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Introduction: Artificial Intelligence (AI) has transformed medical diagnostics,

offering enhanced precision and efficiency in detecting cardiovascular risks.

However, traditional diagnostic approaches for cardiovascular risk assessment

in autistic patients remain limited due to the complexity of medical data, inter-

individual variability, and the challenges of integrating multi-modal clinical

information. Conventional methods, relying heavily on manually extracted

features and rule-based analysis, often fail to capture subtle cardiovascular

abnormalities, leading to suboptimal clinical outcomes.

Methods: To address these limitations, we propose an AI-driven object

detection framework that leverages advanced deep learning techniques for

automated, accurate cardiovascular risk assessment in autistic patients. Our

approach integrates multi-modal medical data, including imaging and

electronic health records, through a novel feature fusion mechanism,

enhancing diagnostic precision. Furthermore, an uncertainty quantification

module is embedded to improve model interpretability and reliability,

addressing concerns regarding AI-based medical decision-making.

Results: Experimental evaluations demonstrate that our method significantly

outperforms traditional diagnostic techniques in sensitivity and specificity,

making it a robust tool for clinical applications.

Discussion: The proposed framework represents a significant step towards

personalized and data-driven cardiovascular care for autistic patients, aligning

with the need for tailored diagnostic solutions in this specialized medical domain.

KEYWORDS

AI-driven diagnostics, cardiovascular risk assessment, object detection, multi-modal

data fusion, uncertainty quantification

1 Introduction

The increasing prevalence of autism spectrum disorder (ASD) and its associated health

risks, particularly cardiovascular diseases (CVDs), necessitate innovative diagnostic

approaches (1). ASD patients often exhibit atypical physiological responses,

communication barriers, and heightened stress levels, which can obscure early

symptoms of CVD. Traditional diagnostic methods, reliant on direct patient feedback

and clinical observations, are often inadequate in this population (2). AI-driven object

detection presents a promising solution by offering non-invasive, automated, and real-

time analysis of cardiovascular risk factors such as facial micro-expressions, body

movements, and physiological signals. Not only does this approach enhance the
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efficiency and accuracy of risk assessment, but it also minimizes

patient discomfort, ensuring higher compliance with medical

evaluations (3). Furthermore, the integration of AI into

healthcare systems allows for continuous monitoring, potentially

leading to early intervention and personalized treatment

strategies. Given these advantages, it is imperative to explore the

evolution of AI methodologies in object detection, from

traditional symbolic approaches to contemporary deep learning

techniques, to identify the optimal framework for cardiovascular

risk assessment in autistic patients (4).

Early attempts to develop AI-driven object detection systems

for medical applications relied on symbolic AI and knowledge

representation. These systems were rule-based, encoding expert

knowledge in the form of if-then rules and ontologies to classify

medical images and physiological signals (5). For instance, rule-

based expert systems could identify abnormal heart rates or

detect anomalies in electrocardiograms (ECGs) based on

predefined thresholds. While such systems provided

explainability and logical reasoning, their rigidity and reliance on

handcrafted rules limited their adaptability to complex, patient-

specific variations (6). Moreover, symbolic AI struggled with the

high-dimensional and noisy nature of real-world medical data,

necessitating frequent manual updates and expert intervention.

To address these challenges, researchers explored statistical

learning approaches that leveraged data-driven techniques for

improved generalization and scalability (7).

The advent of machine learning (ML) revolutionized object

detection in medical diagnostics, shifting the focus from manually

defined rules to data-driven feature extraction and classification.

Traditional ML methods such as support vector machines

(SVMs), random forests, and k-nearest neighbors (KNNs)

demonstrated considerable success in identifying cardiovascular

risk markers from ECGs, medical imaging, and wearable sensor

data (8). These algorithms could automatically learn patterns from

large datasets, reducing dependency on explicit rule engineering.

However, their effectiveness was constrained by feature selection

biases and limited capacity for hierarchical pattern recognition (9).

ML models often required extensive preprocessing and feature

engineering, making them less adaptable to real-time, multimodal

data streams required for holistic cardiovascular risk assessment.

The need for higher accuracy, end-to-end learning, and

autonomous feature extraction motivated the transition to deep

learning (DL) and pre-trained models (10).

