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Introduction: Off-pump coronary artery bypass grafting (OPCABG) is an

alternative to traditional coronary artery bypass grafting (CABG), which avoids

cardiopulmonary bypass. However, acute kidney injury (AKI) is a common

complication, with incidence rates ranging from 5% to 42%, significantly

affecting postoperative outcomes. This study aimed to develop a robust risk

prediction model for post-OPCABG AKI using machine learning (ML) techniques.

Methods: We conducted a multicenter, retrospective study involving 3,043

coronary artery disease (CAD) patients, with an overall AKI incidence of

15.28%. The cohort was divided into a training set (n = 2,130) and a validation

set (n = 913). An external validation cohort of 878 patients was also included.

Five ML methods -Support Vector Machine (SVM), Decision Tree (DT), Random

Forest (RF), AdaBoost, and XGBoost-were employed to predict the risk of AKI.

Results: The XGBoost model demonstrated the highest performance, with an

area under the curve (AUC) of 0.88, sensitivity of 82%, and specificity of 83%

in the internal validation set. In the external validation cohort, the XGBoost

model achieved an AUC of 0.84, sensitivity of 74%, and specificity of 90%. The

model utilized 26 predictive features, including patient demographics and

preoperative laboratory values.

Discussion: The XGBoost model outperformed other ML methods (SVM, DT, RF,

and AdaBoost) in both internal and external validations, demonstrating its

robustness and generalizability. By integrating diverse patient data from

multiple institutions, our model significantly improved AKI risk assessment and

identified novel predictive factors. These findings highlight the potential of

machine learning models in enhancing AKI risk prediction and supporting

personalized management strategies to improve outcomes in OPCABG patients.
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Introduction

Coronary artery bypass grafting (CABG) is a widely performed

surgical procedure aimed at improving myocardial blood flow and

relieving symptoms of angina in patients with coronary artery

disease (CAD) (1) However, despite advancements in surgical

techniques and postoperative care, acute kidney injury (AKI)

remains a significant and common complication following

CABG, with prevalence rates ranging from 5% to 42% (2, 3).

AKI adversely impacts postoperative outcomes, leading to

increased morbidity and mortality, longer ICU and hospital stays,

and higher healthcare costs (4). As such, identifying patients at

high risk of AKI is essential for improving prognosis and

outcomes in clinical practice (5).

In recent years, off-pump coronary artery bypass grafting

(OPCABG), a procedure that avoids the use of cardiopulmonary

bypass, has been introduced as an alternative to traditional CABG.

While OPCABG has been associated with reduced inflammatory

responses and better early recovery, it also carries its own set of

risks, including AKI. The incidence of AKI following OPCABG

remains a concern, as it can significantly affect patient outcomes,

including longer hospitalization, increased healthcare costs, and

higher mortality rates (6, 7). Therefore, accurately predicting AKI

risk in OPCABG patients is of paramount importance for

improving postoperative care and enhancing recovery.

Several risk prediction models for AKI following cardiac surgery,

such as the KDIGO guidelines and the Cleveland score, have been

developed. These models assess AKI risk based on serum

creatinine changes, urine output, and preoperative variables.

However, these models are primarily derived from broad cardiac

surgery cohorts and are based on single-center studies, limiting

their applicability to specific populations such as those undergoing

OPCABG. As a result, their predictive accuracy tends to be lower

when applied to isolated CABG or OPCABG cohorts. For

instance, the KDIGO guidelines have an area under the curve

(AUC) of 0.74 in mixed cardiac surgery populations but only 0.67

in CABG-specific cohorts (8). Similarly, the Cleveland score has

an AUC of 0.75 in broad cardiac surgery populations but only

0.68 in CABG patients (9). Furthermore, existing models often fail

to consider surgery-specific factors that play a crucial role in AKI

risk for OPCABG patients, such as graft type, ischemic time, and

cardiopulmonary bypass time. Incorporating these factors has been

shown to improve predictive accuracy significantly (10).

In light of these limitations, machine learning (ML) and deep

learning (DL) techniques present a promising avenue for

improving the prediction of AKI in OPCABG patients. ML

algorithms, such as Support Vector Machine (SVM), Decision

Tree (DT), Random Forest (RF), AdaBoost, and XGBoost, can

analyze large, multidimensional datasets and identify complex

patterns that are difficult to detect using traditional statistical

methods (11). Among these, XGBoost has gained particular

attention due to its robust performance in predictive modeling

tasks, its ability to handle missing data efficiently, and its

regularization techniques that prevent overfitting (12).

