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Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and

mortality, largely driven by the progression of atherosclerotic plaques. In

atherosclerosis (AS), transcription factors and epigenetic mechanisms play

pivotal roles in regulating gene expression. Interferon regulatory factors (IRFs),

a family of transcription factors initially identified for their role in coordinating

interferon (IFN) responses, are now recognized as critical modulators of innate

and adaptive immunity. Emerging evidences highlights their involvement in

inflammation, lipid metabolism, cell differentiation, cell proliferation, and

programmed cell death during AS pathogenesis. This review synthesizes

current knowledge on the roles and regulatory mechanisms of IRFs in AS,

offering novel insights and potential therapeutic targets for AS management.
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1 Introduction

Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and

mortality, which projected to account for 23.6 million annual deaths by 2030 (1).

Atherosclerosis (AS) serves as the primary pathological basis for most CVD-related

fatalities. It is a chronic inflammatory disorder characterized by endothelial dysfunction,

lipid accumulation, and immune cell infiltration. During early atherogenesis, specific

plasma lipoproteins, including low-density lipoprotein (LDL), lipoprotein(a), and

triglyceride-rich lipoprotein remnants may undergo modifications within the arterial

intima. This process initiates an inflammatory cascade that drives monocyte

recruitment and their subsequent differentiation into macrophages. Within this

microenvironment, macrophages phagocytose modified lipoprotein particles, forming

foam cells that progressively accumulate lipids, cholesterol esters, and cellular debris.

Concurrently, vascular smooth muscle cells (VSMCs) migrate to the intima, proliferate,

and contribute to plaque calcification (2). These events are tightly regulated by

transcriptional and epigenetic mechanisms, with transcription factors such as Interferon

regulatory factors (IRFs) emerging as key players in AS progression (3).

The IRFs are a family of transcription factors that are highly conserved across species.

Originally identified as regulators of IFN signaling, IRFs (IRF1–IRF9) have expanded roles

in immune responses, lipid metabolism, and cellular stress. They are extensively involved

in diverse biological processes, including cytokine signaling, pathogen response, cell cycle

regulation, cell differentiation, apoptosis, and hematopoietic development (4–9). Emerging

evidence highlights their role in AS-related processes, including endothelial activation,

macrophage polarization, and VSMC dysfunction (3, 10–12). However, the specific roles
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and mechanisms haven’t yet to be fully elucidated. This review

comprehensively examines the contributions of IRF family

members to AS pathogenesis, emphasizing their potential as

therapeutic targets.

2 Interferon regulatory factors:
structure and function

The mammalian IRF family comprises nine members (IRF1-

IRF9), each containing a conserved N-terminal DNA-binding

domain (DBD) and a C-terminal IRF-association domain (IAD)

(Figure 1) (13, 14). While the DBD facilitates recognition of

IFN-stimulated response elements (ISREs), the IAD mediates

interactions with cofactors, enabling diverse regulatory functions

(Table 1) (15, 16). Key signaling pathways, such as Toll-like

receptor (TLR) and cytosolic DNA-sensing cascades (e.g., cGAS-

STING), converge on IRFs to modulate inflammatory and

metabolic responses (17).

IRF activation progresses through five core phases: (1) signal

perception, (2) post-translational modifications (PTMs), (3)

dimerization, (4) nuclear translocation, and (5) transcriptional

regulation. Crucially, PTMs serve as the initiating molecular

switch, with phosphorylation, acetylation, ubiquitination, and

SUMOylation being principal modifications that dynamically

regulate IRF functional states (17). Subsequently, homo- or

hetero-dimerization constitutes an essential activation

prerequisite, enabling conformational changes required for

nuclear trafficking (18). Latent cytoplasmic IRFs undergo

stimulus-dependent nuclear translocation upon PRR activation.

These receptors—including TLRs, NLRs, RLRs, and DNA sensors

—detect PAMPs/DAMPs to trigger IRF-mediated IFN/pro-

inflammatory responses, demonstrating dual roles in AS

pathogenesis (protective vs. pathogenic) (19–21). The TLR

pathway bifurcates into TRIF- and MyD88-dependent arms, with

IRF members exhibiting selective or combinatorial pathway

activation to drive context-specific transcriptional programs (17).

