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Objective: The aim of this study was to investigate the correlation between

blood urea nitrogen-albumin index (BAR) and 30-day and one-year all-cause

mortality in patients with heart failure admitted to the intensive care unit (ICU).

Method: This is a retrospective cohort study with data from two non-

overlapping datasets from the Medical Information Marketplace in Intensive

Care (MIMIC), where MIMIC-IV was used for training and MIMIC-III for external

validation. Risk ratios (HR) and 95% confidence intervals (CI) between the BAR

index and all-cause mortality were assessed using Cox proportional risk

regression and Kaplan–Meier curves. Restricted cubic spline regression

modeling was used to assess potential nonlinear relationships between BAR

indices and outcome indicators. Nine machine learning (ML) algorithms were

used to build predictive models, and, in addition, the Shapley additive

interpretation (SHAP) method was used to determine feature importance.

Result: This study included 2,470 critically ill heart failure patients. Multivariate

Cox regression analysis revealed that the risk of all-cause mortality was

significantly higher at both 30 and 365 days for patients in the highest quartile

of the BAR index. Kaplan–Meier analyses indicated that the cumulative

incidence of mortality increased with higher quartiles of the BAR ratio.

Additionally, multivariate restricted cubic spline regression showed a nonlinear

increase in death risk at 30 and 365 days with higher BAR index values.

Subgroup analyses confirmed consistent effect sizes and stability across

groups. Among the nine models, XGBoost performs the best, with an AUC

value of 0.894 [95% confidence interval (CI): 0.85–0.93] in the internal

validation dataset and 0.924 [95% confidence interval (CI): 0.88–0.96]. The

model demonstrated the best predictive performance in terms of

discrimination and clinical application.
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Conclusion: We found that higher BAR levels were significantly associated with a

higher risk of 30- and 365-day all-cause mortality in critically ill patients with

heart failure.

KEYWORDS

BAR index, heart failure, ICU, MIMIC-IV database, 30-day mortality

Background

Cardiovascular disease has been the number one threat to

global health over the past few decades, with approximately 20.8

million people dying from cardiovascular disease (CVD) every

year up to 2023, accounting for approximately one-third of all

global deaths (1). Heart failure (HF) is a clinical syndrome

characterized by structural and functional damage to the heart

and is the end stage of cardiovascular disease. Heart failure has

long been a major global health challenge, especially as the

prevalence of HF continues to rise with the aging population and

the increasing burden of comorbidities such as hypertension,

diabetes, and obesity, which not only severely reduces the quality

of life of patients but also imposes a huge economic burden

worldwide. Patients with heart failure often have a poor

prognosis, with a five-year survival rate similar to that of

malignant tumors, and it is important to actively develop

predictive models for patients with heart failure to improve

their prognosis.

HF is the end stage of many cardiovascular diseases, and the

reduction of effective circulating blood volume and insufficient

organ perfusion are important pathophysiologic mechanisms of

heart failure (2). The BAR index introduced by blood urea

nitrogen and albumin is a valuable biomarker discovered in

recent years. Although BUN is less sensitive to renal insufficiency

than serum creatinine, studies are confirming that increased

BUN is associated with poor prognosis in patients with heart

failure (3). The kidneys have a close relationship with the heart,

and in patients with chronic heart failure, the compensatory

effects of the kidneys may keep BUN low, but with heart failure

loss of compensation, there is insufficient effective circulating

blood volume, which leads to the secretion of a variety of

neurohormones, resulting in a further reduction in renal

perfusion when high levels of BUN may herald more severe

heart failure. Reduced levels of albumin (ALB), an abundant

soluble protein component of the circulatory system, are thought

to be primarily associated with cachexia, renal insufficiency,

hepatic dysfunction, and inflammation. Previous studies have

shown that hypoalbuminemia is an independent predictor of

poor prognosis in heart failure (4). Metabolic imbalance,

inflammatory response, oxidative stress, and endothelial

dysfunction are important features of heart failure, and BAR, as

a combination of these two hematological indices, reflects the

multiple pathophysiological processes of cardiovascular disease.

Therefore, active research on the BAR index and the outcome

and prognosis of heart failure is necessary to help provide better

insights into the clinical management of cardiovascular disease.

Previous studies have shown that higher BAR indices are

associated with an increased risk of adverse outcomes in patients

with myocardial infarction (5), acute coronary syndromes (6),

and after cardiac surgery. However, studies on the association

between BAR index and critically ill patients with heart failure

are lacking. This study investigated the correlation between the

BAR index and all-cause mortality in heart failure patients

admitted to the intensive care unit (ICU). The results of the

study may help to explore new strategies for early identification

and improvement of prognosis in critically ill patients with heart

failure and provide important new insights into the function of

BAR in predicting patient prognosis.

Method

Data source

The data used to construct the model came from the Medical

Information Mart for Intensive Care IV (MIMIC-IV, version:

v2.2) (7) which contains clinical information on 431,231 hospital

admissions for 299,712 patients admitted to Beth Israel

Deaconess Medical Center from 2008 to 2020. We also

performed external validation using a subset of the MIMIC-III

database (8), which included 26,836 admissions for 23,692

patients between 2001 and 2008, and there was no overlap with

patients with MIMIC-IV. The MIMIC-IV database details

information on patient demographics, laboratory tests,

medications, vital signs, surgeries, disease diagnoses, and

Abbreviations

MIMIC-IV, medical information mart for intensive care IV;; BAR index, blood

urea nitrogen to albumin ratio index; ICU, intensive care unit; ICD-10,

international classification of diseases, tenth revision; ICD-9, based on the

international classification of diseases, ninth revision; SQL, structured query

language; SD, standard deviation; IQR, interquartile range; OR, odds ratios;

CI, confidence intervals; CKD, chronic kidney disease; CAD, coronary artery

disease; CVD, cardiovascular disease; AKI, acute kidney injury; COPD,

chronic obstructive pulmonary disease; HLD, hyperlipidemia; HF, heart

failure; AF, atrial fibrillation; HTN, hypertension; MI, myocardial Infarction;

PNA, pneumonia; CVA, cerebrovascular accident; RDW, red blood cell width

of distribution; PLT, platelet; Hb, hemoglobin; HCT, hematocrit; ML, machine

learning; WBC, white blood cell; RBC, red blood cell; BUN, blood urea

nitrogen; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP,

mean blood pressure; HR, heart rate; SpO2, oxyhemoglobin saturation; RCS,

restricted cubic spline; RF, random forest; DT, decision tree; KNNC, K-nearest

neighbors classifier; XGB, extreme gradient boosting; LGB, light gradient

boosting machine; SHAP, Shapley additive explanation (SHAP); SOFA,

sequential organ failure estimate; APS III, acute physiology score III; SAPS II,

simplified acute physiology score II; OASIS, Oxford acute severity of illness

score; AUC, area under the receiver operating characteristic; DCA, decision

curve analysis; ROC, receiver operating characteristic; APACHEII, acute

physiology and chronic health evaluation II; ACEI/ARB, angiotensin-

converting enzyme inhibitor/angiotonin receptor blocker.
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follow-up survival status. In order to protect patient privacy, all

personal information is de-identified and a random code is used

instead of patient identification, so we do not require the patient’s

informed consent and ethical approval. To access the database,

author Yi Tang completed the Collaborative Institutional Training

Initiative (CITI) course and passed the Conflict of Interest and Data

or Sample Study Only exams (ID: 13870584).

