly in applying AI recommendations for therapy

selection in a prospective trial. Methodologically, incorporating

reinforcement learning could prove beneficial—an AI that

“learns” the optimal treatment through trial and error on patient

data might suggest dynamic treatment adjustments, such as

escalating from drugs to ablation if specific patterns arise.

Furthermore, integrating AI into electronic health records as a

clinical decision support tool at the point of care is another

avenue to explore, but it must be implemented in a way that

aligns with the clinician’s workflow and provides transparent

reasoning for recommendations (83). Combining an AI’s

predictive power with a physician’s clinical judgment may yield

the best outcomes in tailoring AF therapy plans.

AI role in catheter ablation

Catheter ablation is an effective rhythm-control therapy; success

rates can differ, and repeat procedures are common (84). AI has the

potential to enhance patient selection and procedural planning for

ablation. An innovative study employed DL on cardiac imaging

data to predict non-pulmonary vein (PV) triggers of AF before an

ablation procedure (85). Typically, ablation targets triggers in the

PVs, but patients with additional atypical trigger sites often

experience recurrence. The AI model correctly predicted these

non-PV trigger locations in ∼82% of cases (64% sensitivity, 88%

specificity), improving the overall accuracy of identifying all trigger

sites to 89% (85). This information can help electrophysiologists

personalise the ablation strategy rather than using a uniform

approach for all patients. AI has also been utilised in intra-

procedural mapping – for instance, algorithms that rapidly

interpret electrogram patterns to distinguish AF drivers or to

titrate energy delivery. Early clinical experience with AI-guided

ablation dosing, including high-power short-duration ablation with

algorithmic monitoring for safety, shows the potential to reduce

complications (86). Additionally, AI can assist in medication

optimisation by predicting an individual’s response or side-effect

risk to a particular antiarrhythmic drug based on their profile,

though this is still largely theoretical (87). Recent high-quality

evidence from the TAILORED-AF trial supports using AI-guided

ablation in persistent AF. This randomised, double-blind trial

showed that targeting AI-identified spatio-temporal electrogram

dispersion areas in addition to standard PVI significantly

improved 12-month AF freedom rates (88% vs. 70%, P < 0.0001).

While safety was comparable, procedure duration was longer.

These results validate AI’s role in refining ablation strategy but

highlight the need for further trials to assess long-term outcomes,

reproducibility, and workflow integration (88). New AI-based

software solutions were designed to assist operators in targeting

AF drivers. Acute and long-term outcomes suggest that the AI-

based AF electrogram software delivers simple perioperative cues,

ensuring standardisation across multiple platforms, catheters, and

operators (89). For example, a recent study demonstrated that

DISPERS-guided ablation using ML software (the Volta VX1

software) and PVI for long-standing persistent AF caused a lower

risk of AF recurrence in long-term follow-ups (90).

Machine learning models for
personalized AF management

Personalised medicine in AF aims to move beyond generalised

treatment guidelines and towards individualised care plans. AI is a
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key enabler of this vision, as it can analyse each patient’s unique

combination of factors. Holistic ML models can assimilate

diverse data, including genomics, biomarkers, lifestyle factors,

and detailed disease history, to define patient subgroups or

“phenotypes” of AF. For instance, clustering algorithms

(unsupervised ML) have been used to identify novel AF

phenotypes that might respond differently to treatments (39). For

example, a patient might have AF driven largely by obesity and

hypertension (risk-factor-mediated AF) (91). At the same time,

another’s AF might be linked to specific genetic variants or

fibrotic scar burden in the atrium. AI can help classify such

subgroups, which is the first step to personalised therapy,

including aggressive risk factor modification for one phenotype

vs. early ablation for another.

Early rhythm control has been proven beneficial as AF begets

AF, and early intervention has shown better results irrespective

of the mechanisms. As there is an evolution of AF in many cases

(triggers at the beginning with short episodes and fibrosis with

persistent AF types), AI might help identify patients at risk for

AF and help establish a primary preventive therapy. In case of

AF, early treatment should be offered irrespective of risk factors,

as e.g., those with heart failure benefit most. Researchers have

proposed new AF classifications using ML, which are being

studied for their prognostic and therapeutic relevance (92). An

example of such translational work is the ARISTOTELES project,

which uses AI to integrate clinical, imaging, genetic, and

biomarker data to personalise risk prediction and treatment in

patients with AF and multimorbidity. The project aims to refine

stroke and bleeding risk stratification in the context of oral

anticoagulation and to address therapeutic decision-making

complexities in patients with coexisting conditions such as heart

failure, diabetes, and chronic kidney disease. By embracing a

holistic, data-driven approach, ARISTOTELES supports

guideline-aligned, individualised care and seeks to improve

outcomes, reduce adverse events, and optimise resource use in

real-world clinical settings (93). Key studies exploring AI-based

classification and prediction of AF, particularly those using ECG

or clinical data for risk stratification, are outlined in Table 3.