2.1 Key IRF family members

IRF1: a pleiotropic transcription factor predominantly localized

within the nuclear compartment. Its expression undergoes

significant upregulation following viral infection or immune

stimulation, mediated through critical signaling pathways IFN

(Interferon), NF-κB(Nuclear Factor kappa B), TBK-1(TANK-

Binding Kinase 1), and IKK-ε(Inhibitor of Nuclear Factor

Kappa-B Kinase Subunit ε). This transcription factor plays a

pivotal role in orchestrating the development, differentiation, and

functional regulation of key immune cell populations, particularly

B lymphocytes, T helper 1 (Th1) cells, and dendritic cells (DCs).

Additionally, IRF1 exerts critical cytostatic and pro-apoptotic

effects across diverse mammalian cell types. Mechanistically,

these activities involve modulation of oxidative stress responses

and participation in regulated cell death pathways, including

ferroptosis (14, 22–24).

IRF2: a competing factor engages in cis-regulatory element

occupation, directly antagonizing IRF1-mediated transcriptional

activity by binding to shared DNA recognition motifs.

This molecular interference suppresses the expression of

FIGURE 1

The structure of mammalian IRF family members. (a) Each IRF contains a highly conserved N-terminal DNA-binding domain composed of five

tryptophan repeat sequences(DBD, orange). In the C-terminal region, IRF1 and IRF2 share the IRF association domain 2 (IAD2, pink), while the

other IRFs share the IRF association domain 1 (IAD1, pink). Other domains include the nuclear localization signal (NLS, green), the nuclear export

signal (NES, yellow), the autoinhibitory domain (blue). The length of each IRF is represented by the number of amino acids (aa), found in Uniprot.

IRF, interferon regulatory factor; C, carboxy terminus; N, amino terminus. (b) Schematic illustration of the structure of the IRFs.
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IRF1-dependent pro-inflammatory genes, while simultaneously

fine-tuning transcriptional programs critical for immune cell

ontogeny and functional maturation including lineage

commitment, antigen presentation capacity, and effector

molecule production. Such competitive regulation establishes a

dynamic equilibrium between inflammatory activation and

homeostatic restraint, ensuring balanced immune responses while

preventing pathological hyperinflammation (25).

IRF3: primarily resides in the cytoplasm in an inactive state,

serving as an essential component of the innate immune defense

system. This transcription factor demonstrates remarkable

sensitivity in detecting viral components and plays a pivotal role

in initiating antiviral responses to prevent pathogenic infections.

Furthermore, recent studies have revealed IRF3’s significant

involvement in cardiovascular pathophysiology, where it

functions as a negative regulator of pathological cardiac

remodeling. Mechanistically, IRF3 binds to Extracellular Signal-

Regulated Kinase(ERK) 2 through protein-protein interaction,

leading to subsequent suppression of ERK 1/2 signaling activity

(26, 27). This regulatory mechanism not only highlights IRF3’s

dual functionality in both immune regulation and cardiac

homeostasis but also provides potential therapeutic targets

for CVDs.

IRF4: initially characterized as a lymphocyte-specific nuclear

factor and discovered to exhibit conserved cardiac expression in

both human and animal models (28). Distinct from other

IRF family members, IRF4 demonstrates unique activation

mechanisms, primarily responding to mitogenic stimuli such as

antigen receptor signaling, lipopolysaccharide (LPS) stimulation,

and CD40 receptor engagement rather than canonical interferon-

mediated pathways (29, 30). Beyond its established role as an

oncogenic transcription factor that modulates upstream signaling

cascades and protein-DNA interactions, IRF4 paradoxically

serves dual functions in metabolic regulation. It acts as a master

transcriptional regulator of lipid homeostasis in adipocytes and

functions as an anti-inflammatory mediator in diet-induced

obesity, positioning it at the intersection of metabolic

inflammation and energy balance (31, 32).

IRF5: predominantly expressed in immune cells such as

monocytes, macrophages, B lymphocytes, and DCs. Its

dysregulation is strongly implicated in the pathogenesis of

autoimmune disorders including systemic lupus erythematosus

(SLE), inflammatory bowel disease (IBD), and rheumatoid

arthritis (RA) (33). his transcription factor plays a pivotal role in

inflammatory responses through its synergistic interaction with

the NF-κB p65 subunit RelA, co-activating inflammatory gene

networks and driving the production of key pro-inflammatory

cytokines such as interleukin-6 (IL-6), IL-12, and tumor necrosis

factor-alpha (TNF-α) (34–36). Emerging genetic evidence further

underscores the clinical significance of IRF5 polymorphisms,

which have been associated with both susceptibility to and

protection against AS. Notably, the high degree of genetic

variation in IRF5 correlates with pathological changes in carotid

intima-media thickness (cIMT) and demonstrates a strong

association with coronary artery disease (CAD) development in

SLE patients (37–40).