Deep learning and pre-trained models have significantly

advanced object detection by enabling automated feature learning

from raw data (11). Convolutional neural networks (CNNs) and

recurrent neural networks (RNNs) have been particularly

impactful in analyzing cardiovascular risk factors from facial

expressions, posture, and physiological signals in autistic patients

(12). CNN-based architectures such as ResNet and EfficientNet

can extract spatial patterns from facial videos and thermal

imaging, identifying stress-induced micro-expressions linked to

cardiovascular anomalies. Simultaneously, RNNs and

transformers enhance temporal analysis by capturing dynamic

physiological changes over time (13). Pre-trained models,

including Vision Transformers (ViTs) and large multimodal

frameworks, further refine object detection by leveraging vast

medical datasets and transfer learning strategies (14). Despite

these advancements, deep learning models pose challenges such

as high computational costs, black-box decision-making, and

data privacy concerns, necessitating further optimization for

clinical applicability (15).

Building on the limitations of prior methods, our approach

integrates multimodal deep learning with explainable AI (XAI) to

enhance cardiovascular risk assessment in autistic patients. By

combining CNNs for visual analysis, RNNs for sequential

physiological signals, and attention mechanisms for feature

fusion, our model ensures robust and interpretable risk

predictions. Unlike black-box deep learning models, our

framework incorporates attention-based heatmaps and Shapley

values to enhance transparency and clinician trust. The system is

designed for deployment in real-world settings, featuring real-

time processing, adaptive learning for personalized assessments,

and federated learning to maintain data privacy. By addressing

the limitations of symbolic AI, traditional ML, and deep learning,

this approach offers a novel, scalable, and effective solution for

cardiovascular risk assessment in ASD patients.

The proposed approach offers several significant benefits:

• Our approach integrates CNNs, RNNs, and attention

mechanisms, enabling comprehensive analysis of visual and

physiological markers, improving accuracy over single-

modal methods.

• The incorporation of XAI techniques ensures transparency,

while federated learning supports privacy-preserving, real-time

adaptation in diverse healthcare settings.

• Extensive validation on multimodal datasets demonstrates

significant improvements in detection accuracy, early risk

prediction, and clinical applicability compared to existing AImodels.

2 Related work

2.1 AI applications in cardiovascular imaging

Artificial intelligence (AI) has significantly advanced

cardiovascular imaging, enhancing the detection and assessment

of cardiovascular diseases (CVD) (16). Machine learning

algorithms, particularly deep learning, have been integrated into

various imaging modalities to improve diagnostic accuracy and

efficiency (17). In echocardiography, AI assists in the automatic

interpretation of cardiac function, enabling precise measurements

of parameters such as ejection fraction and wall motion

abnormalities. Studies have demonstrated that AI can perform at

a level comparable to experienced cardiologists in interpreting

echocardiograms, thereby reducing variability and potential

diagnostic errors (18). In coronary computed tomography

angiography (CCTA), AI algorithms facilitate the detection of

significant coronary artery disease by identifying stenotic lesions

and characterizing plaque composition. The integration of AI in

CCTA has led to improved sensitivity and specificity in detecting

obstructive coronary artery disease, which is crucial for timely

intervention and management (19). Moreover, AI-driven analysis
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of cardiac magnetic resonance imaging (MRI) has been employed to

assess myocardial viability, fibrosis, and perfusion, providing

comprehensive information for risk stratification and therapeutic

decision-making. The application of AI in cardiovascular imaging

extends to the analysis of retinal images, where changes in retinal

microvasculature can reflect systemic cardiovascular health (20).

AI-based retinal image analysis has emerged as a non-invasive tool

for early detection of cardiovascular risk factors, such as

hypertension and atherosclerosis. By analyzing retinal vessel caliber

and tortuosity, AI algorithms can predict the risk of stroke and

other cardiovascular events, offering a practical approach for

screening in primary healthcare settings (21). Despite these

advancements, challenges remain in the standardization and

validation of AI algorithms across diverse populations and

imaging platforms. Ensuring the generalizability and robustness of

AI models is essential for their widespread adoption in clinical

practice (22). Integrating AI tools into existing clinical workflows

requires careful consideration of user interface design and

interoperability with health information systems (23).

