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Advances in pathophysiological
mechanisms and therapeutic
efficacy of exercise rehabilitation
in patients with heart failure with
preserved ejection fraction

Juanjuan Fang, Zhenhua Wang* and Jiangshui Yu

The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China

Heart Failure with Preserved Ejection Fraction (HFpEF) is a heterogeneous

syndrome characterized by systemic multiorgan dysfunction, and exercise

rehabilitation has emerged as a promising non-pharmacological intervention.

This review synthesizes current evidence on the pathophysiological mechanisms

underlying exercise intolerance in HFpEF and evaluates the therapeutic efficacy

of exercise-based interventions. Key mechanisms include myocardial stiffness

due to chronic inflammation, coronary microvascular dysfunction, skeletal

muscle mitochondrial impairment, and endothelial dysfunction. Clinical studies

indicate that tailored exercise regimens (e.g., combined aerobic-resistance

training) improve peak oxygen consumption, 6 min walking distance, and quality

of life through multi-organ adaptations: enhanced cardiac output reserve,

skeletal muscle metabolic remodeling, and reduced systemic inflammation.

However, challenges persist in optimizing exercise prescriptions for

phenotypically diverse HFpEF subpopulations (e.g., obese, elderly frail). Future

research must prioritize phenotype-specific protocols, validate long-term

outcomes (mortality, hospitalization), and integrate biomarkers (e.g., H2FPEF

score) with digital health technologies to advance precision rehabilitation

strategies. This review highlights the imperative for mechanistic insights to guide

clinical translation in HFpEF management.
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1 Introduction

Heart failure with preserved ejection fraction (HFpEF), is defined as a left ventricular

ejection fraction (LVEF) ≥50% with accompanying symptoms and/or signs, in the

presence of objective evidence of cardiac structural and/or functional abnormalities

consistent with the presence of LV diastolic dysfunction/raised LV filling pressures,

including raised natriuretic peptides (1). HFpEF constituting nearly 50% of heart failure

cases, is a multisystem disorder driven by aging, obesity, and metabolic dysfunction

(1–3). Unlike heart failure with reduced ejection fraction (HFrEF), HFpEF involves

systemic pathophysiology such as myocardial stiffness, skeletal muscle mitochondrial

impairment, endothelial dysfunction, and neurohormonal activation, culminating in

profound exercise intolerance and poor prognosis (4–6). Despite pharmacological

advances, no therapies improve survival, underscoring the unmet need for effective

interventions (7). Exercise rehabilitation emerges as a pivotal non-pharmacological
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strategy, demonstrating improvements in functional capacity of

peak oxygen consumption (VO2peak), quality of life, and

hemodynamic profiles through cardiac-skeletal muscle

adaptations and anti-inflammatory effects (8, 9). However,

evidence gaps persist: most trials focus on short-term outcomes

(3–6 months), while impacts on mortality/hospitalization remain

unproven (10, 11). HFpEF’s heterogeneity, obese, elderly, or

amyloidosis subphenotypes, demands precision approaches to

optimize efficacy-safety balances (12, 13). This review synthesizes

mechanisms of exercise intolerance, evaluates therapeutic

evidence, and proposes a roadmap integrating phenomapping,

digital monitoring, and tailored regimens to transform HFpEF

rehabilitation from symptom management to disease modification.

2 Epidemiological characteristics of
HFpEF

HFpEF constitutes approximately 50% of heart failure cases,

with rising prevalence linked to aging, obesity, and metabolic

comorbidities (2, 3). Large cohort studies show comparable

HFpEF/HFrEF incidence (4). Women exhibit higher HFpEF risk,

tied to estrogen signaling and pregnancy complications (e.g.,

preeclampsia) (5, 6).

Independent risk factors for HFpEF include advanced age,

obesity, diabetes, hypertension, and atrial fibrillation(AF) (1).

Current smoking shows dose-response HFpEF/HFrEF risk.

Cessation reduces but residual risk persists decades post-cessation

(7). Infertility history, also elevate HFpEF risk (8). Racial

disparities are evident, with African American populations

showing heightened left ventricular hypertrophy and concentric

remodeling, predisposing them to HFpEF (9).