IRF6: critically regulates epidermal development and

differentiation (41). Emerging evidence further suggests its

potential involvement in the pathogenesis and metabolic

reprogramming of pancreatic ductal adenocarcinoma and

gliomas (42, 43).

IRF7: a key regulatory component in type I/III IFN-mediated

signaling cascades. It shares significant structural homology

with IRF3 while exhibiting distinct functional specialization.

Notably, it serves multifaceted roles in antiviral defense

mechanisms and innate immune responses (44). Emerging

evidence implicates IRF7 in modulating obesity-associated

adipose tissue inflammation (45).

IRF8: originally characterized as being selectively expressed

in immune system lineages (lymphoid and myeloid cells).

It serves as a master regulator of immune cell development

and maturation (14). Additionally, IRF8 acts as a potent

inducer of macrophage differentiation from bone marrow

progenitor cells. Genome-wide association studies have revealed

significant correlations between IRF8 genetic variants and

CAD manifestations, particularly through three key phenotypic

markers: carotid plaque formation, augmented carotid intima-

media thickness, and systemic leukocytosis. These clinical

observations collectively establish its potential role as a biomarker

for subclinical AS risk (46–48).

IRF9: a critical downstream effector of type I IFN signaling

through its integration into the STAT1-STAT2 heterotrimeric

complex, collectively forming the interferon-stimulated gene

TABLE 1 Classification of IRF family.

IRFs
member

Main functions References

IRF1 Orchestrates innate immune responses and

antiviral defense; modulates immune cell

differentiation, apoptosis, and anti-

proliferative activity across hematopoietic

lineages.

(14, 22–24)

IRF2 Regulates immune cell maturation and

transcriptional activation/repression in

hematopoietic development.

(25)

IRF3 Key mediator of innate antiviral signaling;

initiates type I interferon production via

pathogen-sensing pathways.

(26, 27)

IRF4 Modulates oncogenic processes and lipid

homeostasis in adipocytes; fine-tunes adaptive

immune responses.

(28–32)

IRF5 Central driver of autoimmune pathogenesis;

regulates pro-inflammatory cytokine

production and macrophage polarization.

(34–40)

IRF6 Governs epithelial differentiation and

morphogenesis; critical for epidermal and

craniofacial development.

(42, 43)

IRF7 Master regulator of type I interferon

amplification; essential for antiviral innate

immunity and dendritic cell activation.

(44, 45)

IRF8 Controls myeloid/lymphoid cell

differentiation; regulates antigen presentation

and inflammasome activation.

(46–48)

IRF9 Mediates interferon signaling; emerging roles

in metabolic regulation (hepatic steatosis,

insulin resistance).

(49, 50)
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factor 3 (ISGF3) transcriptional machinery. While its canonical

role in IFN response pathways is well-established, its specific

regulatory mechanisms governing immune cell ontogeny

remain underexplored (49). Notably, IRF9 interacts with

peroxisome proliferator activating receptor alpha (PPARα)

and forms a metabolic-regulatory axis that co-activates

PPARα-responsive genes. This interaction manifests therapeutic

potential by ameliorating pathological processes including

inflammatory responses, hepatic lipid accumulation, and

insulin resistance (50).

3 IRFs and as

Current observations highlight a significant role for IRFs in

murine models of atherosclerosis AS. In apolipoprotein

E-deficient (ApoE−/−) mice, IRF1 promotes a proinflammatory

M1 macrophage phenotype, exacerbates atherosclerotic burden

(51), facilitates foam cell formation and increases plaque

instability (3). Conversely, ablation of IRF3 expression enhances

plaque stability, characterized by thicker fibrous caps, increased

collagen deposition and smooth muscle cell (SMC) content,

alongside reduced macrophage infiltration (10, 52). Similar to

IRF1, IRF5 can also promotes macrophage polarization towards a

pro-atherogenic state and foam cell formation (53–55). Notably,

IRF7 plays a non-redundant role in AS pathogenesis specifically

in diabetic mouse models (56). Furthermore, in chronic

myelogenous leukemia-prone mice, IRF8 is implicated in

regulating phagocytic function of macrophages (57). Whether

these specific roles of IRFs translate identically to humans,

beyond in vitro and animal studies, remains to be elucidated.