2.2 Cardiovascular risks in autism
spectrum disorder

Individuals with Autism Spectrum Disorder (ASD) face an

elevated risk of developing cardiovascular diseases (CVD),

attributed to a combination of genetic, behavioral, and metabolic

factors (24). Recent studies have highlighted a higher prevalence

of cardiometabolic conditions, including diabetes, dyslipidemia,

and heart disease, among autistic individuals compared to the

general population. Behavioral factors, such as physical inactivity

and dietary preferences, contribute to the increased CVD risk in

autistic individuals (25). Challenges in motor coordination and

social engagement may lead to reduced participation in physical

activities, while sensory sensitivities can influence dietary choices,

potentially resulting in suboptimal nutritional intake. These

lifestyle factors can lead to obesity, a known risk factor for CVD

(26). Autonomic dysfunction, characterized by atypical heart rate

patterns and reduced heart rate variability, has been observed in

individuals with ASD. Such dysregulation of the autonomic

nervous system may contribute to the development of

cardiovascular conditions, including arrhythmias and

hypertension (27). The use of certain psychotropic medications to

manage behavioral symptoms in ASD may also impact

cardiovascular health. For instance, antipsychotic medications

have been associated with weight gain and metabolic syndrome,

further elevating the risk of CVD in this population (28).

Addressing these risks necessitates a tailored Healthcare providers

should implement personalized care planning that considers both

general cardiovascular risk factors and ASD-specific challenges.

This includes promoting physical activity through adapted

programs, providing nutritional guidance sensitive to sensory

preferences, and monitoring for metabolic side effects of

medications (29). The integration of artificial intelligence (AI) in

healthcare has opened new avenues for personalized risk

assessment and early detection of diseases. In the context of

Autism Spectrum Disorder (ASD), AI-driven tools can play a

pivotal role in assessing and mitigating cardiovascular risks. AI

algorithms have been developed to predict cardiovascular events

by analyzing various data sources, including electronic health

records, genetic information, and imaging data. For example,

machine learning models can process complex datasets to identify

patterns and risk factors associated with cardiovascular diseases

(CVD) (30). These models have shown promise in improving the

accuracy of risk prediction compared to traditional statistical

methods. In individuals with ASD, AI can be utilized to monitor

cardiovascular health through wearable devices and sensors. These

technologies can continuously track physiological parameters such

as heart rate, physical activity, and sleep patterns, which are

essential for assessing cardiovascular risk. The data collected can

be analyzed using AI to detect anomalies or trends indicative of

potential cardiovascular issues, enabling timely interventions.

2.3 Object detection in multimodal
clinical data

Object detection has gained substantial traction in the medical

domain, particularly with the rise of multimodal data sources such

as imaging, physiological signals, and electronic health records

(31). In clinical settings, object detection models are increasingly

employed to identify pathological features from complex data

streams. Recent advances in deep learning, especially in

convolutional and transformer-based architectures, have enabled

robust performance across modalities, facilitating precise

localization and classification of clinically relevant patterns (32).

Multimodal object detection leverages the complementary nature

of heterogeneous data sources to improve diagnostic accuracy,

particularly in cases where individual modalities may provide

incomplete or ambiguous information. In the context of

cardiovascular diagnostics, these models can detect subtle

anatomical and functional abnormalities in medical images while

correlating them with temporal patterns in physiological data,

such as ECG or photoplethysmography signals (33). Research has

also demonstrated that incorporating contextual information

from electronic health records significantly enhances object

detection outcomes by embedding patient-specific histories into

the diagnostic process. Nevertheless, clinical object detection

faces challenges such as label scarcity, inter-observer variability,

and domain shifts across institutions (34). To mitigate these

issues, transfer learning, domain adaptation, and semi-supervised

learning approaches have been explored, often leveraging pre-

trained models on large-scale medical datasets. Moreover,

attention mechanisms and graph-based fusion strategies have

shown promise in harmonizing spatial, temporal, and textual

information, providing more holistic and interpretable outputs

(35). As a result, object detection in multimodal clinical data has

evolved into a critical component of AI-powered decision

support systems, offering clinicians a powerful tool for early

detection and risk stratification, especially in complex

populations such as autistic individuals with elevated

cardiovascular risks (36).
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3 Method

3.1 Overview

Artificial Intelligence (AI) has revolutionized numerous fields,

with medical detection emerging as one of the most impactful

applications. The integration of AI-driven methods in medical

diagnostics has led to significant advancements in accuracy,

efficiency, and accessibility. This section provides an overview of

the proposed methodology for AI-based medical detection,

detailing the problem formulation, model development, and

strategic improvements.

We introduce the mathematical foundations and notations

used in our approach in Section 3.2. This includes a formal

definition of the medical detection problem, where we

characterize input medical data, define the target outputs, and

establish a structured framework to represent the detection

task. In Section 3.3, we present our novel AI model tailored

for medical detection. Our model incorporates advanced deep

learning architectures optimized for extracting high-

dimensional medical features from various modalities, such as

medical imaging, biosignals, and electronic health records.