HFpEF manifests as a multisystem disorder, involving skeletal

muscle dysfunction, peripheral vascular abnormalities, pulmonary

congestion, renal impairment, and cerebral hemodynamic

alterations (1). Comorbid cardiovascular conditions, including

secondary tricuspid regurgitation (STR) and pulmonary

hypertension (PH), are prevalent. Approximately 35% of severe

STR cases are attributable to HFpEF, with concomitant STR

increasing adverse event risks (10). HFpEF also correlates

strongly with stroke; post-stroke patients exhibit elevated HFpEF

hospitalization rates and cardiovascular event incidence (11).

3 Pathophysiological characteristics of
HFpEF and mechanisms of exercise
intolerance

3.1 Pathophysiological characteristics of
HFpEF

The pathophysiological landscape of HFpEF is characterized by

multisystem organ involvement, extending beyond cardiac

dysfunction to encompass skeletal muscle metabolic

derangements, pulmonary vascular congestion, renal impairment,

peripheral endothelial dysfunction, and neurovascular

dysregulation (2) (Figure 1). Central to its pathogenesis is the

chronic low-grade inflammation and metabolic dysregulation.

Obesity, diabetes, and hypertension drive visceral adipose tissue

(VAT) and epicardial adipose tissue (EAT) expansion, which

secretes proinflammatory cytokines [e.g., Interleukin-6 (IL-6),

Tumor Necrosis Factor-alpha (TNF-α)] and profibrotic

mediators, ultimately inducing myocardial stiffness augmentation

and diastolic impairment (12).

Coronary microvascular dysfunction (CMD) affects 50% of

HFpEF patients, driving myocardial ischemia, calcium

mishandling, and impaired relaxation (13). A multicenter

prospective cohort study demonstrated that 91% of HFpEF

patients exhibited either epicardial coronary artery disease

(CAD), CMD, or both. Among those without obstructive CAD,

>80% displayed endothelium-independent or endothelium-

dependent CMD (13).

Structural cardiac remodeling, including left ventricular

hypertrophy (LVH) and left atrial myopathy, further typifies

HFpEF. The hemodynamic hallmark of HFpEF, elevated left

ventricular filling pressures and exertional intolerance, primarily

stems from left ventricular diastolic dysfunction, arising from

impaired relaxation kinetics due to dysregulated sarcoplasmic

reticulum calcium reuptake (SERCA2a dysfunction) (14),

cardiomyocyte hypertrophy with altered titin isoform expression,

and extracellular matrix (ECM) remodeling via collagen

crosslinking (15, 16), compounded by left atrial (LA)

decompensation manifested as reduced LA compliance from

interstitial fibrosis (17), impaired LA reservoir/conduit function

(18), and diminished left atrial emptying fraction with

compliance reduction—all correlating with elevated pulmonary

capillary wedge pressure(PCWP) (19).

Notably, transthyretin amyloid cardiomyopathy (ATTR-CM)

demonstrates high prevalence among elderly HFpEF cohorts, with

cardiac amyloid deposition directly compromising diastolic

mechanics through myocyte infiltration and restrictive physiology (19).

3.2 Mechanisms of exercise intolerance in
HFpEF

The mechanistic basis of exercise intolerance in HFpEF arises

from multilevel pathophysiological derangements, with skeletal

muscle dysfunction constituting an essential component.

Impaired skeletal muscle bioenergetics—characterized by reduced

oxidative capacity, diminished mitochondrial content, and

aberrant mitochondrial dynamics (fusion/fission imbalance)—

significantly contributes to exertional limitation in elderly HFpEF

cohorts (20). Skeletal muscle phenotype switching further

exacerbates functional decline, evidenced by selective reduction of

type I oxidative muscle fibers (reliant on mitochondrial ATP

production) in HFpEF patients (21). Mitochondrial dysfunction

manifests as network fragmentation, decreased mitochondrial

cross-sectional area, and downregulation of fusion regulators

(Mitofusin 1, Mitofusin 2, Optic atrophy 1), collectively

impairing oxidative phosphorylation capacity (22, 23). These

defects potentiate calcium mishandling, oxidative stress overload,
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and nitric oxide (NO) depletion, driving endothelial/

cardiomyocyte uncoupling (24). Concomitant obesity-related

myosteatosis and muscle atrophy further compromise oxygen

utilization efficiency (25, 26).

Abnormal cardiopulmonary interactions exacerbate

hemodynamic compromise through three interlinked

mechanisms: (1) Diastolic reserve exhaustion during exertion

elevates left atrial pressure, precipitating post-capillary PH via

pulmonary venous congestion—a phenotype observed in

approximately 80% of HFpEF patients (27, 28); (2) This PH-

driven right ventricular afterload augmentation disrupts

ventilation-perfusion (V/Q) matching through altered pulmonary

vascular impedance and right-left ventricular interdependence (2,

19); (3) Concomitant inspiratory muscle weakness, independent

of cardiac loading conditions, directly correlates with reduced

exercise capacity by impairing respiratory pump efficiency and

oxygen delivery (29).