The mechanisms by which IRFs contribute to AS are

summarized below.

3.1 Inflammatory regulation

The inflammatory cascade permeates all stages of AS, with

endothelial cells (ECs) and immune cells coordinating vascular

inflammation through IRF-mediated mechanisms. Key IRF

members demonstrate cell-type specific pro-atherogenic effects:

IRF1/IRF3 modulate cytokine production in ECs and T cells,

IRF5/IRF8 drive macrophage polarization, while IRF7 exhibits

context-dependent anti-inflammatory properties (Table 2).

3.1.1 IRF 1
Inflammation of damaged ECs leads to endothelial

dysfunction, a critical initiating event in atherosclerotic plaque

development and progression (58). IRF1 orchestrates endothelial

dysfunction through multiple mechanosensitive pathways,

though its role in the atherosclerotic microenvironment

remains controversial. Previous studies have reported conflicting

IRF1-dependent regulation of TNF-induced vascular cell

adhesion molecule-1 (VCAM-1) expression (59, 60). Emerging

evidence clarifies that IRF1 mediates triglyceride-rich lipoprotein

(TGRL)-induced VCAM-1 via the PERK/eIF2α/CHOP signaling

axis, with polyunsaturated fatty acids counteracting this pro-

inflammatory pathway in human aortic endothelial cells(HAECs)

(61, 62). Shear stress (SS), the frictional force exerted by blood

flow on ECs, modulates IRF1 activity through distinct

mechanisms (63). Fluid SS regulates IRF1 nuclear translocation

via platelet EC adhesion molecule 1 (PECAM-1)-mediated

mechanotransduction, involving p38/x-box binding protein 1

(XBP1s) interactions and Phosphoinositide 3-kinase (PI3 K)/

MAPK phosphatase 1 (MKP-1) modulation (64, 65). Conversely,

interleukin 33 (IL-33) inhibits VCAM-1 expression through

IRF1- ERK 1/2 pathway cross-talk in HAECs (66). Additionally,

Ataxin-10 binds cytoplasmic IRF1 to suppress its nuclear

translocation and downstream cytokine/chemokine transcription

(67). Moreover, IRF1 drives CD40(TNFR5) expression in ECs,

promoting adhesion molecules and chemokines essential

for leukocyte recruitment (68). By constructing a mouse

atherosclerotic model, Wang et al. found in human and

mouse primary cells that the IRF1/RIG-I axis mediates

25-hydroxycholesterol-induced IL-8 production in AS, activating

NF-κB, AP-1, and NF-IL-6 through MAVS/TAK-1/JNK/ERK1/2

signaling (69). In ApoE−/− mice, IRF1 promotes M1 polarization

via TLR2/4-casein kinase 2 (CK2)- RNA polymerase II

transcriptional coactivator p15 (SUB1/Sub1, PC4) signaling,

enhancing TNF-α/IL-1β production (51). This pro-inflammatory

shift exacerbates plaque vulnerability. IRF1-driven IFN-γ/TNF-α

production contributes to plaque rupture and acute coronary

syndromes (ACS) (70). In rat VSMCs, IRF1 amplifies DC

inflammatory responses through MAPK pathway activation

(JNK/p38/ERK1/2 phosphorylation), accelerating plaque

destabilization (71).

3.1.2 IRF 3
IRF3 demonstrates paradoxical regulatory effects in vascular

inflammation through distinct molecular mechanisms (72).

Knockdown of EC-specific IRF3 significantly attenuates plaque

formation in Western diet-fed ApoE−/− mice, while bone

marrow-derived macrophage IRF3 shows no such effect.

Mechanistic studies demonstrate that IRF3 specifically binds to

the ISRE within the ICAM-1 promoter(P1 site), predominantly

suppressing ICAM-1 transcription and moderately inhibiting

VCAM-1 expression (10, 52). Paradoxically, while suppressing

ICAM-1 transcription through ISRE binding, IRF3

simultaneously promotes inflammatory signaling through four

distinct axes.