Inclusion and exclusion criteria

The study included patients with heart failure who were

hospitalized for the first time and admitted to the ICU for the

first time.

The inclusion criteria were as follows:

(1) Age ≥18 years.

(2) Meeting the diagnostic criteria for heart failure. In this study,

heart failure and other comorbidities were diagnosed using the

International Classification of Diseases, Ninth Revision (ICD-

9) and Tenth Revision (ICD-10) codes (I5083, I5082, I5084,

I5089,I509,40201,40291,40491,40492, 4280,4281,42820,

42821,42822,42823, 42830,42831,42832,42833, 42840,42841,

42842, 42843,4289, I5020, I5021, I5022, I5023, I5030, I5031,

I5032, I5033, I5040, I5041, I5042, I5043, I50810, I50811,

I50812, I50813, I50814).

The exclusion criteria were as follows:

(1) Patients with ICU hospitalization time less than 24 h.

(2) Lack of blood urea nitrogen and serum albumin in

laboratory tests.

(3) For patients with multiple ICU admissions, only data from the

first hospitalization were included.

(4) Patients with direct or indirect causes of abnormal release of

blood urea nitrogen and albumin, including hepatitis,

cirrhosis, and malignancy, were excluded from the study.

Data collection and definitions

Structured Query Language (SQL) in PostgreSQL was used to

extract data from both databases for patients admitted to the

ICU within the previous 24 h. The variables extracted for this

study were (1) demographics: age, gender, weight; (2)

comorbidities: acute myocardial infarction (AMI), hypertension

(HTN), atrial fibrillation (AF), coronary heart disease (IHD),

diabetes mellitus (DM), chronic obstructive pulmonary disease

(COPD), stroke (CVA), pneumonia (PNA), acute kidney injury

(AKI), chronic kidney disease (CKD), hyperlipidemia (HLD). (3)

Vital signs: systolic blood pressure (SBP), diastolic blood pressure

(DBP), mean blood pressure (MBP), heart rate (HR), respiratory

rate (RR), oxygen saturation (SPO2), temperature; (4) Drugs:

angiotensin-converting enzyme inhibitors/angiotensin receptor

blockers (ACEI/ARB), diuretics, statins, antiplatelet agents,

Anticoagulants; (5) Laboratory data: red blood cells (RBC), red

blood cell distribution width (RDW), hematocrit (Hct),

hemoglobin (Hb), platelets (PLT), white blood cells (WBC),

glucose, blood urea nitrogen (BUN), creatinine, neutrophil,

lymphocytes, monocytes, lactic acid (Lac), blood urea nitrogen

(BUN), albumin (ALB); (6): scoring data: Oxford Acute Severity

of Illness Score (OASIS), Simplified Acute Physiology Score

(SAPSII), Sequential Organ Failure Assessment (SOFA), Acute

Physiology and Chronic Health Score (APSIII), Acute Physiology

and Chronic Health Score (APACHEII). (7): Baseline treatment:

Invasive mechanical ventilation (IMV).

All laboratory indices extracted from the MIMIC-IV (2.2)

database were taken from each measurement made after the

patient’s admission to the ICU, and the worst of these values was

taken. The blood urea nitrogen-albumin ratio (BAR) was defined

as an index calculated using the following formula: BAR = blood

urea nitrogen/albumin. Missing values for laboratory indicators

are common in the MIMIC-IV database. To minimize bias due

to sample exclusion, we calculated the percentage of missing

values for each continuous variable. To avoid bias, variables with

missing values exceeding 20% were excluded. Variables with

missing values between 5% and 10% were treated using multiple

imputations, and variables with missing values less than 5% were

treated using mean imputation. Outliers were filtered using the

BoxPlot method.

Outcome measures

The primary study endpoints were 30 and 365-day mortality

after ICU admission, and the secondary study endpoints were in-

hospital and ICU all-cause mortality.

Statistical analysis

Categorical variables were assessed using Fisher’s exact

probability method or chi-square test and expressed as counts

(percentages). Continuous variables were expressed as interquartile

ranges, and medians were tested using the Wilcoxon rank sum

test. Multicollinearity was checked using Variance Inflation Factor

(VIF), and variables with VIF above 5 were deleted (9, 10).

Patients were categorized into 4 groups based on the quartiles of

the BAR index, with the lowest quartile as the reference group.

Kaplan–Meier survival analysis was used to assess the incidence of

30-day and one-year mortality events between groups based on

different BAR levels, followed by a log-rank test to assess the

significance of the differences between groups and a log Rank test

to compare the two curves. Restricted cubic spline (RCS) curves

were used to explore potential nonlinear relationships between the

BAR Index and 30-day and one-year mortality rates and to create

a threshold effects model to identify inflection points in the BAR

Index. Univariate and multivariate Cox regression analyses were

conducted using Boruta’s algorithm to characterize the screened

variables and to test for trends, adjusting for several confounding

variables. (Model 1: includes only the BAR index without any

adjustment; Model 2 is adjusted for demographic variables such as

age, gender, weight, etc.; Model 3: Combines important
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characteristic variables based on clinical expertise and screening

from Boruta and Random Forest algorithms, including age,

weight, PNA, AKI, PLT, RDW, neutrophils, HCT, blood urea

nitrogen, lactate, lymphocytes, monocytes, diuretics, APSIII,

SAPAII, and OASIS. Finally, we also performed subgroup analyses

including sex, age, comorbidities [acute kidney injury (AKI),

coronary heart disease (CKD), type 2 diabetes mellitus, diuretics,

and mechanical ventilation], and assessed the P of the interaction

using the log-likelihood ratio test. Statistical analyses for this study

were performed using Python (version 3.9.12), SPSS (version 25.0),

and DecisionLnc1.0 (11) software.

The establishment and validation of
predictive models

We internally validated the MIMIC-IV database by dividing

the training and test sets in 7:3. Subsequently, we validated the

model externally using MIMIC-III. By combining internal and

external validation, we were able to comprehensively assess the

performance and generalization ability of the constructed models.