Peripheral vascular dysfunction encompasses two interrelated

pathological axes: firstly, endothelial-dependent vasodilatory

impairment driven by reduced nitric oxide (NO) bioavailability

restricts microvascular reserve capacity during exertion (30);

concurrently, arterial stiffening—quantified invasively through

elevated aortic impedance—exacerbates ventricular-arterial

uncoupling, thereby diminishing peak oxygen consumption

(VO2peak) (7, 31). Critically, exercise-induced exacerbation of

arterial stiffness demonstrates a direct linear association with

pathological increments in pulmonary capillary wedge pressure

(PCWP) during exertion, thereby contributing to diminished

peak oxygen uptake (VO2peak) through ventricular-arterial

decoupling and impaired cardiopulmonary efficiency (32).

Autonomic dysregulation perpetuates this vicious cycle

through three sequential pathological cascades: Initially,

sympathetic nervous system and renin-angiotensin-aldosterone

system overactivation initiates a maladaptive cascade—inducing

vasoconstrictive responses and aldosterone-mediated myocardial

fibrosis (33); subsequently, chronic norepinephrine excess triggers

β-adrenergic receptor downregulation via GRK2-mediated

desensitization, while concurrently promoting cardiomyocyte

apoptosis through calcium/calpain pathway activation (34);

compounding these effects, hypoxia-induced lipotoxic metabolites

(e.g., free fatty acids) directly inhibit mitochondrial complex I/III

activity, exacerbating oxidative phosphorylation failure during

energy-demanding states (25, 35).

4 Evidence of efficacy of exercise
rehabilitation on HFpEF

The pathophysiological mechanism of HFpEF involves

multisystem abnormalities, providing potential targets for

exercise-based rehabilitation interventions. Although randomized

controlled trials (RCTs) directly evaluating exercise rehabilitation

remain limited, accumulating evidence indirectly supports its

clinical utility. In the ejection fraction subgroup analysis of the

REHAB-HF trial, while the prespecified interaction test lacked

statistical significance (interaction P > 0.1), the intervention

demonstrated a clinically meaningful improvement trend favoring

the HFpEF subgroup. Specifically, Short Physical Performance

Battery (SPPB) scores in rehabilitation-treated HFpEF patients

increased by +1.9 points from baseline at 3-month follow-up,

surpassing improvements observed in HFrEF counterparts,

suggesting enhanced responsiveness to multidisciplinary

rehabilitation strategies in this population (36).

The phenotypic heterogeneity of HFpEF necessitates

individualized comprehensive care. As a cornerstone of lifestyle

modification, exercise rehabilitation potentiates pharmacotherapy

FIGURE 1

Pathophysiological mechanisms of exercise intolerance and exercise interventions in HFpEF.
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through synergistic blood pressure reduction and glycemic control

(2). Observational cohort data indicate substantially elevated post-

hospitalization venous thromboembolism (VTE) risk in HFpEF

(adjusted HR = 3.13), with exercise potentially mitigating this risk

via hemodynamic optimization and coagulation cascade

modulation (31). Furthermore, 62% of new-onset atrial

fibrillation (AF) cases exhibit high-risk HFpEF phenotypes

(stratified by H2FPEF score), where structured exercise may

attenuate arrhythmic progression through atrial unloading

mechanisms (2, 37).

Future research must focus on three priorities: (1) developing

phenotype-specific exercise prescriptions by stratifying subtypes

(e.g., obesity or arterial stiffness-predominant phenotypes) for

tailored regimens (37); (2) validating biomarker-guided efficacy,

emphasizing exercise-enhanced cardiac function (e.g., global

longitudinal strain) and refining risk stratification using tools like

the H2FPEF score (2, 4, 8, 31); and (3) addressing adherence

challenges in frail elderly, particularly in those with PH or

ATTR-CM (19). While exercise may improve HFpEF prognosis

via multimodal mechanisms, large RCTs are needed for

confirmation. Integrating H2FPEF risk models with imaging

biomarkers (e.g., speckle-tracking echocardiography) will advance

precision rehabilitation strategies (2, 4, 5, 31).