3.1.2.1 Axis 1: cGAS-STING-PERK activation via

oxidized mtDNA

Oxidized mitochondrial DNA triggers cyclic GMP-AMP

(cGAMP) synthase (cGAS)-stimulator of IFN genes (STING)

signaling, leading to the formation of a transcriptional complex

comprising IRF3, NF-κB, and bromodomain protein 4 (BRD4).

This complex drives pro-inflammatory genes expression

including ICAM-1, through PERK pathway activation in both

human and mouse ECs (72).
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3.1.2.2 Axis 2: cGAS-STING-IRF3-Il6 activation via DNA

double-strand breaks

In ApoE−/− mice, DNA damage-induced double-strand breaks

(DSBs) activate this axis to amplify pro-inflammatory responses in

AS, highlighting its potential as a therapeutic target (73).

3.1.2.3 Axis 3: TBK1/IRF3/CCL5-CXCL10 activation in

HCMV-infected VSMCs

Human cytomegalovirus (HCMV) infection in human VSMCs

activates a novel IκB kinase (IKK)-related pathway involving

TBK1, IRF3, and chemokines CCL5/RANTES and CXCL10/IP-

10. This axis contributes to atherosclerotic lesion progression by

modulating inflammatory chemokine production (74).

3.1.2.4 Axis 4: TLR4-TRIF-Ip10 pathway modulation

IRF3 mediates C-reactive protein (CRP)-induced NF-κB

activation in rat VSMCs via the MyD88-independent TLR4

pathway. This mechanism suppresses peroxisome proliferator-

activated receptor γ (PPARγ) expression, a key anti-inflammatory

regulator while enhancing IL-6 production. Notably, the PPARγ

agonist rosiglitazone reverses PPARγ downregulation and

demonstrates novel anti-inflammatory effects through modulation

of the TLR4/TRIF/IRF3/IP-10 signaling axis (75, 76).

Recent work by Zeyu Xing et al. reveals that karyopherin

subunit alpha 2 (KPNA2) facilitates nuclear translocation of IRF3

and NF-κB p65,.a process regulated by the E3 ubiquitin ligase

F-box and WD repeat domain containing 7 (FBXW7) (77). This

discovery expands our understanding of post-translational

regulation in IRF3-mediated inflammatory responses.

3.1.3 IRF5/7/8

IRF5 is well-established as a driver of pro-inflammatory M1

macrophage polarization. Emerging evidence highlights its

paradoxical role in inflammatory regulation. Julia Leipner et al.

demonstrated that IRF5 deficiency reduces M1 marker expression

in vitro and enhances atherosclerotic plaque stability, suggesting

its critical role in sustaining vascular inflammation (53).

Mechanistically, in ApoE−/− mice, IRF5 promotes M1

polarization via TRAF6-IKK and miR-22-dependent pathways,

positioning it as a promising therapeutic target for AS

management (54, 55). IRF5 further induces the differentiation of

macrophages into the pro-inflammatory CD11c + subset by

directly targeting the CD11c gene, thereby amplifying chemokine

release (CCL2 and CCL4) to fuel inflammatory cascades (78, 79).

Notably, IRF5 exhibits disease-specific functionality. TLR7/

9-activated IRF5 elevates IL-10 in systemic lupus erythematosus

(SLE) models, contrasting with its pro-inflammatory role in

TLR2/4-mediated pathways (80).

In diabetic contexts of mice, IRF7 disrupts macrophage

homeostasis by suppressing the anti-inflammatory M2 marker

arginase-1 (Arg1) and IL-10 via RAGE signaling, while

enhancing pro-inflammatory TNF-α and CCL2 production (56).

Conversely, IRF8 cooperates with the Ets family transcription

factor PU.1, a downstream effector of liver X receptors (LXRs),

Table 2 The role of IRFs in inflammtory response.

Irfs Influenced
genes

Involved signal pathway Effects References

IRF1 VCAM-1 Activates:

PERK-eIF2α-CHOP pathway, PECAM-1-P38-XBPs

pathway

Promotes EC inflammation (61, 62, 65)

Inhibits:

IL-33-ERK1/2 pathway;

Ataxin-10

(66, 67)

CD40 - Induces adhesion molecules and chemokines expression in

ECs

(68)

RIG-I MAVS/TAK-1/JNK&ERK1/2 signaling pathway Stimulates IL-8 secretion in macrophages (69)

TNF-α, IL-1β, CCL-2 TLR2/TLR4/SUB1 pathways Drives macrophage polarization to M1 phenotype (51)