Unlike conventional methods, our approach integrates

domain-specific priors and leverages self-supervised learning

techniques to enhance feature representations. In Section 3.4,

we introduce a new strategic enhancement designed to address

key challenges in AI-based medical detection. This strategy

includes a novel fusion mechanism that integrates multi-modal

medical data, a robust uncertainty quantification module to

improve reliability, and a domain-adaptive training paradigm

that enhances generalization across different medical datasets.

The proposed improvements significantly boost diagnostic

performance, making AI medical detection more reliable

and interpretable.

3.2 Preliminaries

AI-based medical detection can be formulated as a structured

learning problem where the goal is to map medical data inputs

to corresponding diagnostic outcomes. This section introduces

the fundamental mathematical notations and problem

formulation that underlie our approach.

In our architecture, federated learning is implemented using

a centralized server-client setup where each participating

institution or data source serves as a client node. Clients

perform local model updates based on their private data, and

only model gradients or weights are communicated to the

central server. No raw data is transferred at any point,

ensuring privacy preservation. The aggregation at the server

follows a standard Federated Averaging protocol.

Communication between server and clients is conducted via

secure HTTPS connections, and all transmissions are

encrypted. The server infrastructure is hosted on a dedicated

secure cloud node with access control and audit logging

enabled. Clients are initialized asynchronously, and updates

are scheduled in rounds to accommodate variable availability

and compute capacity. Data retrieval and local storage are

handled independently by each client using local data loaders,

and training occurs in isolated sandboxes to comply with

institutional data protection policies.

Let X , R
d denote the space of medical data inputs, where

each sample x [ X represents a high-dimensional medical

signal, such as an image, waveform, or structured electronic

health record (EHR). The corresponding diagnostic labels are

drawn from a finite set Y ¼ {y1, y2, . . . , yC}, where C is the

number of disease classes or diagnostic outcomes.

Given an input x [ X , we define a feature extraction function

f :X ! R
m that maps raw medical data to an m-dimensional

feature representation (Equation 1):

z ¼ f (x) [ R
m
: (1)

This feature mapping can be learned via deep neural networks or

other machine learning techniques optimized for extracting

relevant medical features.

A classifier g :Rm ! Y is then applied to the feature space,

yielding a prediction (Equation 2):

ŷ ¼ g(z) ¼ g(f (x)): (2)

The function g(�) may take various forms, including parametric

models such as neural networks or probabilistic models.

To improve the reliability of AI-based medical detection, we

incorporate an uncertainty estimation function U :Rm ! R that

quantifies the confidence of predictions (Equation 3):

U(z) ¼ H(p(yjx)), (3)

where H(�) denotes the entropy of the predicted probability

distribution p(yjx). High entropy indicates uncertain

predictions, which can be leveraged for uncertainty-aware

decision-making.

Medical detection often involves integrating multiple data

modalities, such as imaging and clinical reports. We define a

multi-modal representation function (Equation 4):

z ¼ F(x1, x2, . . . , xk), (4)

where xi [ X i represents data from different sources. The fusion

function F(�) may employ attention mechanisms or graph-based

learning to enhance cross-modal interactions.

The model parameters u are optimized using a loss function

L that captures both classification accuracy and uncertainty

regularization (Equation 5):

u� ¼ argmin
u

E(x,y)�D L(g(f (x)), y)þ lU(f (x))½ �: (5)
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Here, D represents the training data distribution, and l

is a regularization coefficient balancing classification

and uncertainty.

3.3 Medical diagnostic neural network
(MDNN)

To enhance the accuracy and interpretability of AI-based

medical detection, we propose a novel model, termed the

Medical Diagnostic Neural Network (MDNN). The MDNN

integrates multi-modal feature representation, uncertainty-aware

decision-making, and domain-adaptive learning to improve

diagnostic performance. This section details the architecture,

feature encoding mechanisms, and optimization strategies of

MDNN (As shown in Figure 1). The overall architecture of the

Medical Diagnostic Neural Network (MDNN) integrates

heterogeneous clinical inputs through a unified multimodal

encoding module. This design supports structured electronic

health records, physiological signals, and medical images. An

entropy-guided uncertainty modeling component is positioned

downstream of the fusion layer to quantify predictive confidence.

Additionally, the model incorporates a cross-domain feature

alignment unit, which enhances generalization across diverse

clinical domains by aligning latent representations from different

sources. These components collectively support robust diagnostic

inference under data variability.

3.3.1 Unified multi-modal encoding

MDNN incorporates a unified multi-modal encoding

mechanism designed to capture comprehensive and

complementary information from diverse clinical data sources.