This study aims to develop and validate a deep learning-based

prediction model specifically designed to assess the risk of AKI

following OPCABG in patients with coronary heart disease

(CHD). By utilizing multicenter data from clinical settings across

China, we seek to create a robust and scalable model that can

provide individualized, precise risk assessments for AKI in

OPCABG patients. Our goal is to integrate this model into

clinical practice, facilitating better decision-making and

ultimately improving patient outcomes. This approach will also

offer insights into the underlying mechanisms of AKI in the

OPCABG population, contributing to the development of more

targeted and personalized management strategies for at-

risk patients.

In conclusion, this study endeavors to fill the gap in current

AKI prediction models by developing a specialized, data-driven

model tailored to the OPCABG population. By leveraging the

power of machine learning, we aim to enhance the accuracy,

generalizability, and clinical applicability of AKI risk prediction

for patients undergoing OPCABG surgery, thereby improving

postoperative care and patient outcomes.

Materials and methods

Study population and selection criteria

Between January 2022 and January 2024, 4,283 patients who

underwent OPCABG at our hospital were screened. Patients were

excluded if: (1) age <18 years or >80 years; (2) Patients with

preoperative renal dysfunction (Scr >133 µmol/L); (3) underwent

repeat OPCABG surgery; (4) had concurrent other surgeries; (5)

had a history of cardiac surgery; (6) had no available medical

records; and to ensure the completeness of clinical data for all

enrolled patients, those with missing or incomplete clinical

information were excluded. This approach was taken to minimize

potential bias and the impact of missing data on the results.

Ultimately, 3,491 patients were included and randomly assigned

to the model training and internal validation groups in a 7:3 ratio.

Additionally, 1,047 patients from four other medical centers

were screened. Following the same exclusion criteria, 878 patients

were enrolled and assigned to the external validation group to

validate the performance of the ML models. The patient selection

process is illustrated in Figure 1.

This multicenter retrospective study was approved by the

Ethics Review Committee of hospital. The requirement for

written informed consent was waived due to the retrospective

design of the study.

Definition and outcome

AKI was defined according to the Kidney Disease Improving

Global Outcomes (KDIGO) criteria, which consider serum

creatinine levels and urine output alterations. Specifically, AKI

was identified by an increase in serum creatinine level ≥0.3 mg/

dl within 48 h, a rise to ≥1.5 × baseline within seven days, or a

urine output <0.5 ml/kg/hour for six hours. Owing to the

administration of diuretics and challenges in collecting clinical
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records, urine output was not utilized for AKI diagnosis

preoperatively or postoperatively. The primary outcome of this

study was AKI development after OPCABG.

Variable selection

The variable selection process in this study was based on the

European System for Cardiac Operative Risk Evaluation II

(EuroSCORE II) as a reference (13). EuroSCORE II is a widely

used predictive model for assessing cardiac surgical risk, evaluating

clinical characteristics and surgical risk factors, such as age, sex,

cardiac functional status, history of chronic diseases, acute

conditions, and type of cardiac surgery. This model has been

extensively validated and is effective in predicting mortality risk

following OPCABG, including in Chinese patients. In this study,

26 variables were selected and extracted from hospital electronic

medical records, primarily derived from the EuroSCORE II model.

However, additional variables, including calcium and HDL-C, were

incorporated due to their potential relevance in predicting AKI

risk following OPCABG. These variables, along with those from

EuroSCORE II, were refined through feature selection techniques

to ensure optimal model performance.

Statistical analysis

Continuous variables were expressed as mean ± standard

deviation (SD) or median with interquartile range (IQR). The

Students t-test or Mann–Whitney U test was used to compare

the differences between groups according to the data distribution.

Categorical variables were reported as numbers and percentages

(%), and the differences between groups were compared using

Pearsons chi-square test or Fishers exact test, as appropriate.

Using the default hyperparameters, predictive models were

initially constructed using several ML techniques, including SVM,

DT, RF, AdaBoost, and XGBoost. These models were created as

baseline models for the task of predicting AKI after OPCABG.

After constructing these initial models, we optimized the

hyperparameters to enhance model performance and reliability

through a grid search approach. The grid search allowed for the

systematic exploration of multiple hyperparameter combinations,

FIGURE 1

Flowchart of patient selection.