5 Multimodal mechanisms of exercise
rehabilitation in ameliorating HFpEF

Exercise rehabilitation improves the pathophysiological status of

HFpEF patients through the synergistic effect of the central and

peripheral multiple systems. Regarding central mechanisms,

patients with HFpEF exhibit compromised cardiopulmonary

reserve capacity and impaired ventriculoarterial coupling. Regular

aerobic training may mitigate exercise-induced elevation in left

ventricular filling pressure and abnormal pulmonary vascular

pressures through reducing resting heart rate and ameliorating

hemodynamic derangements (2). Exercise training enhances

exercise-related cardiac output through coordinated optimization

of preload regulation (e.g., reduced PCWP) and increased cardiac

index (CI) (38). In high-risk heart failure patients, exercise-trained

cohorts demonstrated significant reductions in PCWP during mild

exercise (25 W), while exhibiting increased CI from 2.9 to 3.4 L/

min/m² (39). These hemodynamic adaptations are mechanistically

linked to enhanced cardiac reserve capacity, potentially involving

improved cardiomyocyte calcium handling and optimized

ventriculoarterial coupling (40, 41). Concurrently, exercise training

restores endothelium-dependent vasodilation capacity (manifested

as 2.5%–4.1% improvement in flow-mediated dilation) and

ameliorates peripheral vascular resistance (41, 42), mechanisms

associated with enhanced nitric oxide bioavailability, attenuation of

oxidative stress markers (e.g., malondialdehyde), and improved

endothelial progenitor cell functionality (43).

The peripheral mechanism in HFpEF is fundamentally

characterized by skeletal muscle structural degeneration and

metabolic remodeling. In HFpEF patients, skeletal muscles

consistently demonstrate three cardinal pathological features: a

20%–50% reduction in capillary density, impaired mitochondrial

oxidative phosphorylation capacity, and dysregulated autophagic

flux (44, 45). This myopathic phenotype manifests clinically as

mitochondrial dysfunction coupled with microcirculatory

disturbances, collectively contributing to diminished exercise

tolerance. Notably, exercise-based rehabilitation has been shown to

ameliorate peripheral oxygen utilization through dual mechanisms:

enhancing skeletal muscle oxidative metabolic capacity and

stimulating angiogenesis (2). At the systemic level, exercise exerts

metabolic-inflammatory regulatory effects on core risk factors

including obesity and insulin resistance. Specifically, it reduces

visceral adiposity deposition, suppresses proinflammatory cytokine

release (e.g., IL-6 and TNF-α), and improves both endothelial

function and insulin sensitivity through pleiotropic pathways (2, 5).

The multi-system synergistic interactions confer substantial

clinical benefits in HFpEF management. Exercise rehabilitation

induces a 35–50 m improvement in 6 min walking distance and

15–20-point elevation in KCCQ scores, demonstrating both

functional and quality-of-life enhancements (46, 47). Beyond

physiological adaptations, the therapeutic effects involve

psychoneuroendocrine modulation, including anxiety alleviation

through autonomic nervous system rebalancing (evidenced by

increased heart rate variability) and reinforcement of self-efficacy

(46). Crucially, longitudinal exercise interventions reduce

cardiovascular hospitalization rates by 20%–30%, achieved via

multi-organ protective mechanisms: suppression of systemic

inflammation (0.5–1.2 mg/dl decrease in high-sensitivity

C-reactive protein), enhancement of vascular compliance (8%–

12% increase in carotid artery distensibility), and optimization of

cardiopulmonary coupling efficiency (48) (Figure 1).

6 Optimization strategies for exercise
rehabilitation in HFpEF

The optimization of exercise rehabilitation in HFpEF

necessitates individualized, multidimensional intervention

strategies, and prioritizes phenotype-driven precision therapeutics.

Regarding exercise modality selection, combined endurance-

resistance training should be tailored to phenotypic characteristics:

endurance training (e.g., walking, cycling) significantly enhances

peak oxygen uptake (VO2peak), while resistance training improves

peripheral metabolic capacity via skeletal muscle functional

augmentation—particularly critical for elderly patients with

sarcopenia (49, 50). Meta-analytic evidence demonstrates that

combined training improves both 6-minute walking distance and

diastolic function parameters (e.g., E/e’ ratio reduction) (49).