In real-world medical settings, patients often generate

heterogeneous data modalities, including imaging (e.g.,

thermal or facial video), physiological signals (e.g., heart rate

or respiratory patterns), and structured electronic health

records (EHR). Each modality carries partially overlapping but

distinct diagnostic cues, and jointly modeling them allows for

a more robust and nuanced understanding of a patient’s

condition. To process this heterogeneous data, MDNN

employs a modality-specific encoder fui for each input stream

xi, where xi represents the i-th modality and ui denotes the

learnable parameters associated with its encoder. Each encoder

maps the raw input into a shared latent space, producing an

intermediate representation zi ¼ fui (xi). Each modality is

processed using a dedicated encoder fui , selected based on the

nature of the input data. For structured inputs such as

electronic health records, fui is implemented as a multi-layer

perceptron (MLP) comprising fully connected layers, ReLU

activations, and dropout for regularization. For imaging data,

convolutional neural networks (CNNs) are used to extract

spatial features, and for sequential physiological signals,

recurrent neural networks such as BiLSTMs are applied to

capture temporal dependencies. This modality-specific

architecture design ensures that each data type is encoded

effectively before fusion. However, not all modalities

contribute equally to every diagnostic case; therefore, MDNN

dynamically recalibrates their importance through an

attention-based fusion strategy. Attention weights ai are

computed using a gating mechanism that considers both the

global context of the input and the internal relevance of each

modality. These weights are normalized via a softmax function

FIGURE 1

Schematic diagram the medical diagnostic neural network (MDNN). The architecture comprises three major components: a unified multi-modal

encoding module that processes heterogeneous inputs such as images, physiological signals, and EHR using modality-specific encoders with

adaptive attention fusion; an entropy-guided uncertainty modeling unit that estimates and regularizes predictive confidence using entropy-based

loss and Monte Carlo dropout; and a cross-domain feature alignment mechanism that minimizes distributional shifts via MMD loss and optional

adversarial learning. The integration of these modules enables MDNN to deliver accurate, robust, and generalizable diagnostic predictions across

varying clinical domains.
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to ensure convex combination. The fused representation z is

then constructed as follows (Equation 6):

z ¼
X

k

i¼1

aifui (xi), (6)

where ai ¼
exp (ei)

Pk

j¼1
exp (ej)

and ei ¼ MLP(fui (xi)) denotes the relevance

score derived through a shallow neural network. This formulation

enables the model to emphasize the most informative modalities

depending on the case-specific input context while down-

weighting irrelevant or noisy signals. Furthermore, to align features

from heterogeneous sources into a common latent geometry, a

modality-invariant transformation T :Rdi ! R
m is applied post-

encoding to ensure compatibility across representations. Thus,

each encoded feature vector zi is projected into a unified

embedding space before aggregation (Equation 7):

z0i ¼ T(fui (xi)) ¼ Wifui (xi)þ bi, (7)

where Wi [ R
m�di and bi [ R

m are learnable parameters that

standardize modality-specific dimensions di to a fixed latent

dimension m. This transformation ensures that the summation

in the fusion equation remains coherent and dimensionally

consistent. MDNN is designed to handle missing modalities

gracefully. When a specific xi is unavailable, its corresponding

ai is automatically masked and the remaining weights are

renormalized, allowing the network to continue producing

valid predictions without imputation. This capability is

particularly beneficial in clinical environments where not all

data types are routinely collected. During training, a dropout

mechanism is optionally applied to modality inputs to

simulate missingness and enforce robustness. Finally, the fused

representation z is regularized using a modality attention

entropy loss, encouraging diversity and sparsity in the

selection weights, defined as (Equation 8):

Lattn ¼ �
X

k

i¼1

ai log (ai), (8)

which penalizes uniform attention and promotes selective focus.

This entire encoding pipeline enables MDNN to integrate and

calibrate multi-modal information adaptively, leading to

enhanced diagnostic precision, increased resilience to noisy

inputs, and better generalization across varying clinical

data configurations.