Hou et al. 10.3389/fcvm.2025.1600012

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1600012
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


ensuring that the model configurations were carefully adjusted to

achieve the best possible predictive accuracy.

To prevent overfitting and ensure robust model generalization,

we applied ten-fold cross-validation. This technique involved

partitioning the training dataset into ten subsets, or folds. For

each iteration, nine of the folds were used to train the model,

while the remaining fold served as the validation set. This

process was repeated ten times, with each fold being used as the

validation set once. Cross-validation helped us ensure that the

models were not overly dependent on specific subsets of the data,

thus providing a more accurate estimate of their

generalization capabilities.

The models were evaluated by comparing several key

performance metrics, including the Area Under the Curve (AUC),

Brier score, Net Reclassification Improvement (NRI), Integrated

Discrimination Improvement (IDI), Sensitivity, Specificity, Positive

Predictive Value (PPV), and Negative Predictive Value (NPV).

These metrics allowed us to assess the models’ ability to

discriminate between patients at high and low risk of AKI, as well

as their overall predictive accuracy. By analyzing these metrics, we

selected the best-performing model, ensuring reliable and clinically

relevant predictions for AKI risk after OPCABG surgery.

Additionally, SHAP values were used to identify critical factors

influencing OPCABG-AKI risk, highlighting the importance of

individual features in the model output. However, the use of NRI

and IDI requires clearer explanation. NRI measures how well a new

model reclassifies subjects compared to an old model, specifically

evaluating improvements in prediction accuracy for individuals who

experience an event vs. those who do not. IDI quantifies the

improvement in risk prediction by comparing the difference in

average predicted probabilities between those with and without the

event for old and new models. We also evaluate internal and

external validation through calibration curves. By employing NRI

and IDI, we can more comprehensively assess the performance

enhancements provided by our model beyond traditional metrics

like AUC. SHAP values provide a detailed measure of feature

importance by quantifying the contribution of each feature to the

model’s predictions, considering all possible combinations of feature

values. This approach helped us identify and highlight critical

factors influencing OPCABG-AKI risk, thereby improving the

transparency and interpretability of the model’s output.

All statistical analyses were performed using Python (version

3.11) and SPSS (version 27). Specifically, in Python, we used

several libraries to support our machine learning and

explainability efforts, including xgboost for implementing the

XGBoost algorithm, and the shap library for calculating SHAP

values to interpret the model outputs. Statistical significance was

defined as a two-tailed P-value of < 0.05.

Results

Baseline characteristics

The training set consisted of 2,130 cases with an average age of

62.4 ± 8.78 years, including 1,587 males (74.54%), and 326 cases

(15.31%) developed AKI. The internal validation set included 913

cases with an average age of 63.19 ± 8.53 years, consisting of 667

males (73.06%), and 139 cases (15.22%) developed AKI. Due to

random assignment, there were no significant differences in

major clinical characteristics between the two groups (Table 1).

The external validation set included 878 cases with an average

age of 63.75 ± 8.29 years, including 632 males (71.98%), and 136

cases (15.49%) developed AKI. Patient baseline characteristics are

shown in Supplementary Table S1. The 26 selected features are

shown in Table 1.

Model performance

For the internal dataset, we evaluated five machine learning

models: Support Vector Machine (SVM), Decision Tree (DT),

Random Forest (RF), AdaBoost, and XGBoost. The performance

of these models was assessed using area under the curve (AUC)

metrics, as shown in Supplementary Figure S1, and the results

are summarized in Table 2. The XGBoost model demonstrated

the best overall performance with the highest AUC of 0.885,

compared to 0.811 for SVM, 0.765 for DT, 0.849 for RF, and

0.849 for AdaBoost. The XGBoost model also exhibited superior

sensitivity (80.2%) and specificity (89.2%), highlighting its robust

predictive ability. In contrast, the Decision Tree (DT) model

displayed the lowest AUC, with a sensitivity of 69.4% and

specificity of 87.8%. Table 2 provides a comprehensive overview

of the performance metrics for each model.

In terms of discriminative power, the XGBoost model showed

notable results, achieving an accuracy of 94.083%, an F1 score of

0.87, and a recall rate of 0.81. Additionally, the Brier scores for

the models were 0.22 for SVM, 0.23 for DT, 0.20 for RF, 0.17 for

AdaBoost, and 0.14 for XGBoost, confirming that XGBoost

outperformed the other models. The Hosmer-Lemeshow

goodness-of-fit test further supported this, indicating that the

calibration of the XGBoost model was optimal, as shown in

Supplementary Figure S2. These findings indicate that the

XGBoost model has the best predictive ability and clinical utility

among the models evaluated. Consequently, the XGBoost model

was selected as the optimal model for further analysis.