While older female phenotypes emphasize resistance and balance

training (51, 52). In HFpEF subgroups with PH or respiratory

muscle weakness, low-intensity inspiratory muscle training coupled

with functional electrical stimulation (FES) safely optimizes

hemodynamics and exercise tolerance. Notably, while high-

intensity interval training (HIIT) exhibits proven efficacy in

HFrEF, its application in HFpEF requires meticulous intensity

titration based on baseline cardiopulmonary exercise testing

(CPET) metrics (e.g., anaerobic threshold, VO2peak) (53).
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Optimizing exercise prescription necessitates a delicate balance

between safety and therapeutic efficacy. Current evidence supports

moderate-intensity exercise regimens (40%–80% heart rate reserve)

administered 3–5 sessions per week with 30–60 minutes per

session, demonstrating that sustained implementation (>12

weeks) yields significant improvements in peak oxygen uptake

(VO2peak) (mean increase: +2.72 ml/kg/min; 95% CI: 2.1–3.3)

and enhanced quality-of-life metrics (e.g., KCCQ score Δ+8–12

points) (54). For obese HFpEF phenotypes, aerobic exercise

combined with caloric restriction (e.g., ≥200 min/week moderate

activity) demonstrates synergistic metabolic benefits (55).

For patients with HFpEF and AF, exercise should prioritize heart

rate control (50%–70% max HR) to prevent ventricular rate

escalation. Structured aerobic training (150 min/week) improves

QoL (↑20%–30%) and LV function (LVEF ↑3%–5%) despite AF-

related limitations (56). Elderly females require fall risk mitigation

and anticoagulant safety evaluation (warfarin/DOACs) (56, 57).

Hypertension exacerbates HFpEF via LV hypertrophy and

stiffness. Exercise rehabilitation requires integration with

antihypertensives (ARNIs/SGLT2i), low-sodium diet, and

monitored aerobic training (brisk walking/swimming) to ↓

peripheral vascular resistance (58–60). The REHAB-HF trial

showed 6-minute walking distance gains (30–50 m) and frailty

risk reduction with multi-domain rehabilitation (61, 62).

Intensity stratification proves critical: low-intensity training

(40%–60% peak heart rate) is prioritized for patients with

multiple comorbidities or severe PH, whereas moderate-high

intensity (60%–80%) targets those with preserved functional

reserves (CPET-derived anaerobic threshold >11 ml/kg/min) (63).

Implementation safeguards include real-time heart rate

monitoring via wearable technology and periodic 6-minute Walk

Test and CPET to dynamically adjust workloads—strategies

shown to reduce exertional adverse events by 38%–45% in

vulnerable subgroups (64, 65). Meanwhile, echocardiography can

serve as a follow-up assessment after exercise training, providing

objective evidence for functional improvement and prognostic

evaluation in HFpEF patients by assessing changes in LA

pressure and pulmonary artery pressure (66). Emerging protocols

further incorporate intervalized resistance training (2–3 sets,

60%–80% 1RM) to counteract sarcopenic progression while

maintaining hemodynamic stability.

Multimodal interventions (e.g., exercise combined with SGLT2

inhibitors or nutritional protocols) may yield synergistic therapeutic

effects (67, 68). SGLT2 inhibitors alleviate symptoms such as

dyspnea and fatigue, enhance physical activity capacity and quality

of life (QoL) scores, significantly reduce blood pressure, and lower

the risk of heart failure hospitalizations and cardiovascular

mortality (69–71). Multimodal intervention synergism emerges

when combining exercise with SGLT2 inhibitors (e.g., dapagliflozin

10 mg/day) or omega-3 fatty acid supplementation (4 g/day EPA/

DHA), showing additive improvements in ventricular compliance

(E/e’ Δ−1.8) and systemic inflammation (hs-CRP Δ−0.6 mg/L) (52,

67, 72). Additionally, Glucagon-Like Peptide-1 (GLP-1) receptor

agonists, such as liraglutide, not only promote weight loss but also

improve cardiometabolic parameters and may confer benefits for

patients with HFpEF (73).

Adherence management is critical for HFpEF rehabilitation

efficacy. Multicomponent strategies (health education, goal-

setting, biosensors) sustain ≥120 min/week exercise adherence

while reducing anxiety (46). Home-based achieves outcomes

comparable to center-based programs with 30%–45% cost

reduction (72). Group CBT alleviates psychological burdens

(depression Δ−2.4, P < 0.01) (45). Gamified mHealth platforms

may enhance engagement via real-time feedback.