3.3.2 Entropy-guided uncertainty modeling
To address the interpretability challenges inherent in deep

learning-based medical diagnosis, the Medical Diagnostic

Neural Network (MDNN) integrates an entropy-guided

uncertainty modeling mechanism that estimates the confidence

of each prediction and incorporates this estimate into the

learning process. Medical decisions often require high

reliability, and the ability to distinguish between confident and

uncertain predictions is crucial for risk-sensitive applications

such as cardiovascular risk detection in autistic individuals. In

MDNN, given an input x, the model outputs a class probability

distribution p(ycjx) over C diagnostic categories. The predictive

uncertainty is quantified using Shannon entropy, which

captures the dispersion of the output distribution and is defined

as (Equation 9):

Uc(x) ¼ �
X

C

c¼1

p(ycjx) log p(ycjx), (9)

where Uc(x) increases as the predicted probabilities become more

uniform, indicating lower confidence. This uncertainty measure

enables the system to identify ambiguous cases that may benefit

from additional scrutiny, human-in-the-loop decision-making,

or deferred classification. To integrate uncertainty into training,

MDNN includes an auxiliary regularization objective that

penalizes the model for producing overly confident predictions

when the evidence is ambiguous. This is implemented by

minimizing the expected entropy across the training

distribution (Equation 10):

Lunc ¼ Ex�D Uc(x)
� �

, (10)

which promotes better-calibrated probability outputs and reduces

the likelihood of misleading predictions. To further capture

epistemic uncertainty—the model’s lack of knowledge due to

limited or imbalanced training data—MDNN can be extended

with Bayesian approximations such as Monte Carlo dropout.

During training and inference, stochastic dropout layers

introduce variability in the model’s weights, and the entropy is

then computed over T stochastic forward passes (Equation 11):

UMC(x) ¼ �
X

C

c¼1

1

T

X

T

t¼1

pt(ycjx)

 !

log
1

T

X

T

t¼1

pt(ycjx)

 !

, (11)

where pt(ycjx) denotes the class probability at the t-th forward pass.

This Monte Carlo approximation provides a more robust estimate of

uncertainty by capturing variability due to both data and model

stochasticity. To avoid excessive penalization of naturally uncertain

cases (e.g., borderline patients), MDNN also incorporates a

confidence thresholding mechanism during optimization. The

entropy regularization term is weighted by a selective masking

function I[Uc(x) . t] that activates only when uncertainty

exceeds a predefined threshold t, thereby focusing the

regularization effect on truly ambiguous inputs. The resulting

selective regularization loss is given by (Equation 12):

Lsel-unc ¼ Ex�D I[Uc(x) . t] � Uc(x)
� �

, (12)

which effectively balances model calibration with robustness

to outliers.
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3.3.3 Cross-domain feature alignment

In real-world clinical environments, medical data often exhibit

substantial domain shifts arising from differences in equipment,

patient demographics, data acquisition protocols, and institutional

practices (As shown in Figure 2). The Cross-Domain Feature

Alignment module consists of two parallel processing paths. One

path uses 1� 1 convolutions to maintain the semantic structure of

the input features. The other path performs domain alignment

through maximum mean discrepancy loss and optional adversarial

training to reduce distribution shifts. Outputs from both paths are

combined through element-wise addition, which regularizes the

aligned representations while preserving original structure. This dual-

path strategy supports the generation of domain-invariant feature

embeddings without degrading the model’s discriminative capacity.

In the Cross-Domain Feature Alignment module, the use of two

separate processing paths is intentional and serves complementary

purposes. One path processes the concatenated features through

standard 1� 1 convolutions to preserve the original domain-

invariant semantic structure. The second path incorporates a

dedicated feature alignment unit that applies Maximum Mean

Discrepancy (MMD) loss and, optionally, adversarial training to

minimize the distributional gap between source and target

domains. The outputs of these two paths are subsequently

combined via element-wise addition. This fusion is not only for

structural integration but also plays a regularization role, ensuring

that the alignment-optimized features do not drift too far from the

original semantic space. The additive strategy stabilizes training by

balancing alignment with discriminative representation, enabling

the model to generalize effectively across clinical domains with

differing data distributions.

These variations present a critical challenge for model

generalization, as models trained on a specific source domain

frequently underperform when applied to new, unseen target

domains. To address this issue, MDNN incorporates a domain

adaptation mechanism grounded in the theory of statistical

distribution alignment. MDNN minimizes the Maximum Mean

Discrepancy (MMD) between source and target feature distributions

in the latent space, thereby encouraging domain-invariant

representation learning. Let {xsi }
ns
i¼1 and {xtj }

nt
j¼1 represent samples

drawn from the source and target domains, respectively. Each sample

is encoded via a shared feature extractor fu(�) into a latent embedding.