Integration of AI with genomic and
clinical data

In the era of precision medicine, merging AI with genomics

presents a promising methodology. Extensive genome-wide

association studies have identified numerous genetic loci

associated with AF, yet interpreting these for individual risk

remains complex. AI can bridge this gap by integrating genetic

risk scores with phenotypic data. For instance, one analysis

demonstrated that AI-driven ECG analysis serves as a practical

and cost-effective means of predicting AF risk and onset,

capturing lifetime cardiac variations, whereas genomics offers a

more static risk profile; the combination of the two facilitates

“truly individualised care” that transcends the average patient

model (96).

This might mean an AI model uses a patient’s ECG and blood

biomarkers to detect subtle signs of atrial remodelling while

incorporating their genetic predisposition to refine risk and guide

preemptive therapy (97). However, a meta-analysis indicated that

AF prediction using AI is still underdeveloped, though DL

techniques are becoming increasingly accurate. Nevertheless,

these methods are not being applied as frequently as expected (98).

Challenges and research opportunities

Achieving personalised AF management with AI faces several

hurdles. One is data silos – the need to gather comprehensive

datasets that include outcomes of different management

strategies in diverse patient profiles. Collaborative consortia and

data-sharing with privacy protections could help amass enough

data for robust personalised models. Another challenge is

interpretability: Clinicians will require understandable

explanations for why an AI recommends a personalised

approach. Research into explainable AI for personalised medicine

is, therefore, critical (99, 100). Furthermore, prospective trials are

needed to test AI-guided personalised management: for example,

an algorithm might propose varying treatment strategies for

TABLE 3 Main evidence on AI-assisted treatment in atrial fibrillation.

Study/Author (year) AI Application Population Main findings

Ngufor et al. (81) Personalized

anticoagulation vs. LAAO

744,190 AF patients AI model identifies optimal stroke prevention therapy, highlighting

patients benefiting most from DOAC or LAAO

Kim et al. (94) AI use in guiding rhythm

management

≈ 42,000 AF patients Healthcare systems using algorithms for AF rhythm management must

balance prediction accuracy with model interpretability

Liu et al. (85) Catheter ablation strategy 521 patients undergoing PAF

ablation

DL predicted non-PV triggers with 82% accuracy (88% specificity, 64%

sensitivity)

Deisenhofer et al.

(TAILORED-AF Trial) (95)

AI-guided catheter ablation 370 persistent AF patients (AI

tailored arm, n = 187)

AI-guided ablation plus standard PVI improved 12-month AF-free rates

(88% vs. 70%, p < 0.0001)

Bahlke et al. (90) ML-guided DISPERS

ablation software

50 persistent AF undergoing

ablation

ML-assisted ablation software reduced long-term recurrence rates

compared to standard PVI

Sanchez de la Nava et al. (87) Antiarrhythmic drug

selection

127 AF patient models AI predicted patient-specific drug responses in silico

Seitz et al. (89) Standardization of ablation

outcomes

85 persistent AF patients AI software standardized electrogram-based ablation across multiple

operators and platforms

AF, atrial fibrillation; AI, artificial intelligence; DL, deep learning; DOAC, direct oral anticoagulants; LAAO, left atrial appendage occlusion; ML, machine learning; PVI, pulmonary vein

isolation; PV, pulmonary vein; PAF, paroxysmal atrial fibrillation.
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patients based on their cluster phenotype – testing this against

usual care will show if personalisation via AI improves outcomes

like AF recurrence or quality of life. If successful, these

approaches could pave the way to truly precision cardiology,

where every AF patient’s management is dynamically tailored by

AI insights drawn from patients “like them” in large databases.