Validation using optimal covariates

Using the optimal covariates, we validated the XGBoost model

in both the internal and external validation datasets. In the internal

validation set, the AUC values for the different models were 0.83

(95% CI: 0.80–0.86) for XGBoost, 0.75 (95% CI: 0.71–0.79) for

SVM, 0.80 (95% CI: 0.77–0.83) for RF, 0.88 (95% CI: 0.85–0.91)

for AdaBoost, and 0.88 (95% CI: 0.85–0.91) for DT (Figure 2A).

In the external validation set, the AUC values were 0.86 (95% CI:

0.82–0.91) for XGBoost, 0.81 (95% CI: 0.77–0.85) for SVM, 0.80

(95% CI: 0.77–0.83) for RF, 0.84 (95% CI: 0.81–0.87) for

AdaBoost, and 0.84 (95% CI: 0.81–0.87) for DT (Figure 2B).

Specifically, in the internal validation set, the XGBoost model

achieved a specificity of 82.8% and sensitivity of 81.8%. In the
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external validation set, it achieved a specificity of 89.9% and

sensitivity of 74.7% (Table 3). These results confirm that the

XGBoost model consistently outperformed the other models in

both internal and external validation sets.

Analysis of key contributors to the
predictive model

To identify the key contributors to the predictive model, we

used SHAP (Shapley Additive Explanations) summary plots to

highlight the top ten features in the XGBoost model. These

features were ranked based on their importance, providing a

clear visual representation of their impact on the model’s

predictions. Dependency plots were also generated to show how

individual input features affected the final prediction outcomes of

the XGBoost model (Figure 3). A SHAP value greater than zero

indicates an increased risk of AKI, allowing for the identification

of risk factors that contribute to a higher likelihood of AKI.

The top ten most influential features identified by the model

were: Calcium (Ca), neutrophil percentage, HDL-C, Direct

Bilirubin (D-bil), Total Protein (TP), hemoglobin, Total

Cholesterol (TC), hematocrit (HCT), triglycerides (TG), and

Aspartate Aminotransferase (AST). These features align with

previous studies and established clinical knowledge, emphasizing

their role in predicting AKI after CABG surgery (14, 15).

TABLE 1 Characteristics of modeling group and validation groups.

Variables Training dataset Internal validation P value External validation dataset P value