In this study, nine machine learning algorithms, namely Extreme

Gradient Boosting (XGBoost), Support Vector Machine (SVM),

Adaptive Boosting (Adaboost), Light Gradient Boosting Machine

(LGB), K-Nearest Neighbor Classifier (KNNC), Decision Tree

(DT), Random Forest (RF), Gradient Boosting Based (CatBoost),

and Gradient Boosting Tree (GBDT), are used to construct the

prediction models. In order to optimize the overall performance

of the model, we implemented feature selection during the

modeling process to reduce the complexity of the model and

enhance generalization.

The essence of the algorithm is based on two concepts: “shadow

features” and “binomial distribution”. Boruta generates a set of

copies of features, called shaded features, from the original dataset.

Elements were considered significant and retained if their Z-scores

exceeded the maximum possible Z-score for the shaded elements,

indicating that they had the largest matching effect (ratio or risk

ratio) among the set of biomarkers; otherwise, they were excluded

(12). The maximum area under the curve (AUC) of the subject’s

work characteristics (ROC) was selected as the optimal model

during the parameter tuning process. The performance of the

predictive model was evaluated by AUC, sensitivity, specificity,

recall, F1 score, accuracy and recall of the ROC curve. In addition,

decision curve analysis (DCA) and calibration curves were plotted

to assess the net clinical benefit. The interpretability of the final

predictive model was explored using the Shapley summation and

interpretation (SHAP) method (13).

Results

Baseline demographic and clinical
characteristics

As shown in Figure 1, After screening, the study included 2470

patients from the MIMIC-IV database (mean age 72.06 years,

57.81% male) and 2179 patients from the MIMIC-III database

(mean age 74.36 years, 45.30% male). Table 1 summarizes the

comparison of baseline characteristics, vital signs, severity scores,

comorbidities, medications used, and laboratory indices between

nonsurvivors and survivors at 30 days. The comparison between

the survival (2108,85.3%) and non-survival (362, 14.7%) groups

showed that, in the non-survivor group, age, weight, RR, SPO2,

WBC, RDW, Hb, Hct, Albumin, Urea Nitrogen, Lactic acid,

Glucose, Creatinine, Neutrophil, SOFA, SAPS II, OASIS, APSIII,

APACHEII, PNA, HLD, AKI, CKD, ACEI/ARB, statins, diuretics

compared to survivors significantly. In addition, we divided heart

failure into heart failure with reduced ejection fraction (HFrEF),

heart failure with preserved ejection fraction (HFpEF), and heart

failure with intermediate ejection fraction (HFmrEF) according

to the ejection fraction LVEF, and we found that HFmrEF had

the highest number of people, and although the proportion of

HFmrEF was slightly higher in the death group than in the

survival group, this difference was not statistically significant

(p = 0.178). Among patients receiving medications, we found that

mortality was lower in patients using ACEI/ARBs, statins, and

diuretics, and the use of these medications was significantly

higher in the survivor group than in the fatal group, suggesting

that these medications may be associated with lower mortality.

However, the relationship between anticoagulants and antiplatelet

agents and mortality was not significant, and further studies are

needed to confirm their effects.

In Table 2, the hospital, ICU, 30-day, and 365-day mortality

rates of the patients were 3.52%, 10.97%, 14.66%, and 15.3%,

respectively. Patients were categorized into 4 groups based

on the quartiles of the BAR index: quartile 1

(1.33≤ BAR < 6.58), quartile 2 (6.58≤ BAR < 9.39), and quartile

3 (9.39≤ BAR≤ 13.94) quartile 3 (13.94≤ BAR≤ 59.41), with the

first 3 groups consisting of 617 individuals and the fourth group

consisting of 619 individuals. Patients in quartile 4 exhibited

higher weight, age, heart rate, blood pressure, respiratory rate,

neutrophil count, white blood cell count, blood urea nitrogen,

glucose, monocyte count, creatinine, lactate, SOFA score,

mechanical ventilation, and proportion of statin use, as well as

lower levels of albumin, erythrocytes, platelet count, hemoglobin,

hematocrit, and SPO2.

Clinical outcomes

To investigate the independent effect of the BAR index on

mortality, three Cox regression models were applied Table 3.

Supplementary Table S1 shows the variance inflation factors,

indicating that there is no multicollinearity between the variables.

After adjusting for age, sex, and weight (Model 2), the HRs and

95% CIs for 30-day all-cause mortality for the BAR index

categories (Q1, Q2, Q3, and Q4) were 1 (reference), 1.92 (1.18,

3.098), 3.92 (2.52–6.10), and 7.19 (0.98–0.99). Subsequent

adjustments for age, body weight, PNA, PLT, RDW, neutrophils,

hematocrit, blood urea nitrogen, lactate, lymphocytes, monocytes,

diuretics, APSIII, SAPAII, and OASIS (Model 3) resulted in the

following risk ratios for 30-day all-cause mortality:
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respectively:1.00 (reference), 1.52 (0.94–2.47), 2.28 (1.41–4.54) and

2.54 (1.42–4.54). In Model 2, the risk ratios for 365-day all-cause

mortality were 1.00 (reference), 2.02 (95% CI: 1.26–3.26), 4.09

(95% CI: 2.64–6.35), and 7.49 (95% CI: 4.91–11.44), respectively.

In model 3, the HRs were 1.00 (reference), 1.63 (95% CI: 1.01–

2.64), 2.46 (95% CI: 1.53–3.95) and 2.75 (95% CI: 1.55–4.89).

The results of the study showed that patients with a BAR index

of 9.39 or higher had a significantly higher risk of all-cause

mortality at both 30 and 365 days compared to those in Q2. The

Kaplan–Meier survival curves illustrate the survival differences in

30- and 365-day mortality between the 4 BAR groups (Figure 2).

Patients in the highest BAR index group (Q4) had significantly

lower survival at 30 and 365 days than those in the lowest BAR

index group (Q1) (log-rank P < 0.05).

Restricted cubic spline

According to the multivariate RCS model, the risk of 30- and

365-day mortality was found to increase nonlinearly (p-value

<0.05, non-linear p > 0.05) with increasing BAR index (Figure 3).

In addition, a combination of Cox proportional risk modeling

and two-stage Cox proportional risk modeling was used to

investigate the nonlinear relationship between the level of BAR in

heart failure patients and the aforementioned mortality rates

(both P for log-likelihood ratio <0.05) (Supplementary Table S3).

The inflection points for 30-day and 365-day all-cause mortality

were 13.23 and 12.97, respectively. When the BAR index was

below 13.23 or 12.97, the adjusted HR for 30- and 365-day

mortality increased by a factor of 1 for each unit increase in the

BAR level (HR 1.14; 95% CI, 1.06–1.23; HR 1.15; 95% CI, 1.06–

1.24, respectively). However, when the BAR was greater than the

inflection point, there was no significant association with 30- and

365-day mortality.