IFN-γ, TNF-α, IL-

12p70

- Enhances Th1-mediated pro-inflammatory cytokine

production

(70)

IL-6, IL-12p70, TNF-α MAPK pathway (JNK/p38/ERK1/2 phosphorylation) Upregulates inflammatory cytokines and enhances DC

maturation

(71)

IRF3 Noncanonical STING-PERK pathway (complex with NF-

κB & BRD4)

Mediates EC inflammatory activation (72)

IL-6 cGAS-STING DNA-sensing pathway Promotes VSMC inflammation. (73)

IL-6, PPARγ MyD88-independent TLR4 signaling Contributes to VSMC inflammatory responses (75)

CCL5, Cxcl10 IKK-related kinase/TBK1 pathway Upregulates RANTES and IP-10 expression (74)

IRF5 IL-10 TLR7/TLR9 pathway Attenuates macrophage inflammation in lupus-associated

atherosclerosis

(80)

CD11c, CCL2, CCL4 - Activates macrophage inflammatory responses (78, 79)

TNF-α, IL-6 TRAF6-IKK-IRF5 axis Drives pro-inflammatory gene expression in M1

macrophages

(54, 55)

IRF7 iNOS, Arg1, IL-10 - Modulates macrophage inflammatory processes (56)

IRF8 Lymphoid CD8α+

cDCs

Aortic CD11b–CD103 + cDCs Regulates dendritic cell subpopulation development (82)

Arg1 - Suppresses macrophage inflammatory activity (81)
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to regulate Arg1 expression, highlighting its role in balancing

macrophage functional states (81).

Conventional dendritic cells (cDCs) in atherosclerotic

plaques, characterized by the CD11b− CD103+ IRF8hi

phenotype, originate from DNGR1-expressing precursors.

Conditional deletion of IRF8 in CD11c+ cells ablates

lymphoid-like CD8α+ cDCs and CD11b-CD103 + cDCs,

significantly attenuating AS progression despite

hypercholesterolemia. This effect correlates with suppressed T/

B cell activation and differentiation under high-fat diet (HFD)

conditions, underscoring IRF8’s non-redundant role in

bridging innate and adaptive immune responses in AS

pathogenesis (82).

3.2 Dysregulation of lipid homeostasis

Under physiological conditions, macrophages maintain lipid

homeostasis through balanced uptake, efflux, and degradation.

Foam cell formation, a hallmark of early AS, is tightly linked to

dysregulated lipid metabolism in macrophages (83). Emerging

evidence implicates IRF1, IRF3, IRF5, and IRF7 as critical

regulators of lipid handling in macrophages, with distinct roles in

modulating scavenger receptors, cholesterol transporters, and

nuclear receptor signaling (Figure 2).

3.2.1 IRF1

Elevated IRF1 expression correlates with atherosclerotic lesion

progression and oxidized LDL (oxLDL)-induced foam cell

formation (84). Scavenger receptor AI (SR-AI), which is a direct

downstream gene target of IRF1, is primarily responsible for the

recognition and uptake of oxLDL (85). Mechanistically, in a

mouse atherosclerotic model, IRF1 amplifies lipid uptake in

macrophages by upregulating scavenger receptor AI (SR-AI)

through the TLR2/4-MyD88 pathway, while IRF1 silencing

reverses this opposite effect (3). OxLDL receptor-1 (LOX-1), a

transmembrane glycoprotein, is also famous for binding to and

internalizing oxLDL (71). In DCs in acute coronary syndrome

(ACS) patients, IRF1 overexpression enhances lectin-like LOX-1

expression, promoting oxLDL binding and internalization (71).

3.2.2 IRF3

IRF3 exerts dual regulatory effects on lipid metabolism. ATP-

binding cassette transporter A1 (ABCA1) is a key transporter

protein for cholesterol efflux in macrophages (86). IRF3

suppresses the transcriptional activity of Liver × Receptor (LXR)

at the ABCA1 promoter through TLR3/4 signaling in aortic

tissue in vivo. This process could reduce cholesterol efflux and

favor lipid accumulation (87). Concurrently, IRF3 synergizes with

Chlamydia pneumoniae-activated TLR2/4 signaling via MyD88

and TRIF-dependent pathways to drive foam cell formation.