Number 2,130 913 878

Age (years) 62.4 ± 8.78 63.19 ± 8.53 0.612 63.75 ± 8.29 0.73

Male (n, %) 1,587 (74.54) 667 (73.06) 0.391 632 (71.98) 0.275

Hypertension (n, %) 1,421 (66.74) 618 (67.69) 0.614 555 (63.22) 0.143

Diabetes (n, %) 825 (38.75) 376 (41.18) 0.21 398 (45.33) 0.007

CBP (n, %) 377 (17.71) 167 (18.29) 0.756 128 (14.58) 0.074

Angina (n, %) 1,942 (91.22) 838 (91.79) 0.725 808 (92.03) 0.799

BMI (kg/m2) 25.78 ± 3.2 25.68 ± 3.16 0.252 26.08 ± 3.28 0.221

Preoperative Scr 74.68 ± 29.03 75.18 ± 28.97 0.421 71.24 ± 30.14 0.245

Preoperative LVEF 58.43 ± 9.17 58.06 (9.53) 0.158 58.63 ± 8.69 0.108

TG 1.63 ± 1.06 1.68 ± 0.93 0.37 1.66 ± 1.27 0.143

TC 3.93 ± 1.01 3.98 ± 1.05 0.8 3.97 ± 1.03 0.617

Hemoglobin 116.96 ± 23.38 117.39 ± 23.53 0.522 111.93 ± 24.2 0.325

HDL-C 0.97 ± 0.23 1.0 ± 0.24 0.248 1.06 ± 0.56 0.001

LDL-C 2.31 ± 0.84 2.33 ± 0.89 0.265 2.43 ± 0.98 0.009

Urea 6.82 ± 3.32 6.96 ± 3.31 0.296 6.55 ± 2.76 0.105

UA 335.13 ± 89.94 333.07 ± 96.67 0.219 332.74 ± 97.75 0.009

TP 68.43 ± 5.62 68.48 ± 5.64 0.593 67.45 ± 6.23 0.001

T-Bil 12.33 ± 5.9 12.03 ± 5.45 0.223 12.61 ± 6.61 0.201

D-Bil 3.92 ± 2.33 3.86 ± 2.04 0.175 4.23 ± 3.02 0.025

WBC 9.95 ± 4.08 9.75 ± 3.92 0.148 9.92 ± 4.62 0.876

RBC 3.81 ± 0.75 3.84 ± 0.77 0.403 3.68 ± 0.81 0.029

PLT 211.15 ± 75.03 214.16 ± 78.44 0.269 210.42 ± 76.4 0.448

Neu 74.26 ± 12.64 73.79 ± 12.73 0.296 74.81 ± 13.2 0.198

Glu 8.15 ± 3.46 8.17 ± 3.42 0.828 7.95 ± 3.47 0.235

Ca 2.23 ± 0.16 2.23 (0.16) 0.188 2.27 ± 1.03 0.071

ALP 82.24 ± 36.78 81.94 ± 30.26 0.703 81.16 ± 68.23 0.053

AKI 326 (15.31%) 139 (15.22%) 0.762 136 (15.49%) 0.812

CVD, cardiovascular disease; CBP, chronic bronchitis; COPD, chronic obstructive pulmonary disease; BMI, body mass index; Preoperative Scr, Preoperative serum creatinine; Preoperative

LVEF, preoperative left ventricular ejection fraction; TG, Triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; UA,

uric acid; Alb, albumin; TP, total protein; T-Bil, total bilirubin; D-Bil, direct bilirubin; WBC, white blood cell count; RBC, red blood cell count; PLT, platelet count; Neu, neutrophil count;

Glu, Glucose; Ca, Calcium; ALP, Alkaline Phosphatase; AKI, Acute Kidney Injury.

TABLE 2 Performance of each ML model in the training dataset.

Model AUC Sensitivity Specificity PPV NPV Accuracy Recall F1 Score Brier score

SVM 0.81 0.59 0.83 0.72 0.88 0.88 0.53 0.61 0.22

DT 0.76 0.99 0.54 0.31 0.89 0.63 0.92 0.45 0.23

RF 0.85 0.69 0.87 0.9 0.91 0.72 0.78 0.61 0.20

AdaBoost 0.86 0.14 0.89 0.88 0.82 0.90 0.68 0.71 0.17

XGBoost 0.88 0.80 0.89 0.96 0.95 0.94 0.81 0.87 0.14

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Notably, some features that are typically overlooked in clinical

practice, such as laboratory values and demographic factors,

emerged as important predictors, offering new insights into AKI

risk factors.

The SHAP values were used to distinguish risk factors for

patients who did or did not suffer from postoperative AKI. For

example, higher values of certain features such as calcium,

hemoglobin, and HDL-C were associated with a decreased risk of

AKI, while higher values of factors such as triglycerides and

neutrophil percentage indicated a higher risk of AKI (Figure 4).

The color coding of SHAP values (red for factors increasing risk

and blue for factors decreasing risk) allowed for a more intuitive

understanding of how each variable impacted the final

AKI prediction.

Overall, the identification of these key features, particularly

those previously not emphasized in clinical practice, underlines

the value of using advanced machine learning techniques to gain

deeper insights into the complex factors influencing AKI risk. By

focusing on both well-established and novel predictors, the

XGBoost model enhances its predictive accuracy and clinical

relevance, providing a more comprehensive understanding of the

underlying mechanisms of AKI in post-OPCABG patients. This

improvement in prediction accuracy can guide more targeted

interventions and personalized care strategies for patients at high

risk of AKI following OPCABG.

Further validation of model performance

To further validate the performance of our model, we

employed two statistical metrics: the Net Reclassification

Improvement (NRI) and the Integrated Discrimination

Improvement (IDI). These metrics were used to evaluate the

enhancement in predictive performance when comparing the

XGBoost model with other machine learning models, including

SVM, DT, RF, and AdaBoost.

In the internal validation set, the NRI values for the XGBoost

model were 0.5852 (95% CI: 0.3651–0.8053), 0.8988 (95% CI:

0.6860–1.1116), and 0.6847 (95% CI: 0.4665–0.9028),

respectively, for SVM, DT, RF, and AdaBoost. Similarly, the IDI

TABLE 3 Performance of each ML model in the validation dataset.