Subgroup analysis

The results show a subgroup analysis of 30-day all-cause

mortality (Figure 4). In subgroups defined by age, sex, T2DM,

AKI, CAD, diuretics, and mechanical ventilation status, Q4

consistently demonstrated a higher risk of death, with or without

adjustment for covariates. The results of the subgroup analyses

indicated that the BAR index was similarly associated with the

30-day risk of death in patients with critical heart failure in most

subgroups of the population. The model was not significant for

the interaction test of covariates with the BAR index.

Establishment and validation of the
prediction model

We constructed 9 models to predict 30-day mortality in

patients with heart failure, and Figure 5 shows the discriminative

FIGURE 1

Study flow diagram depicting exclusion criteria and outcomes.
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TABLE 1 Baseline characteristics between survivors and non-survivors.

Characteristics MIMIC-IV (N= 2,470) MIMIC-III (N= 2,179)

Survivor N =2,108 Non-survivor N = 362 P Survivor N =2,026 Non-Survivor N=153 P

BAR 13.18 ± 8.15 20.58 ± 10.85 <0.001 13.40 ± 8.33 20.81 ± 11.43 <0.001

Demographic

Age, year 71.19 ± 13.62 77.10 ± 10.44 <0.001 73.80 ± 12.69 81.73 ± 9.89 <0.001

Weight 84.19 ± 20.96 79.19 ± 21.93 <0.001 85.02 ± 25.42 82.61 ± 23.89 0.009

Gender, n (p %)

F 65 (48.87%) 1,440 (44.97%) 0.376 900 (44.42%) 65 (42.48%) 0.027

M 68 (51.13%) 1,762 (55.03%) 1,126 (55.58%) 88 (57.52%)

Vital signs

HR, beats/min 89.19 ± 20.16 90.41 ± 20.84 0.302 87.79 ± 18.71 91.84 ± 19.77 0.045

NBPS, mmHg 118.51 ± 23.53 117.44 ± 24.35 0.440 121.48 ± 23.47 113.68 ± 25.37 <0.001

NBPD, mmHg 71.48 ± 150.91 66.70 ± 18.92 0.166 67.97 ± 152.13 62.86 ± 19.04 0.310

NBPM, mmHg 80.69 ± 17.81 82.35 ± 48.91 0.525 77.86 ± 17.28 74.16 ± 19.08 0.019

RR, times/min 19.56 ± 6.44 20.86 ± 6.26 <0.001 18.27 ± 5.71 20.84 ± 6.87 <0.001

SPO2,% 96.72 ± 4.05 95.83 ± 4.79 <0.001 96.83 ± 4.38 96.02 ± 5.51 0.250

Temperature, °F 98.04 ± 3.76 98.10 ± 1.39 0.572 97.64 ± 4.64 97.46 ± 1.74 <0.001

Laboratory tests

RBC, 109/L 2.92 ± 0.64 2.87 ± 0.66 0.137 3.13 ± 0.64 3.03 ± 0.75 0.032

WBC, 109/L 18.32 ± 7.75 20.03 ± 9.73 0.002 7.51 ± 2.97 9.82 ± 6.30 <0.001

PLT, 109/L 143.94 ± 61.47 141.39 ± 70.93 0.520 171.89 ± 82.84 146.94 ± 84.78 <0.001

RDW, (%) 16.07 ± 2.20 17.29 ± 2.28 <0.001 15.88 ± 2.11 16.94 ± 2.16 <0.001

Hb, g/dl 8.68 ± 1.87 8.43 ± 1.85 0.020 9.31 ± 1.83 8.90 ± 1.93 0.012

Hct, mg/dl 37.31 ± 5.96 35.72 ± 6.06 <0.001 35.62 ± 4.85 35.98 ± 5.01 0.414

Urea Nitrogen, mg/dl 42.80 ± 24.10 61.85 ± 30.01 <0.001 38.64 ± 20.49 52.94 ± 24.76 <0.001

Albumin (g/dl) 3.38 ± 0.57 3.10 ± 0.57 <0.001 3.04 ± 0.56 2.69 ± 0.61 <0.001

Lactic acid 2.70 ± 1.48 3.19 ± 1.78 <0.001 2.53 ± 1.80 5.49 ± 4.73 <0.001

Glucose (mg/dl) 198.92 ± 69.53 225.30 ± 72.90 <0.001 176.55 ± 58.38 191.14 ± 63.61 <0.001

Creatinine (mg/dl) 1.27 ± 0.61 1.44 ± 0.66 <0.001 1.65 ± 1.01 2.37 ± 1.37 <0.001

Monocyte (mg/dl) 6.64 ± 3.35 7.02 ± 3.43 0.054 5.66 ± 3.40 5.86 ± 4.31 0.925

Neutrophil (mg/dl) 81.89 ± 7.92 85.88 ± 7.12 <0.001 82.90 ± 9.68 85.17 ± 12.15 <0.001

Severity scores

SOFA 5.42 ± 3.02 6.65 ± 3.56 <0.001 4.55 ± 2.75 6.83 ± 3.65 <0.001

APSIII 46.79 ± 17.80 56.98 ± 19.63 <0.001 44.88 ± 17.13 63.56 ± 25.29 <0.001

SAPSII 39 ± 12.14 46.10 ± 13.14 <0.001 37.75 ± 11.73 49.92 ± 15.63 <0.001

OASIS 32.77 ± 8.14 37.13 ± 8.64 <0.001 32.58 ± 8.25 39.65 ± 8.72 <0.001

APACHEII 13.15 ± 3.14 13.58 ± 2.89 0.125 11.24 ± 3.24 13.47 ± 2.18 0.145

Comorbidities

HF 0.178 NA

HFmrEF 856 (42.50%) 190 (47.27%)

HFpEF 620 (30.30%) 119 (25.76%)

HFrEF 560 (27.20%) 123 (26.97%)

AF 38 (28.57%) 763 (23.83%) 0.210 927 (45.76%) 92 (60.13%) 0.002

HTN 34 (25.56%) 1,004 (31.36%) 0.158 982 (48.47%) 59 (38.56%) 0.057

PNA 45 (33.83%) 599 (18.71%) <0.001 742 (36.62%) 82 (53.59%) <0.001

CVA 16 (12.03%) 354 (11.06%) 0.726 183 (9.03%) 9 (5.88%) 0.407

T2DM 48 (36.09%) 1,202 (37.54%) 0.735 851 (42.00%) 44 (28.76%) 0.006

T1DM 1 (0.75%) 27 (0.84%) 0.910 25 (1.23%) 2 (1.31%) 0.785

HLD 60 (45.11%) 1,729 (54%) 0.044 727 (35.88%) 44 (28.76%) 0.019

MI 16 (12.03%) 468 (14.62%) 0.407 171 (8.44%) 13 (8.50%) 0.782

CAD 76 (57.14%) 2,018 (63.02%) 0.169 78 (60.34%) 1,978 (66.78%) 0.134

COPD 24 (18.05%) 702 (21.92%) 0.288 28 (19.34%) 698 (20.56%) 0.32

AKI 1,040 (49.34%) 252 (69.61%) <0.001 767 (37.86%) 98 (64.05%) <0.001

CKD 640 (30.36%) 145 (40.06%) <0.001 521 (25.72%) 42 (27.45%) 0.814

Drugs

ACEI-ARB <0.001 1,321 (65.20%) 50 (32.68%) <0.001

No 1,411 (66.94%) 285 (78.73%) 705 (34.81%) 103 (67.32%)
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performance of these 9 models on the ROC curve. In addition,

we evaluated and compared the performance of the models

using metrics such as precision, accuracy, recall, and F1 score.