The role of AI in remote monitoring
and patient adherence

Remote monitoring technologies for AF allow continuous or

frequent rhythm surveillance outside the clinic. AI plays a vital role

in interpreting the large volume of data generated by remote

monitoring devices. Smartwatches and patches can detect

arrhythmias in real time, but AI algorithms must distinguish true

AF episodes from noise or benign irregularities (101). When

deployed effectively, AI-driven remote monitoring can alert

clinicians to AF onset or recurrence, enabling earlier intervention

(68). Studies have demonstrated that mobile health interventions

for AF can reduce healthcare utilisation combined with algorithmic

monitoring. In one cluster trial, patients supported by a mobile app

and wearables had significantly lower rehospitalisation and adverse

event rates than those with standard care (38). Another study

showed that contactless AI monitoring could accurately detect AF

without any wired device (102, 103). This sets the stage for

futuristic remote surveillance methods that are seamless for patients.

A critical aspect of remote AF management is ensuring patients

adhere to monitoring and therapy. AI can assist here through

personalised feedback and coaching. For example, smartphone

apps with a conversational “relational agent” have been piloted to

engage AF patients daily, provide education, and encourage

medication adherence. In a 120-patient trial, those randomised to

a 30-day smartphone app with an AI-driven virtual coach and a

portable ECG monitor showed significant improvements in

adherence and quality of life compared to controls (104). This

suggests that AI can help close the gap between detecting AF

and prompting patients to act, including taking medications and

contacting healthcare providers. Nonetheless, challenges remain:

Large-scale screening studies found that some people ignored or

delayed responding to AF alerts on their devices (37). This

highlights that technology alone is insufficient; behavioral science

must be integrated into AI systems.

Future research should explore adaptive notification systems

that adjust the urgency and style of alerts based on patient

behavior patterns to avoid alarm fatigue while conveying

importance (105). AI might predict which patients are at risk of

non-adherence. This can be done by analysing their past

application usage, heart rate trends, or speech patterns in

consultations (106). Combining remote monitoring AI with

telemedicine services is another promising avenue. If an

algorithm detects AF, it could automatically schedule a telehealth

visit or message a healthcare provider, streamlining the response.

AI can turn passive remote monitoring into an active, responsive

system that detects AF, facilitates prompt management, and

keeps patients engaged in their care.

Explainability and ethical concerns in
AI-based AF detection and treatment

Many AI models, especially DL, are often criticised as “black

boxes” – they make predictions (AF detected or stroke risk high)

without an easily interpretable rationale. In the context of AF,

lack of explainability can hinder clinician trust and adoption.

Researchers have started integrating explainable AI (XAI)

techniques into their models to address this. For instance, one

study converted PPG pulse data into images and used a

convolutional neural network to classify AF; importantly, they

incorporated XAI methods to highlight which signal features

contributed to the classification, providing transparency to

clinicians (107). The resulting model achieved 100% accuracy in

distinguishing AF from normal rhythm while ensuring the

decision process was interpretable. Such approaches allow

physicians to verify that the AI detects physiologically relevant

patterns (like irregular RR intervals or fibrillatory waves) rather

than spurious noise. Explainability is equally crucial in AI-driven

treatment recommendations – doctors need to understand why

an algorithm favors a particular therapy for a patient (perhaps

due to that patient’s combination of age, stroke risk, and prior

haemorrhage history) to feel comfortable following the advice

(108). Developing user-friendly visualisation tools and

explanation summaries for AI outputs is an active area of

research that will make AI more ethically and clinically palatable.

The use of AI in AF raises several ethical considerations. Patient

data privacy is paramount, as AI models often require large datasets

(ECGs, wearable records, and health records) that may contain

sensitive information. Ensuring compliance with privacy regulations

and using data anonymisation or federated learning (where data

stay at hospital sites and only model updates are shared) can

mitigate privacy risks (73). Bias is another concern – if an AI

model is trained mostly on certain demographics, it may perform

less accurately for underrepresented groups, potentially exacerbating

healthcare disparities. For example, an algorithm trained

predominantly on younger patients might miss AF in the elderly

or vice versa. Researchers have pointed out that algorithms must

consider social determinants of health and diverse patient attributes

to avoid bias (109). Ongoing efforts to use diverse training datasets

and to audit algorithms for fairness are critical (110). Additionally,

there is the ethical question of handling false positives/negatives: a

false positive AF alert can cause anxiety and unnecessary testing,

while a false negative might give false reassurance. Striking the

right balance in algorithm sensitivity is partly a clinical value

judgment. Some ethicists have raised concerns about widespread

consumer AF screening being promoted without clear guidance,

potentially putting users at risk of over-treatment or anxiety for the

sake of tech company marketing (111, 112).

Several strategies are recommended to ensure that AI in AF is

used responsibly. First, ethicists and patient representatives should

be involved early in developing AI tools to identify concerns such

as consent and data ownership. Second, incorporate the core

principles of biomedical ethics: beneficence (the AI should

demonstrably assist patients), nonmaleficence (minimising harm

from errors), autonomy (patients should control how their data
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are used and be informed about AI’s involvement in their care),

and justice (equitable access to the benefits of AI) (113, 114).