Dataset Model AUC Sensitivity Specificity PPV NPV 95%CI (AUC)

Internal SVM 0.83 0.75 0.83 0.48 0.94 [0.80, 0.86]

Internal DT 0.75 0.86 0.57 0.31 0.95 [0.71, 0.79]

Internal RF 0.80 0.86 0.69 0.46 0.94 [0.77, 0.83]

Internal AdaBoost 0.88 0.72 0.89 0.61 0.93 [0.85, 0.91]

Internal XGBoost 0.88 0.82 0.83 0.68 0.92 [0.85, 0.91]

External SVM 0.86 0.81 0.82 0.46 0.96 [0.83, 0.89]

External DT 0.81 0.86 0.69 0.29 0.97 [0.77, 0.85]

External RF 0.80 0.85 0.76 0.46 0.95 [0.77, 0.83]

External AdaBoost 0.84 0.84 0.63 0.44 0.91 [0.81, 0.87]

External XGBoost 0.84 0.74 0.90 0.60 0.94 [0.81, 0.87]

AUC, area under the urve, PPV, positive predictive value, NPV: negative predictive value.

FIGURE 2

Receiver operating characteristic (ROC) curve of the risk assessment model: (A) Internal test group. (B) External test group.
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values for the XGBoost model were 0.0144 (95% CI: −0.0022–

0.0311), 0.1632 (95% CI: 0.1168–0.2097), and 0.1082 (95% CI:

0.0708–0.1455). In the external validation set, the XGBoost

model showed significant improvement over the other four

machine learning models, as detailed in Table 4.

These results demonstrate the enhanced predictive capability of

the XGBoost model compared to the other models, indicating its

robustness and reliability across both internal and external

validation sets. The use of NRI and IDI further confirms the

superior performance of the XGBoost model in predicting AKI

following OPCABG surgery in patients with coronary heart

disease, emphasizing its potential for improving risk prediction

in clinical practice.

Discussion

In this study, we present a deep learning-based prediction

model for Acute Kidney Injury (AKI) following OPCABG in

CHD patients, with a focus on a multicenter cohort from China.

Our model focus on OPCABG patients and the inclusion of

FIGURE 4

The individual SHAP force plots for patients who (A) suffered postoperative AKI and (B) did not suffer postoperative AKI.

FIGURE 3

Shapley additive exPlanations (SHAP) values of variables.(Ca, total calcium; HDL-C, high-density lipoprotein cholesterol; D-bil, direct bilirubin; TP, total

protein; hemoglobin; TC, total cholesterol; HCT, hematocrit; TG, triglycerides; AST, aspartate aminotransferase).

TABLE 4 Comparison of NRI and IDI between XGBoost model and the
other four models.

Model NRI-
Internal

IDI-
Internal

NRI-
External

IDI-
External

XGBoost-SVM 0.131578951 0.392569959 0.212936611 0.407685267

XGBoost-DT 0.504385916 0.495297804 0.323285899 0.41522068

XGBoost-

RandomForest

0.144145712 0.200742565 0.211148416 0.20303275

XGBoost-

AdaBoost

0.254385965 1.175069473 0.183699871 1.230715464

NRI, net reclassification improvement; IDI, integrated discrimination improvement.
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advanced feature selection techniques. In comparison to earlier

models, such as those utilizing traditional machine learning

methods (e.g., SVM and decision trees) (16), our deep learning

approach provides a more robust handling of complex, high-

dimensional data, improving predictive accuracy. Then we

compared the effectiveness of five machine-learning methods

(SVM, DT, RF, AdaBoost, and XGBoost) in predicting the risk of

AKI following OPCABG. The results indicate that XGBoost

outperformed the other models across various metrics.

When comparing our model’s performance to prior studies,

such as those by Hyung-Chul et al. (17) and Thongprayoon et al.

(18), which used traditional machine learning methods and

smaller datasets, our deep learning model outperforms in terms

of both sensitivity and specificity for AKI prediction in OPCABG

patients. Furthermore, our model addresses the unique

characteristics of the Chinese patient population, whose

demographic and clinical features may differ significantly from

those in Western cohorts.