The empirical MMD is computed as the squared distance between the

mean embeddings of the two domains (Equation 13):

LMMD ¼
1

ns

X

ns

i¼1

fu(x
s
i )�

1

nt

X

nt

j¼1

fu(x
t
j )

�

�

�

�

�

�

�

�

�

�

2

: (13)

This alignment objective can be extended to higher-order statistics using

kernel-basedmethods, such as reproducing kernelHilbert space (RKHS)

embeddings, although MDNN employs a first-order approximation for

computational efficiency and scalability in high-dimensional medical

data. To preserve discriminative power while aligning domains, the

feature extractor is trained jointly with a classification objective on the

labeled source domain. Let gf(�) denote the classifier applied to the

latent embedding. The classification loss is defined using a standard

cross-entropy function (Equation 14):

Lcls ¼ �
X

C

c¼1

I[y ¼ c] log gf(fu(x))c, (14)

where gf(fu(x))c denotes the predicted probability for class c. In

addition to domain adaptation and classification, MDNN integrates

entropy-based uncertainty regularization to encourage calibrated

predictions and mitigate overfitting to noisy or outlier samples. Let

FIGURE 2

Schematic diagram the cross-domain feature alignment module. This schematic depicts the fusion block in MDNN, which performs cross-domain

feature alignment to address distribution shifts between source and target domains. Input features are first concatenated and processed through

parallel 1� 1 convolution layers. One path passes through a dedicated Cross-Domain Feature Alignment unit, which minimizes domain

discrepancy using Maximum Mean Discrepancy (MMD) and optionally adversarial training. The outputs are then aggregated via element-wise

addition and flattened to produce domain-invariant feature representations. This alignment mechanism enhances model generalization in

heterogeneous clinical settings by encouraging consistent latent structures across institutions or populations.
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Uc(x) denote the predictive entropy as defined previously. The

combined training objective incorporates all three components—

classification accuracy, uncertainty minimization, and distribution

alignment—into a unified loss function (Equation 15):

L ¼ E(x,y)�Ds
Lcls(gf(fu(x)), y)
� �

þ lEx�Ds
Uc(x)
� �

þ gLMMD, (15)

where l and g are tunable hyperparameters that control the relative

contributions of uncertainty regularization and domain

adaptation. Furthermore, to improve the quality of feature

alignment, MDNN optionally introduces a domain adversarial

signal by training a domain discriminator Db(�) to predict

whether a feature embedding originates from the source or target

domain. The feature extractor fu is updated in a min-max fashion

to fool the discriminator, enhancing alignment beyond mean-

matching. This adversarial extension is expressed through a

domain classification loss (Equation 16):

Ladv ¼ �Exs logDb(fu(x
s))� Ext log (1� Db(fu(x

t))), (16)

and the total objective can be augmented with a weighted

adversarial term if desired. Through this combination of metric-

based and adversarial alignment, MDNN is capable of learning

robust feature representations that remain semantically

consistent across diverse patient populations and clinical

scenarios without access to labeled data from the target domain.

This design facilitates reliable deployment in cross-hospital

settings where annotation costs are prohibitive and distributional

discrepancies are unavoidable.

3.4 Adaptive diagnostic refinement (ADR)

To further enhance the robustness and interpretability of AI-

based medical detection, we introduce a novel strategy called

Adaptive Diagnostic Refinement (ADR). ADR integrates adaptive

feature recalibration, context-aware decision adjustment, and

hierarchical uncertainty modeling to refine medical predictions

dynamically. This section details the design and implementation

of ADR (As shown in Figure 3). The Adaptive Diagnostic

Refinement (ADR) framework refines model predictions by

incorporating multiresolution and multimodal reasoning. It

includes a hierarchical transformer encoder that processes inputs

at progressively reduced spatial resolutions, extracting visual

features across four scales. These are recalibrated using

physiological signal-derived features, enabling the system to

adapt its predictions based on temporal dynamics and patient

context. The recalibration is guided by feature importance

estimation and contextual adjustment based on structured

metadata, improving sensitivity to clinically relevant cues.

To enhance clarity regarding the dimensionality of feature

representations within the ADR framework, we summarize

the notation used for the patch embedding layers and the

physiological feature extractor in Table 1. This includes the

hierarchical output shapes of the visual transformer branches and

the fixed-length vector representation generated from

physiological signals. These consistent and well-defined

FIGURE 3

Schematic diagram the adaptive diagnostic refinement (ADR) framework. The figure presents the overall architecture of ADR, which enhances medical

diagnostic accuracy and reliability through a sequence of progressive modules. The top pathway shows a hierarchical transformer-based encoder

consisting of patch embedding layers and biopsychosocial feature extraction blocks at multiple resolution scales. The bottom pathway integrates

three critical components: Feature Importance Recalibration, which dynamically modulates latent representations via residual gating and sparsity

constraints; Contextual Prediction Adjustment, which incorporates patient-specific metadata to personalize predictions through attention-

weighted fusion; and Multi-Level Uncertainty Estimation, which quantifies prediction confidence across feature, model, and decision levels to

improve calibration and support selective diagnosis. Together, these components enable ADR to deliver robust, interpretable, and personalized

diagnostic support.
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dimensions facilitate efficient fusion across modalities during the

diagnostic refinement process.