FIGURE 2

Main signaling pathways of IRFs involved in regulating macrophage lipid metabolism in atherosclerosis. TLR, Toll-like receptor; MyD88, Myeloid

differentiation primary response 88; TANK, TRAF family member-associated NF-kappa-B activator; TBK-1, TANK-binding kinase 1; LXR, Liver

X Receptor; IKK-ϵ, Inhibitor of nuclear factor kappa-B kinase subunit epsilon; SR-AI, scavenger receptor AI; ABCA1, ATP-binding cassette

transporter A1; CD36, Cluster of Differentiation 36. Created in BioRender. Wang, Y. (2025) https://BioRender.com/zmlx50r.

Wang et al. 10.3389/fcvm.2025.1606034

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://BioRender.com/zmlx50r
https://doi.org/10.3389/fcvm.2025.1606034
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Intriguingly, crosstalk between IRF3 and LXR pathways suggests

therapeutic potential for LXR agonists in mitigating AS

progression (88).

3.2.3 IRF5
Cluster of Differentiation 36 (CD36) is a class B scavenger

receptor primarily responsible for lipid uptake (89).

Demonstrated in vivo and in vitro models, IRF5 promotes foam

cells formation by skewing the ABCA1/CD36 ratio toward lipid

uptake. This means IRF5 can reduce the expression of ABCA1

and increase the expression of CD36 in macrophages (53).

Paradoxically, in SLE, IRF5 improves systemic lipid profiles by

lowering very low-density lipoprotein (VLDL) and elevating

high-density lipoprotein (HDL) levels, highlighting its context-

dependent functionality (80).

3.2.4 IRF7
IRF7 disrupts cholesterol homeostasis through the

TLR7-MyD88-ABCA1 axis, suppressing cholesterol efflux in

murine macrophages (90). In diabetic mouse bone marrow-

derived macrophages (BMDMs), IRF7 downregulation increases

cholesterol transporter expression while reducing CD36 levels,

implicating that IRF7 is a negative regulator of reverse

cholesterol transport (56).

3.3 Regulation of programmed cell death in
atherosclerosis

Programmed cell death (e.g., pyroptosis, apoptosis) and

efferocytosis, the phagocytic clearance of apoptotic cells, are

critical determinants of atherosclerotic plaque stability. Emerging

evidence highlights that exacerbated programmed cell death

coupled with impaired efferocytosis drives atherosclerotic

progression. Key IRF family members regulate these processes

through distinct mechanisms (Table 3).

3.3.1 IRF1

Pyroptosis, a caspase-dependent inflammatory cell death

mechanism, is critically regulated by IRF1 (91). In HAECs, IRF1

binds promoter regions of Gasdermin D (GSDMD) and CASP1,

enhancing their expression to drive NLRP3 inflammasome-

mediated pyroptosis. This progress is initiated by RelB/

p52-mediated NF-κB activation (11). Similarly, in macrophages,

IRF1 modulates Cysteine-aspartic proteases 1 (caspase-1)

activation, GSDMD-N cleavage, and IL-1β/IL-18 maturation via

ROS-dependent NLRP3-ASC inflammasome. IRF1 overexpression

amplifies pyroptotic signaling, whereas its inhibition attenuates

inflammatory cell death (92).

Notably, IRF1 further promotes macrophage from patients

with CAD pyroptosis by regulating Methyltransferase-like 3

(METTL3)-mediated m6A modification of circular RNA

circ_0029589. This interaction suppresses circ_0029589

expression, which normally inhibits caspase-1 p10, GSDMD-N,

IL-1β p17, and IL-18 production (93, 94). IRF1 also facilitates

NLRP3-ASC recruitment to enhance caspase-1 activation,

establishing a feedforward loop of inflammation (93, 94).

3.3.2 IRF5

In human carotid artery and mouse models, IRF5 impairs

macrophage efferocytosis by downregulating integrin-β3

(Itgb3) and milk fat globule epidermal growth factor 8 (Mfge8),

the key mediators of apoptotic cells, in pro-inflammatory

CD11c +macrophages. This defect enlarges the necrotic core and

increases plaque rupture susceptibility, underscoring IRF5’s role

in destabilizing advanced lesions (78, 79).

3.3.3 IRF8

IRF8-deficient macrophages from chronic myelogenous

leukemia-prone mice exhibit reduced CD36 expression, impairing

efferocytosis of apoptotic polymorphonuclear neutrophilic

leukocytes (PMNs) (57). This finding positions IRF8 as a

regulator of phagocytic function in inflammatory contexts.