Serum creatinine has long been used as a marker for kidney

function, but it has limitations, particularly in the early detection

of AKI. Elevated serum creatinine levels are often a late indicator

of kidney damage, and they may not reflect acute changes in

kidney function immediately after surgery. This can result in

delayed diagnosis and missed opportunities for early

intervention. In contrast, the ML model developed in this study

integrates a variety of patient data and clinical parameters,

enabling it to predict AKI much earlier, often before serum

creatinine levels become elevated. By capturing complex

relationships between multiple factors, such as patient

demographics, comorbidities, and preoperative variables, the ML

model demonstrates a superior ability to identify high-risk

patients for AKI. This early prediction is crucial for timely

preventive measures, reducing the risk of serious complications.

XGBoost achieved the highest accuracy, significantly surpassing

the other four methods and demonstrating a superior overall

predictive capability. In terms of sensitivity, XGBoost was

superior in correctly identifying patients who developed AKI,

indicating its effectiveness in detecting high-risk patients.

Regarding specificity, XGBoost performed exceptionally well in

excluding patients who did not develop AKI, showing a lower

false-positive rate. Notably, XGBoost had the highest AUC value,

reflecting an optimal balance between the sensitivity and specificity.

XGBoost exhibited outstanding performance metrics, which

can be attributed to several inherent characteristics of the

algorithm. First, XGBoost utilizes a gradient boosting framework

that allows the optimization of any differentiable loss function,

making it highly effective in handling complex medical data with

non-linear relationships. Second, XGBoost incorporates

regularization techniques to prevent overfitting, which enhances

the generalizability of the model across multicenter data (19).

While SVM, Decision Tree, Random Forest, and AdaBoost each

have their strengths, they underperformed compared to XGBoost

in this study. Although powerful in binary classification tasks,

SVM struggles in high-dimensional feature spaces and requires

extensive hyperparameter tuning (20). Decision Tree models,

despite their interpretability, Decision Tree models tend to overfit

and lack the predictive power needed for complex datasets (21).

Random Forest, as an ensemble method, offers greater stability

but falls short in precision and recall compared to XGBoost.

Similarly, AdaBoost, while improving over single Decision Trees,

is sensitive to noisy data and outliers, leading to inferior

performance compared to XGBoost (22).

The superior performance of XGBoost in predicting AKI risk

after AKI post-OPCABG has significant clinical implications.

Early and accurate identification of high-risk patients can

facilitate timely medical intervention, thereby improving patient

outcomes and reducing healthcare costs. The ability of XGBoost

to handle large-scale and heterogeneous datasets makes it

particularly valuable in multicenter settings, where it can

accommodate the wide variability in patient populations and

clinical practices. Integrating XGBoost-based predictive models

into clinical decision support systems can enhance the precision

of risk stratification and enable personalized patient care.

Timely and accurate prediction of AKI after OPCABG is

crucial for identifying high-risk patients and promptly

implementing preventive interventions. This can significantly

reduce the incidence and mortality rates of post-OPCABG AKI.

Recent studies have shown that ML methods have great potential

for predicting AKI after OPCABG. For instance, Zhang et al.

utilized an SVM algorithm to develop an ML model that

effectively identified high-risk postoperative patients (23).

Similarly, KHANH et al. employed recurrent neural networks

(RNN) to create an ML model whose predictive performance

surpassed that of traditional clinical scoring systems (24).

Additionally, Hou et al. used the random forest (RF) algorithm

to successfully construct a predictive model, which demonstrated

high efficiency and reliability on a large-scale patient dataset (14).

However, most of these ML models were developed under

conditions of limited data and computational resources, which

constrained their ability to comprehensively explain their

predictive mechanisms. In this study, we compared and

contrasted several ML methods, including SVM, DT, RF,

AdaBoost, and XGBoost to determine the model with optimal

accuracy and discrimination in predicting post-OPCABG AKI.

We found that the XGBoost model performed the best in terms

of predictive performance. By utilizing SHAP values and LIME

techniques, we were able to elucidate the main drivers of the

model predictions, thereby enhancing the interpretability of the

XGBoost model.

Interpretable ML models, particularly the XGBoost model,

have significant clinical importance for predicting AKI following

OPCABG. Early detection of AKI is vital for timely intervention

and improvement in patient outcomes. Transparency and

interpretability achieved through techniques such as LIME

increase clinical trust and willingness to use these models.

Identifying the key influencing factors, such as patient age,

preoperative kidney function, provides critical insights into the

risk factors for post-OPCABG AKI (25).

Moreover, integrating these ML models into clinical practice

can facilitate personalized medicine, enabling clinicians to tailor

interventions based on individual patient-risk profiles (26).