Specifically, this could mean providing patients with a

straightforward opt-in/out option for data sharing and ensuring

that AI tools are accessible in community hospitals, not just

academic centres. Third, maintain a human-in-the-loop

approach: AI should support, rather than replace, clinician

decision-making, and clinicians should override or question AI

when it conflicts with clinical judgment or patient preferences

(115). The medical community can harness their advantages

while upholding high ethical standards by making AI systems

transparent, secure, and patient-centred. AI-driven precision

medicine in AF must move beyond purely clinical or algorithmic

outputs to incorporate patients’ own perceptions of safety and

autonomy—factors deeply influenced by cultural background,

previous healthcare experiences, and psychosocial context.

Overreliance on binary risk models or population-level

predictions risks marginalising patient values and eroding trust.

Ethically grounded AI must therefore embed principles of shared

decision-making, allowing patients to weigh algorithmic

recommendations against their personal goals and beliefs. This

includes providing transparent explanations of AI outputs and

fostering cultural competence in both data design and clinical

implementation to support genuinely patient-centred care.

Challenges in implementing AI for AF
in clinical practice

Despite the increasing research, there is a recognised gap

between AI models developed in laboratories and the tools that

physicians use at the bedside. One significant challenge is

rigorous clinical validation (116). Many AI algorithms for AF

detection or risk prediction have been tested retrospectively or on

limited datasets (117, 118); few have been evaluated in

prospective clinical trials or real-world practice settings. Without

evidence that AI improves patient outcomes or workflow,

healthcare providers may hesitate to adopt these tools. Regulatory

approval pathways for AI in medicine are evolving – algorithms

may require clearance as medical devices, and there are questions

about how to regulate AI systems that continuously learn and

update. Obtaining regulatory approval can be complex and time-

consuming, particularly if an AI’s decision-making logic is not

easily interpretable to regulators.

Implementing AI in daily practice also presents logistical

challenges. Hospitals must integrate AI software with electronic

health record systems and device data streams, ensuring reliability

and cybersecurity. Clinicians experience alert fatigue from existing

monitoring systems; introducing AI alerts or recommendations

could further burden them if not carefully designed (119).

Therefore, human factors engineering is essential – AI tools must

be intuitive, with concise and relevant outputs. Clinician training is

another crucial aspect: cardiologists and general practitioners will

require a fundamental understanding of how the AI operates and

its limitations to use it effectively and maintain trust in the system

(120). At the practice level, some resistance to new technology is

natural; early adopters must advocate for successful use cases to

persuade their peers of AI’s potential value. High-quality data is

the fuel for AI, and data can often be messy in practice. AF-related

data frequently resides in disparate sources and may lack

standardisation. As noted in the review article by Popat et al.,

variability and heterogeneity in data and methods have led to the

inconsistent performance of AI tools across studies (73). This

suggests that an AI model may not generalise effectively without

standard data formats and solid data governance when

implemented in a different hospital or demographic. Initiatives

such as establishing shared data repositories and adopting common

standards for documenting arrhythmia data can be beneficial.

Another obstacle is the computational infrastructure – not all

clinics can execute advanced AI algorithms in real time. Cloud-

based solutions could alleviate this issue; however, data security

and latency concerns may occur.

To bridge these gaps, researchers and healthcare systems are

beginning to collaborate on implementing science for AI. This

includes pilot programmes where AI tools are introduced in a

controlled manner, and their impact on decision-making,

outcomes, and clinician workload is measured. Feedback from

these pilots can guide iterative improvements. Additionally, clear

guidelines from professional societies on how to incorporate AI

into AF management (when to trust an AI-detected AF episode

or how to use an AI risk score in anticoagulation decisions) will

provide reassurance and standardisation (121). Addressing

implementation challenges will ultimately require a

multidisciplinary approach, with data scientists, information

technology specialists, clinicians, and administrators working

together to ensure that AI for AF is accurate, useful, and

seamlessly embedded in care delivery.

Future directions for AI research in AF

The intersection of AI and AF management is a rapidly

evolving field with several exciting avenues for future research to

address current gaps. A clear need exists for developing

standardised, well-annotated datasets for AF. Future research

could focus on building large, shared databases of ECGs

(including those in sinus rhythm and AF), patient outcomes, and

imaging data, which would enable more robust model training

and validation. International collaborations and data-sharing

agreements, employing privacy-preserving techniques, will

expedite this progress and minimise duplication of effort.