Among the 9 base models, the XGBoost model demonstrated

the best predictive performance with an AUC of 0.894 (95%

CI: 0.85–0.93) for the XGBoost model. Following closely

behind, the LGBM model showed considerable efficacy with an

AUC of 0.893 (95% CI: 0.855–0.931), outperforming the

remaining algorithms. The remaining models, while still

showing good predictive power, are as follows in descending

order of performance: CatBoost (AUC = 0.877, 95% CI: 0.842–

0.914), KNNC (AUC = 0.805, 95% CI: 0.761–0.849), GBDT

(AUC = 0.825, 95% CI: 0.773–0.877), AdaBoost (AUC = 0.814,

95% CI: 0.77–0.859), RF (AUC = 0.775, 95% CI: 0.729–0.823),

DecisionTree (AUC = 0.689, 95% CI: 0.64–0.739), and SVM

(AUC = 0.667, 95% CI: 0.602–0.731). According to the DCA

curves (Figure 6B), each model showed a large net gain,

indicating robust clinical validity of the models developed.

Table 4 shows the detailed performance metrics of the nine

models. XGBoost demonstrated the most balanced and

excellent performance (precision = 0.813, recall = 0.654),

LightGBM was the close alternative, and both were

significantly better than the other models.

Performance comparison of the model on
the external validation set

Despite the inherent differences in baseline characteristics

between the two datasets, our model exhibits strong

generalization. The externally validated ROC curve yields an

AUC of 0.924 (95% CI: 0.88–0.96).

Selection of characteristic variable

The SHAP method is a comprehensive interpretation method

applicable to both overall and individual sample analyses for

interpreting models. For the overall interpretation, SHAP implies

assessing the contribution of features to the model, with the five

most important features (BAR, neutrophil count, weight, uric acid,

and OASIS score) listed in descending order of importance (Figure 5).

Discussion

This study is the first retrospective study to explore the

association between BAR levels and all-cause mortality in

critically ill patients with heart failure based on the MIMIC-IV

database. Blood urea nitrogen/albumin ratio (BAR) is a newly

discovered biological indicator in recent years that has the

advantages of being noninvasive, easy to obtain, and widely used.

Our study demonstrated a significant association between higher

levels of the BAR index and increased 30-day and one-year

mortality in critically ill patients with heart failure. This

association held even after accounting for potential confounders,

demonstrating the robustness of the findings. The study also

found that patients’ 30-day and one-year mortality rates were

nonlinearly correlated with the BAR index.

In recent years, several clinical studies have demonstrated a

correlation between elevated BUN levels and decreased ALB and

poor prognosis in patients with cardiovascular disease, including

acute coronary syndrome (14) and acute myocardial infarction

(15). Blood urea nitrogen and albumin have long been of interest

as single indicators, and the BAR index, as a combination of the

two, with elevated levels that may reflect the patient’s nutritional

status, hepatic and renal function, as well as the inflammatory

TABLE 1 Continued

Characteristics MIMIC-IV (N= 2,470) MIMIC-III (N= 2,179)

Survivor N =2,108 Non-survivor N = 362 P Survivor N =2,026 Non-Survivor N=153 P

Yes 697 (33.06%) 77 (21.27%) 1,320 (65.19%) 50 (32.68%)

Stains 462 (21.92%) 57 (15.75%) 0.008 1,598 (78.87%) 98 (64.05%) <0.001

No 1,646 (78.08%) 305 (84.25%) 428 (21.14%) 55 (35.95%)

Yes 462 (21.92%) 57 (15.75%) 1,597 (78.86%) 98 (64.05%)

Diuretics 886 (42.03%) 72 (19.89%) <0.001 1,856 (91.61%) 137 (89.54%) 0.617

No 1,222 (57.97%) 290 (80.11%) 170 (8.40%) 16 (10.46%)

Yes 886 (42.03%) 72 (19.89%) 1,855 (91.60%) 137 (89.54%)

Anticoagulants 1,963 (93.12%) 334 (92.27%) 0.555 1,879 (92.74%) 143 (93.46%) 0.851

No 145 (6.88%) 28 (7.73%) 147 (7.26%) 10 (6.54%)

Yes 1,963.00 (93.12%) 334 (92.27%) 1,878 (92.74%) 143 (93.46%)

Antiplatelet 488 (23.15%) 82 (22.65%) 0.835 1,155 (57.01%) 66 (43.14%) <0.001

No 1,620 (76.85%) 280 (77.35%) 871 (43.01%) 87 (56.86%)

Yes 488 (23.15%) 82 (22.65%) 1,154 (56.99%) 66 (43.14%)

Bold text indicates statistical significance.

WBC, white blood cell; RDW, red cell distribution width; BUN, blood urea nitrogen; RBC red blood cell; HR, heart rate; SpO2, oxyhemoglobin saturation; RR, respiratory rate; PLT, platelet;

RDW, red cell distribution Width; Hct, hematocrit; Hb, hemoglobin; SBP, systolic blood pressure; DBP, diastolic pressure; CKD, chronic kidney disease; T1DM, diabetes I type 1 diabetes;

T2DM, diabetes II type 2 diabetes; COPD, chronic obstructive pulmonary disease; CAD, coronary artery disease; AKI, acute kidney injury; AF, atrial fibrillation; PNA, pneumonia; CVA,

cerebrovascular accident; HLD, hyperlipemia; SOFA, sequential organ failure assessment; APSIII, acute physiology score III; SAPSII, simplified acute physiology score II; OASIS, oxford

acute severity of illness score; APACHEII, acute physiology and chronic health evaluation II score; ICU, intensive care unit; MI, myocardial infarction; HFrEF, heart failure with reduced

ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFmrEF, heart failure with mid-range ejection fraction; Data are n/N (%) or mean ± standard deviation.
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TABLE 2 Patient demographics and baseline characteristics.