3.4 VSMC plasticity and phenotypic
switching in atherosclerosis

VSMCs undergo dynamic phenotypic changes during AS,

migrating from the medial layer to the intima, proliferating, and

depositing extracellular matrix to shape plaque architecture (95).

Emerging evidence highlights the regulatory roles of IRFs in

VSMC plasticity, which governs their transition into distinct

functional subtypes with divergent roles in AS progression

(96) (Table 3).

TABLE 3 The role of IRFs in programmed cell death, efferocytosis and
vascular smooth muscle cells.

IRFs Target genes Functions References

Programmed cell death and Efferocytosis

IRF1 GSDMD Induces EC apoptosis. (11)

NLRP3-ASC,

caspase-1 p10, IL-1β

p17, IL-18

Mediates macrophage pyroptosis

activation

(92)

METTL3 Enhances pyroptotic pathway

activation in macrophages

(93, 94)

IRF5 Itgb3, Mfge8 Impairs macrophage efferocytic

capacity

(78, 79)

IRF8 CD36 Suppresses macrophage

efferocytosis

(57)

Vascular smooth muscle cells: differentiation, proliferation and

calcification

IRF1 CDK Induces cell cycle arrest in

VSMCs at G1 phase

(99)

NOS2 Mediates VSMC cycle arrest

through nitric oxide signaling

(99)

CCL19 Facilitates VSMC pathological

processes:As a potential stimulus

for SMC-to-macrophage

transdifferentiation.

(101)

IRF8 Unknown Potential mediator of SMC-to-

macrophage transdifferentiation

(12)
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3.4.1 IRF1

IRF1 exerts antiproliferative and pro-apoptotic effects across

vascular cell types (3). In murine neointimal hyperplasia models,

IRF1 suppresses coronary artery smooth muscle cell (CASMC)

proliferation and migration while inhibiting neointima formation.

Mechanistically, IRF1 induces G1-phase cell cycle arrest via two

complementary pathways: (1)P21-Dependent CDK Inhibition:

IRF1 upregulates the cyclin-dependent kinase (CDK) inhibitor

p21, directly or indirectly blocking CDK activity (97, 98);

(2)Nitric Oxide (NO)-Mediated Arrest: IRF1 enhances NO

production, a known inducer of cell cycle arrest and endothelial

function modulator (99).The p21 pathway also inhibits CASMC

migration, potentially through interactions with CDK inhibitory

proteins (CKIs) of the Cip/Kip family (100). These dual

mechanisms provide novel insights into IRF1’s role in mitigating

VSMC-driven AS pathophysiology.Paradoxically, IRF1 promotes

AS progression by upregulating CCL19, a chemokine elevated in

AS patient serum. CCL19 enhances VSMC proliferation,

migration, inflammatory factor secretion (IL-1α/β, TNF-α, IL-6),

and extracellular matrix deposition (collagen III, osteopontin),

positioning it as a potential diagnostic biomarker and therapeutic

target (101).

3.4.2 IRF8

Single-cell transcriptomic analyses reveal five VSMC subtypes

in AS: contractile, fibroblast-like, osteogenic, synthetic, and

macrophage-like. Notably, Xue Gong et al. identified IRF8 as a

master regulator SMC-to-macrophage transdifferentiation via

NF-κB signaling activation in human carotid plaque laden with

atherosclerotic core (12). The macrophage-like SMC subtype

exhibits a hybrid phenotype co-expressing inflammatory

mediators(CCL2, CXCL1-3), matrix-remodeling enzymes(MMP3,

MMP9, MMP19) and osteogenic markers(LGALS3, KLF4)

(102–105). This transdifferentiation process amplifies plaque

instability by promoting matrix degradation, inflammation, and

calcification, underscoring IRF8’s pathogenic role in advanced AS.

4 Conclusions

IRFs are multifaceted regulators of AS, influencing

inflammation, lipid handling, cell death, and VSMC plasticity.

While IRF1, IRF3, IRF5, and IRF8 predominantly exacerbate AS,

context-dependent roles (e.g., IRF5 in lupus-associated AS)

highlight their therapeutic complexity. Future studies must clarify

unresolved questions, including functional redundancies among

IRFs, tissue-specific effects, and translational potential. Targeting

IRF signaling pathways may offer novel strategies for stabilizing

atherosclerotic plaques and reducing CVD burden.
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