Integrating various data modalities presents a promising research

frontier. AF is a multi-factorial disease; thus, combining multi-

modal data in AI models may yield new insights. For instance,

researchers could develop models that input ECG signals, cardiac

MRI scans, genetic information, lab results, and wearable activity

logs to provide a comprehensive risk assessment or guide

therapy. Initial efforts to combine ECG-based AI with genomics

have demonstrated the potential for more precise predictions

(96). Future studies will likely build on this by including

proteomics or metabolomics to capture substrate changes in AF.

Such comprehensive models could, for example, predict which
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patients will respond to upstream therapies, such as aggressive risk

factor management or anti-inflammatory treatment, based on their

unique biomarker signature.

With the proliferation of wearable devices, one future direction is

to deploy AI algorithms that operate in real time on device data.

A smartwatch could detect AF and predict when an episode is

likely to occur based on recent trends, alerting the patient to take

preventive actions, such as performing a breathing exercise or

taking a pill (122). Research into lightweight AI models that can

run on wearable hardware or smartphones for continuous

monitoring without relying on cloud servers will be crucial for

responsive and scalable AF management. Future AI research may

also contribute to the development of new treatments for AF. By

analysing large datasets of drug responses, AI could aid drug

discovery by identifying novel molecules or repurposing existing

medications that might effectively treat AF. An AI-driven

“autopilot” for PVI is on the horizon. These include algorithms

capable of guiding catheters during ablation with minimal human

input, optimising lesion placement and duration in real time based

on patient-specific atrial anatomy and electrophysiology (89).

Preliminary steps in this direction, such as AI mapping of

electrical rotors or lesion assessment through imaging, warrant

further investigation exploration. As AI systems become more

complex, a parallel research priority is enhancing their

explainability and user trust. Future AI models for AF might

incorporate built-in explanation modules that translate their

complex computations into cardiologist-friendly explanations,

highlighting which part of a P wave or what clinical factor led to a

high-risk prediction. Measuring and improving clinician trust in

AI recommendations will likely become a research topic, possibly

by testing different explanation strategies in user studies. This also

ties into medicolegal considerations – defining how responsibility

is shared between AI tools and human providers – which may be

informed by research in ethics and legal frameworks.

Finally, the ultimate test for any AI application is demonstrating

improved patient outcomes. Future research must include

prospective, randomised trials where AI-guided care is compared

to standard care in AF. These trials could examine endpoints like

reduced AF burden, hospital admissions, stroke rates, or improved

quality of life. For example, a trial might randomise clinics to use

an AI-guided AF screening and management protocol vs. usual

guideline-based management to see if the AI arm achieves better

outcomes. Additionally, health economics research should evaluate

the cost-effectiveness of AI interventions. Positive results will be

key to convincing guidelines committees and payers to endorse AI

tools in routine AF care (19). A summary of AI use in diagnosing,

classifying and treating AF is demonstrated in Figure 2. The main

take-home messages from this review, covering diagnostic,

therapeutic, ethical, and implementation aspects of AI in AF

management, are summarised in Table 4.

Conclusion

In conclusion, AI holds immense potential to transform AF

detection and management—from identifying the arrhythmia

earlier and more accurately to personalising therapy decisions

and continuously supporting patients in their daily management.

The existing literature provides a robust foundation but also

highlights gaps, such as inconsistent tool performance and

FIGURE 2

Summary of artificial use in the diagnosis and treatment of atrial fibrillation. AF,atrial fibrillation; AI, artificial intelligence; ECG, electrocardiogram.
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limited clinical validation. By focusing on the identified research

directions—enhancing data quality, ensuring ethical

implementation, and rigorously testing AI in practice—the next

wave of studies can help realise AI’s promise in atrial fibrillation.

In the coming years, we will see AI progress from exploratory

trials into integrated clinical practice, ultimately improving

outcomes and quality of life for patients with AF, provided we

address the challenges and learn from ongoing research at every

step. Despite promising advancements across detection, risk

stratification, treatment optimisation, and remote monitoring, the

clinical implementation of AI in AF remains hindered by a

persistent lack of large-scale prospective RCT evidence. This

limitation, common across many AI applications in medicine,

highlights the need for rigorous validation to establish real-world

efficacy, safety, and cost-effectiveness. Addressing this evidence

gap through well-designed, multi-centre RCTs will be essential

for translating AI innovations into routine clinical practice.
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