7 Challenges and future directions in
exercise rehabilitation for HFpEF

Although exercise rehabilitation for heart failure with preserved

ejection fraction (HFpEF) has demonstrated clinical benefits, it

continues to face multiple challenges. First, unlike HFrEF,

HFpEF lacks exercise-induced improvements in hard endpoints

like mortality or cardiovascular hospitalization (41). Current

research predominantly focuses on short-term outcomes (3–6

months), such as enhanced exercise tolerance and quality-of-life

metrics (74), but lacks evidence for long-term prognostic benefits

(75). Secondly, the physiological mechanisms underlying exercise

benefits remain partially elucidated. While exercise augments

peak oxygen uptake and 6-minute walk capacity, its mechanistic

interplay with left ventricular diastolic function,skeletal muscle

mitochondrial biogenesis, and peripheral vascular adaptation

requires deeper interrogation (41, 76, 77). Furthermore, HFpEF

patients are predominantly elderly, female, and often present

with multiple comorbidities (e.g., obesity, diabetes mellitus, atrial

fibrillation, hypertension), necessitating phenotype-driven,

personalized, and multidimensional therapeutic approaches.

Multimodal regimens integrating aerobic, resistance, and HIIT

training with caloric restriction, SGLT2 inhibitors, and GLP-1

receptor agonists may yield superior therapeutic outcomes.

Routine CPET faces logistical challenges, including limited

availability, cost, and patient compliance. While CPET may serve

as an optional adjunct in specialized cardiac rehabilitation

centers, alternative assessments such as the 6-minute walk test

can be prioritized in resource-limited settings (78).

Infrastructure gaps persist: 78% of trials are hospital-based, and

home/community models show lower adherence (58% vs. 85%)

(77, 79). Unresolved debates on exercise modality (HIIT vs.

MICT), frequency (3–5 vs. 5–7 sessions/week), and duration (30–

60 vs. 20–45 min/session) contribute to guideline adherence

<40% in real-world settings (80).

Future HFpEF research must achieve dual breakthroughs in

mechanistic elucidation and technological innovation. Firstly, core

exercise-mediated mechanisms, peripheral endothelial function,

skeletal muscle mitochondrial metabolism, and oxygen utilization,

require validation via multimodal imaging (STE, CMR T1

mapping) and biomarkers (NT-proBNP) (41, 76, 81). Secondly,

personalized rehabilitation protocols require phenotypic

stratification integrating clinical profiles (inflammatory/metabolic

biomarkers) and energy metabolism gene expression (82–84),

combined with wearable biosensors and tele-rehab platforms for

real-time monitoring (77, 79).
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Multimodal approaches, including high-intensity interval

training (HIIT), resistance/flexibility training, and home-based

models, are pivotal for HFpEF rehabilitation. HIIT enhances

peak oxygen uptake (VO2peak) but requires hemodynamic safety

validation (PCWP <25 mmHg) in elderly patients (85, 86). While

HIIT combined with resistance training benefits HFrEF (2),

HFpEF evidence remains limited, necessitating supervised trials

with rigorous monitoring. Resistance/flexibility training combats

sarcopenia (85). Home-based programs (e.g., REACH-HFpEF)

improve accessibility but lack long-term efficacy data (87).

Interdisciplinary integration—combining Mediterranean diets,

cognitive therapy, and AI-driven “exercise-pharmacology-

behavior” networks (e.g., REVERSE-HFpEF trial)—shifts

management from symptom relief to disease modification (80, 84).

Bridging evidence gaps necessitates large-scale trials assessing

exercise impacts on mortality and rehospitalization (41, 74).

Inclusive enrollment of underrepresented groups (women,

octogenarians, multimorbid patients) is critical (75, 83). Only

through interdisciplinary collaboration, precision phenotyping,

and technological innovation can we overcome the therapeutic

challenges of HFpEF, ultimately improving patients’ functional

status and long-term prognosis.

8 Conclusion

HFpEF, a multisystem disorder, demands personalized

rehabilitation. Exercise improves functional capacity (VO2peak),

quality of life, and hemodynamics via cardiac-skeletal adaptations

and anti-inflammatory effects, yet lacks robust mortality/

hospitalization reduction. Heterogeneous subphenotypes (obese,

hypertensive, AF, frail, amyloidosis) require precision strategies

integrating phenomapping (H2FPEF), biomarkers, and digital

tools. In the future, large trials validating hard endpoints,

home-based multimodal interventions, and AI-driven dynamic

dosing to transition from symptom relief to disease modification.
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