Variables Overall N = 2,470 Q1 N = 617 Q2 N= 617 Q3 N= 617 Q4 N= 619 p

BAR 14.26 ± 8.99 5.75 ± 1.24 9.56 ± 1.12 14.64 ± 1.96 27.05 ± 7.61 <0.001

Demographic

Weight 83.45 ± 21.17 82.84 ± 20.54 82.84 ± 20.75 83.75 ± 21.67 84.38 ± 21.72 0.514

Age, year 72.06 ± 13.37 65.85 ± 14.71 72.45 ± 12.47 74.65 ± 12.56 75.28 ± 11.40 <0.001

Male, n (%) 1,428 (57.81%) 350 (56.73%) 347 (56.24%) 344 (55.75%) 387 (62.52%) 0.055

Vital signs

HR, beats/min 89.37 ± 20.26 89.17 ± 19.52 89.53 ± 20.31 89.21 ± 20.11 89.56 ± 21.12 0.995

NBPS, mmHg 119.05 ± 23.72 116.86 ± 22.55 119.52 ± 23.34 119.65 ± 24.73 120.17 ± 24.11 0.032

NBPD, mmHg 70.78 ± 139.63 68.81 ± 17.62 68.30 ± 18.26 68.78 ± 38.32 77.21 ± 275.08 0.032

NBPM, mmHg 80.94 ± 24.89 80.98 ± 17.84 81.28 ± 17.90 80.32 ± 18.45 81.17 ± 38.68 0.495

RR, times/min 19.76 ± 6.43 18.86 ± 6.32 19.58 ± 6.22 19.92 ± 6.35 20.66 ± 6.69 <0.001

SPO2, % 96.59 ± 4.18 97.02 ± 4.24 96.88 ± 3.54 96.07 ± 4.54 96.39 ± 4.25 <0.001

Temperature, °F 98.05 ± 3.51 97.96 ± 5.14 98.22 ± 1.07 97.93 ± 4.50 98.07 ± 1.24 0.002

Laboratory

RBC, 109/L 2.91 ± 0.65 3.08 ± 0.64 2.99 ± 0.66 2.90 ± 0.63 2.68 ± 0.58 <0.001

WBC, 109/L 18.57 ± 8.09 16.96 ± 7.57 18.32 ± 7.16 18.64 ± 7.47 20.35 ± 9.57 <0.001

PLT, 109/L 143.57 ± 62.94 145.61 ± 58.98 148.60 ± 61.10 143.63 ± 65.19 136.44 ± 65.74 0.014

RDW, (%) 16.25 ± 2.26 15.25 ± 1.97 15.87 ± 2.05 16.47 ± 2.19 17.39 ± 2.23 <0.001

Hb, g/dl 8.64 ± 1.86 9.18 ± 1.86 8.89 ± 1.92 8.60 ± 1.80 7.89 ± 1.62 <0.001

Hct, mg/dl 37.07 ± 6.00 38.52 ± 5.77 37.82 ± 6.03 36.69 ± 5.85 35.28 ± 5.86 <0.001

BUN, mg/dl 45.59 ± 25.94 20.77 ± 5.09 32.70 ± 5.97 47.69 ± 9.82 81.08 ± 21.99 <0.001

Albumin (g/dl) 3.34 ± 0.58 3.63 ± 0.54 3.43 ± 0.53 3.26 ± 0.53 3.04 ± 0.53 <0.001

Lactic acid 2.77 ± 1.54 2.57 ± 1.32 2.66 ± 1.43 2.83 ± 1.59 3.03 ± 1.74 0.001

Glucose (mg/dl) 202.78 ± 70.64 171.84 ± 54.18 192.07 ± 63.53 210.53 ± 71.75 236.58 ± 74.72 <0.001

Creatinine (mg/dl) 1.29 ± 0.62 0.88 ± 0.28 1.11 ± 0.42 1.39 ± 0.57 1.79 ± 0.69 <0.001

Lymhocytes 13.36 ± 6.83 15.61 ± 7.08 13.82 ± 6.48 12.83 ± 6.83 11.20 ± 6.16 <0.001

Monocyte 6.69 ± 3.36 6.23 ± 3.20 6.38 ± 3.25 6.88 ± 3.39 7.28 ± 3.50 <0.001

Neutrohil 82.48 ± 7.93 79.80 ± 8.03 81.82 ± 7.90 83.42 ± 7.69 84.86 ± 7.21 <0.001

Comorbidities

HF 0.088

HFmrEF 936 (39.28%) 224 (41.30%) 256 (37.94%) 246 (35.53%) 210 (42.34%)

HFpEF 901 (34.36%) 221 (33.73%) 210 (34.81%) 209 (37.09%) 261 (31.82%)

HFrEF 633 (26.36%) 162 (24.97%) 157 (27.25%) 158 (27.37%) 156 (25.84%)

AF 801 (24.02%) 187 (22.45%) 199 (23.89%) 206 (24.73%) 209 (25%) 0.614

HTN 604 (24.45%) 176 (28.53%) 182 (29.50%) 142 (23.01%) 104 (16.80%) <0.001

PNA 922 (37.33%) 156 (25.28%) 215 (34.85%) 251 (40.68%) 300 (48.47%) <0.001

CVA 257 (10.40%) 48 (7.78%) 68 (11.02%) 70 (11.35%) 71 (11.47%) 0.104

T2DM 931 (37.69%) 160 (25.93%) 215 (34.85%) 252 (40.84%) 304 (49.11%) <0.001

T1DM 32 (1.30%) 5 (0.81%) 3 (0.49%) 11 (1.78%) 13 (2.10%) 0.035

HLD 1,210 (48.99%) 292 (47.33%) 340 (55.11%) 297 (48.14%) 281 (45.40%) 0.004

MI 522 (21.13%) 122 (19.77%) 138 (22.37%) 131 (21.23%) 131 (21.16%) 0.741

CAD 785 (31.78%) 66 (10.70%) 148 (23.99%) 225 (36.47%) 346 (55.90%) <0.001

COPD 567 (22.96%) 118 (19.12%) 131 (21.23%) 158 (25.61%) 160 (25.85%) 0.009

Severity scores

SOFA 4.61 ± 2.60 4.01 ± 2.47 4.48 ± 2.59 4.66 ± 2.48 5.27 ± 2.71 <0.001

APSIII 42.26 ± 15.78 35.58 ± 14.53 39.86 ± 14.68 43.18 ± 14.01 50.36 ± 16.01 <0.001

SAPSII 37.06 ± 10.96 31.96 ± 10.14 35.66 ± 10.42 38.13 ± 10.18 42.45 ± 10.37 <0.001

OASIS 30.76 ± 7.71 28.92 ± 7.46 30.55 ± 7.56 31.19 ± 7.84 32.39 ± 7.55 <0.001

APACHEII 13.56 ± 2.90 13.56 ± 3.03 13.50 ± 3.10 13.68 ± 2.61 13.50 ± 2.83 0.081

Drugs

ACEI/ARB 774 (31.34%) 206 (33.39%) 227 (36.79%) 200 (32.41%) 141 (22.78%) <0.001

Stains 519 (21.01%) 112 (18.15%) 141 (22.85%) 121 (19.61%) 145 (23.42%) 0.066

Diuretics 958 (38.79%) 274 (44.41%) 263 (42.63%) 246 (39.87%) 175 (28.27%) <0.001