Future research should focus on expanding the dataset and
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incorporating additional clinical variables to further enhance the

model’s robustness and generalizability (27). The ongoing

collaboration between data scientists and clinicians is essential to

refine these predictive models and ensure their seamless

integration into clinical workflows.

These findings underscore the multifactorial nature of AKI risk

in cardiac surgery patients and highlight the need for a

comprehensive approach to its prediction and prevention.

Integrating these factors into ML models can enhance their

predictive accuracy and utility in the clinical setting (23).

Collaboration between data scientists and clinicians is essential

for refining these models and developing practical tools for real-

time decision support.

While our study provides a comprehensive technical

comparison of the XGBoost model and highlights its predictive

capabilities using SHAP analysis, it is crucial to contextualize

these findings in terms of their clinical implications. The

identification of clinically relevant features such as age, baseline

serum creatinine levels, and history of hypertension and diabetes

aligns with established medical knowledge, affirming the model’s

reliability in a clinical context.

However, the emergence of unexpected predictors, such as

specific laboratory values and demographic factors, necessitates

further clinical investigation. Understanding these novel

predictors could uncover new insights into AKI risk factors,

potentially leading to improved patient management and

preventative strategies.

Mechanistically, the features included in our model, such as

calcium levels, neutrophil count, and chronic bronchitis, are

closely linked to AKI pathophysiology. Elevated calcium levels,

for instance, play a direct role in renal function and are

associated with renal vasoconstriction and endothelial injury (28,

29). Neutrophils, as inflammatory markers, contribute to renal

damage through their role in the inflammatory cascade (30).

Chronic bronchitis, a respiratory condition, can exacerbate renal

injury due to systemic inflammation and hypoxemia, which may

impair renal perfusion.

To bridge the gap between technical findings and clinical

application, future research should focus on validating these

predictors in diverse clinical settings and translating model

insights into practical guidelines for clinicians. This approach will

ensure that the model’s technical strengths are effectively

harnessed to enhance patient care and outcomes.

Limitations

Although the results are encouraging, this study has several

limitations. The retrospective nature of the data may have

introduced biases that could affect the model’s performance, such

as selection bias and information bias. Additionally, while

XGBoost demonstrates strong predictive capabilities, the

interpretability of the model remains a challenge. This lack of

transparency can hinder clinicians’ trust and acceptance of the

model’s predictions.

Another limitation is the potential for overfitting, despite the

use of cross-validation techniques. The model may perform well

on the training and validation datasets but might not generalize

effectively to new, unseen data. This issue underscores the need

for rigorous prospective validation in diverse clinical settings.

Additionally, the model exhibited lower sensitivity in certain

cases, which could limit its ability to identify all high-risk AKI

patients. This lower sensitivity may impact its clinical utility in

settings where early detection of AKI is critical. Future research

should focus on improving sensitivity while maintaining

model specificity.

Future studies should also integrate interpretable AI

techniques, such as SHAP (SHapley Additive exPlanations), to

enhance the transparency of predictions. By providing clear

explanations for the model’s outputs, these techniques can help

clinicians better understand and trust the predictions.

Moreover, prospective validation in various clinical

environments is crucial to confirm the practical effectiveness of

the XGBoost model. Such validation can help determine the

model’s robustness across different patient populations and

healthcare systems, ensuring its broader applicability and

reliability. By conducting validation studies, we can better

understand how the model performs in diverse clinical settings

and refine it as needed to integrate seamlessly into clinical

workflows, ultimately enhancing its utility in everyday

clinical practice.

Lastly, the study’s reliance on a single type of predictive model

(XGBoost) limits the exploration of other potentially effective

algorithms. Future studies should consider comparing multiple

machine learning approaches to identify the most suitable model

for predicting AKI risk.

Conclusion

In conclusion, this study establishes a deep learning-based

prediction model for acute kidney injury (AKI) following off-

pump coronary artery bypass grafting (OPCABG) in patients

with coronary heart disease. Our findings underscore the

importance of accurately identifying high-risk patients and

demonstrate the potential of machine learning models in

improving AKI prediction. However, further research is essential

to optimize and validate these models across diverse clinical

settings. Continued efforts in refining these models and

integrating them into clinical practice could lead to improved

patient outcomes, reduced complications, and ultimately enhance

the overall prognosis for patients undergoing OPCABG surgery.
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