Anticoagulants 2,297 (93%) 557 (90.28%) 570 (92.38%) 586 (94.98%) 584 (94.35%) 0.005

Antilatelet 570 (23.08%) 110 (17.83%) 149 (24.15%) 169 (27.39%) 142 (22.94%) <0.001

Treatment

Ventilation 1,198 (48.50%) 285 (46.19%) 290 (47%) 291 (47.16%) 332 (53.63%) 0.031
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response, makes up for the lack of predictive performance of

albumin or BUN alone and has the potential to be a

complementary predictor for clinicians managing patients with

heart failure. Lin ZB et al. (5) found that higher levels of BAR

were associated with increased short-term mortality in heart

failure patients undergoing intensive care. Zhao L et al. (16)

conducted a cohort study with a median follow-up of 22 months

and found that BAR was still associated with an increased risk of

death in heart failure patients. A previous study on the

association between BAR and heart failure patients only explored

the relationship between BAR and in-hospital and 90-day

mortality, and our study supports the previous studies; moreover,

the present study reveals for the first time the relationship

between the BAR index and 30-day and one-year mortality rates

in heart failure patients, which is a major highlight of our study.

In addition, we included patients from the U.S. Critical Care

Database, which helps to provide more comprehensive results for

clinical practice.

The exact biological mechanism between the BAR index and

clinical outcome and prognosis in heart failure is not clear. In

this study, we tried to understand the relationship between BAR

and the poor prognosis of heart failure patients from the

perspective of blood urea nitrogen and albumin, respectively.

Blood urea nitrogen (BUN) is a major indicator of renal

TABLE 2 Continued

Variables Overall N = 2,470 Q1 N = 617 Q2 N= 617 Q3 N= 617 Q4 N= 619 p

Outcomes

30-day mortality 362 (14.66%) 25 (4.05%) 52 (8.43%) 104 (16.86%) 181 (29.24%) <0.001

In-hospital mortality 87 (3.52%) 3 (0.49%) 11 (1.78%) 25 (4.05%) 48 (7.75%) <0.001

365-day mortality 378 (15.30%) 25 (4.05%) 55 (8.91%) 108 (17.50%) 190 (30.69%) <0.001

ICU mortality 271 (10.97%) 22 (3.57%) 40 (6.48%) 77 (12.48%) 132 (21.32%) <0.001

Bold text indicates statistical significance.

Q1, 1st quartile; Q2, 2st quartile; Q3, 3st quartile; Q4, 4st quartile.

TABLE 3 Logistic regression analysis of 30-day, 1-year, in-hospital, and ICU mortality in heart failure patients.

Exposure Model 1 Model 2 Model 3 P-value

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI)

30-day mortality

BAR index 1.05 (1.05, 1.07) <0.00001 1.05 (1.05, 1.07) <0.00001 1.02 (1, 1.04) 0.04

Q1 Ref Ref Ref

Q2 2.13 (1.32, 3.43) 0.002 1.92 (1.18, 3.098) 0.008 1.52 (0.94, 2.47) 0.09

Q3 4.48 (2.89, 6.93) <0.00001 3.92 (2.52, 6.10) <0.00001 2.28 (1.41, 3.66) 0.001

Q4 8.15 (5.37, 12.39) <0.00001 7.19 (0.98, 0.99) <0.00001 2.54 (1.42, 4.54) 0.002

P for trend <0.00001 <0.00001 0.001

365-day mortality

BAR index 1.06 (1.05, 1.08) <0.00001 1.06 (1.04, 1.08) <0.00001 1.01 (0.96, 1.07) 0.65

Q1 Ref Ref Ref

Q2 2.26 (1.41, 3.63) 0.001 2.02 (1.26, 3.26) 0.004 1.63 (1.01, 2.64) 0.08

Q3 4.68 (3.03, 7.22) <0.00001 4.09 (2.64, 6.35) <0.00001 2.46 (1.53, 3.95) <0.00001

Q4 8.57 (5.65, 12.99) <0.00001 7.49 (4.91, 11.44) <0.00001 2.75 (1.55, 4.89) 0.001

P for trend <0.00001 <0.00001 0.99

In-hospital mortality

BAR index 0.99 (0.97, 1.01) 0.32 0.99 (0.97, 1.01) 0.36 1.02 (0.06, 1.08) 0.56

Q1 Ref Ref Ref

Q2 1.07 (0.30, 3.84) 0.91 1.05 (0.29, 3.78) 0.94 1.21 (0.32, 4.53) 0.78

Q3 1.46 (0.44, 4.84) 0.54 1.58 (0.47, 5.26) 0.46 3.28 (0.91, 11.74) 0.06

Q4 11.33 (0.35, 3.65) 0.83 1.15 (0.36, 3.74) 0.81 3.89 (0.92, 16.34) 0.06

P for trend 0.98 0.92 0.01

ICU mortality

BAR index 0.10 (0.98, 1.01) 0.38 0.99 (0.98, 1.01) 0.37 1.02 (0.10, 1.05) 0.14

Q1 Ref Ref Ref

Q2 0.60 (0.36, 1.02) 0.05 0.59 (0.35, 1.00) 0.05 0.60 (0.35, 1.03) 0.06

Q3 0.70 (0.44, 1.13) 0.15 0.68 (0.42, 1.10) 0.12 0.61 (0.36, 1.04) 0.07

Q4 0.56 (0.35, 0.87) 0.01 0.54 (0.33, 0.85) 0.01 0.49 (0.26, 0.95) 0.03

P for trend 0.04 0.04 0.11

Model 1: unadjusted.

Model 2: adjusted for age, sex and weight.

Model 3: adjusted for age, sex, weight, PNA, AKI, RDW, HCT, APSIII, SAPAII, OASIS, Neutrophils, Blood Urea Nitrogen (BUN), Lactate, Lymphocytes and Diuretics.
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function, and elevated BUN levels suggest impaired renal function,

blood volume deficiency, or neurohormonal activation, which may

lead to poor prognosis in patients with heart failure through

oxidative stress, activation of the sympathetic nervous system

(SNS) and renin-angiotensin aldosterone system (RAAS), and

activation of the renin-angiotensin aldosterone system (RAAS).

Angiotensin aldosterone system (RAAS) leading to poor

prognosis in patients with heart failure. In patients with heart

failure, activation of RAAS promotes sodium retention and leads

to reabsorption of blood urea nitrogen in the proximal renal

tubules, whereas activation of SNS accelerates reabsorption of

blood urea nitrogen in the distal renal tubules, and both

mechanisms lead to elevated blood urea nitrogen (17). It is thus

clear that activation of the SNS and RAAS systems is closely

related to the progression of heart failure (18, 19).

Albumin is a protein synthesized by ALB from the liver and has

a variety of biological functions such as antiplatelet aggregation,

anticoagulation, maintenance of plasma osmolality, transport of a

variety of substances, and inhibition of inflammatory responses

(20). Previous studies have found a correlation between low

FIGURE 2

Kaplan–Meier survival analysis curves for all-cause mortality. Kaplan–Meier curves and cumulative incidence of 30-day (A) and 365-day (B) all-cause

mortality stratified by BAR index. BAR, blood urea nitrogen to serum albumin ratio.

FIGURE 3

Multivariable RCS regression showed the nonlinear association between the BAR index and 30-day mortality (A) and one-year (B) mortality after

full adjustment.
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FIGURE 4

Forest plots of stratified analyses of BAR index and all-cause mortality (30 days). With the exception of the stratified variable itself, the adjustment

approach is the same as for Model 3.
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albumin levels and poor prognosis in patients with heart failure

(21). Heart failure is a disease of insufficient perfusion of relative

organs due to systolic and/or diastolic dysfunction of the heart.

Heart failure itself does not lead to hypoproteinemia, but patients

with prolonged heart failure are often combined with infections,

malnutrition, and other complications, which exacerbate the loss

of albumin, and the reduction of albumin levels is closely related

to inflammation, oxidative stress, endothelial dysfunction, and

other pathologies, which can lead to circulating blood volume

deficiency, disrupting fluid balance, and leading to heart

failure decompensation.

Boruta’s algorithm, a widely used method in feature selection,

determines which features are most important for predicting the

target variable by modeling randomness (22). The feature

FIGURE 5

(A) SHAP Bees Plot.The distribution of each feature’s impact on the model output. Each point represents a patient in a row. The color of the points

indicates the feature value: purple represents higher values, while green represents lower values. (B) Feature Selection Using the Boruta Algorithm to

Analyze the Relationship Between Various BAR Indices and 30-day Mortality. The x-axis displays the names of each variable, while the y-axis

represents the Z-values of each variable. Box plots illustrate the Z-values of each variable calculated in the model, where red boxes indicate

important variables, green boxes indicate tentative attributes and purple boxes indicate unimportant variables. (C) SHAP double-coordinate line

graph. The SHAP plot shows the contribution of different features to the model prediction. The X-axis represents the SHAP value, and the Y-axis

lists the names of each feature. The color bars indicate the magnitude of the feature values, with red representing higher feature values and blue

representing lower feature values. (D) SHAP waterfall plot. The SHAP waterfall plot shows the composition of the predicted value for a single

sample. The plot lists the contribution of each feature to the final predicted value. A red upward arrow indicates that the feature value increases

the predicted value, while a blue downward arrow indicates that the feature value decreases the predicted value. (E) SHAP Heat Force plot.The

SHAP heat force plot shows the contribution of each feature in the model prediction process. The arrows in the figure indicate the direction and

magnitude of the feature’s impact on the predicted value, with red arrows indicating an increase in the predicted value and blue arrows indicating

a decrease in the predicted value.
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selection results of Boruta’s algorithm in this study show that

BAR significantly occupies the red region and exhibits high

Z-scores in feature selection, suggesting that the BAR index

may play a key role in this study, showing a significant

association with the study objectives. However, we also

recognize that this does not mean it is a decisive factor. This is

because the Boruta algorithm may also be affected by

correlations between data features. The results of multivariate

COX regression analyses support the correlation between the

BAR index and the risk of 30-day and 1-year mortality in

patients with heart failure, which is consistent with the Boruta

algorithm. In the subgroup analysis, regarding 30-day mortality,

we observed no statistically significant results after stratification

by variables such as age and gender. This may be due to the

reduced sample size after stratification, resulting in a reduced

effect size. However, the consistent direction of all results

suggests the stability and reliability of the core results.

Therefore, we believe that BAR can be used as a predictor of

30-day all-cause mortality in patients with heart failure.

With the rapid development of artificial intelligence in recent

years, ML algorithms have been widely adopted in medical

research, especially in predicting treatment outcomes and patient

prognosis. We incorporate feature-significant variables into nine

machine learning algorithms. The results show that the XGBoost

algorithm exhibits strong performance in differentiation and

calibration and shows significant net gains in clinical practice.

Compared with traditional regression algorithms, the XGBoost

model can automatically deal with nonlinear relationships

between features, and through regularization and pruning

techniques, XGBoost can reduce the risk of overfitting, thus

improving the generalization ability of the model (23). In

addition, the XGBoost model is robust to outliers and noisy data,

and it reduces the effect of outliers by weighting the loss

function, thus improving the stability of the model. This study

also has some limitations. First, the present study was

retrospective and could not establish a clear causal relationship

between BAR index and heart failure. Nonetheless, a series of

rigorous statistical methods were adopted to ensure that the

results were robust and credible. Second, the BAR index is not

monitored dynamically, and the BAR index obtained from taking

the most severe urea nitrogen and albumin measurements may

not be fully representative of the pathology in the body. Third,

FIGURE 6

(A) ROC curves for the machine learning models. (B) DCA curves for the machine learning models. (C) Callibration for the machine learning models.

(D) PR curves for the machine learning models. DT, decision tree; RF, random forest; XGB, extreme gradient boosting; LGB, light gradient boosting

machine; KNNC, K-nearest neighbors classifier; SVM, support vector machine; Adaboost, adaptive boosting; Catboost, gradient boosting based;

GBDT, gradient boosting machine; ROC, receiver operating characteristic; AUC, area under the curve.
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this is an observational study, and there may be some unmeasured

or residual confounding effects that may affect the results. Fourth,

when patients receive enteral or parenteral nutrition, it may affect

urea nitrogen and albumin levels, potentially leading to an elevated

BAR index. However, this effect may be mitigated due to the large

sample size included in our study. Fifth, due to the inherent

limitations of the database, the absence of some key metrics,

such as NT-proBNP, may affect the comprehensiveness of our

prediction model. Finally, although we used MIMIC-III as an

external validation, the data were from a single center, and

further large-scale, multicenter prospective studies are needed to

validate the accuracy of our model.

Conclusions

Our study demonstrated that the BAR index is a predictor of

30-day mortality and one-year mortality in heart failure ICU

patients. In high-risk groups, the BAR may be a valuable tool for

risk assessment and subsequent intervention, and further studies

are needed in the future to validate the generalizability of the

ratio and the optimal cut-off value and to determine the

mechanisms underlying the association between the BAR and

mortality in heart failure patients.
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KNNC
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