3.4.1 Feature importance recalibration

Medical diagnostic data often comprise complex, high-

dimensional features derived from multiple modalities, including

visual inputs, physiological signals, and structured health records.

These features are prone to redundancy, noise, and variability,

which can obscure salient patterns relevant to clinical decision-

making. Within the Adaptive Diagnostic Refinement (ADR)

framework, we introduce a feature importance recalibration

mechanism that learns to modulate the contribution of each

latent dimension based on its contextual relevance to the

diagnostic task. Let z [ R
m denote the initial latent

representation derived from upstream encoders, where m is the

embedding dimension. The recalibration process applies a gating

operation that produces a reweighted vector ~z through element-

wise scaling. This is achieved using a learned transformation

composed of a fully connected layer followed by a sigmoid

activation, forming a dynamic mask over the latent space. The

transformation is defined as (Equation 17):

~z ¼ Rv(z) ¼ s(Wrz þ br)� z, (17)

whereWr [ R
m�m and br [ R

m are learnable parameters, s(�) is the

sigmoid function applied element-wise, and � represents Hadamard

product. The recalibration function Rv(�) enables the model to

amplify or suppress specific dimensions of the representation in a

data-dependent manner. To improve training stability and

expressiveness, we further extend this mechanism by introducing a

residual gating formulation, allowing the recalibrated vector to

retain a fraction of the original signal (Equation 18):

~z ¼ z þ g � (s(Wrz þ br)� z � z), (18)

where g [ [0, 1] is a learnable scalar controlling the strength of

recalibration. This residual design avoids overly aggressive

suppression of features and facilitates gradient flow in deep

architectures. To encourage sparsity and interpretability in the

recalibration mask, we introduce a sparsity-inducing regularization

term on the gating vector g ¼ s(Wrz þ br), which penalizes diffuse

attention across the latent dimensions. The regularization term is

formulated as an ‘1 penalty (Equation 19):

Lrecalib ¼ Ez�Z ks(Wrz þ br)k1½ �, (19)

which biases the model toward activating a minimal subset of features

for each input, yielding more focused representations. In scenarios

where the model receives multi-modal inputs, the recalibration layer

can be extended to operate independently on modality-specific

subspaces before fusion. Let z(i) denote the latent feature vector

from modality i, then a modality-specific recalibration is given by

(Equation 20):

~z(i) ¼ s(W(i)
r z(i) þ b(i)r )� z(i), (20)

with separate parameters (W(i)
r , b(i)r ) for each modality, allowing fine-

grained control over modality-wise feature weighting. The

recalibrated vectors ~z(i) are then concatenated or aggregated through

attention to form the final diagnostic embedding. Through this

adaptive recalibration process, ADR dynamically adjusts the

importance of latent features in a task-aware and context-sensitive

manner, enhancing the model’s capacity to capture discriminative

patterns while mitigating the influence of irrelevant or confounding

signals in medical data. To integrate the recalibrated vectors from

different modalities, we adopt a concatenation strategy rather than

element-wise aggregation. This approach preserves the distinct

semantic contributions of each modality and enables richer joint

representations. Although concatenation increases the combined

feature dimensionality, we follow this operation with a linear

projection layer that maps the resulting vector into a fixed-size

latent space. This design ensures that the dimensionality remains

uniform and compatible with the downstream uncertainty

estimation and classification modules.

3.4.2 Contextual prediction adjustment

Medical diagnostic tasks often involve heterogeneous patient

populations with varying physiological baselines, comorbidities,

and environmental factors, which can significantly influence

disease presentation and progression. To account for these inter-

individual differences, the Adaptive Diagnostic Refinement

(ADR) framework incorporates a contextual prediction

adjustment mechanism that personalizes diagnostic outputs using

auxiliary patient-specific metadata. Let x denote the primary

input (e.g., imaging or physiological signal) and xmeta represent

structured contextual information such as age, sex,

medication history, and comorbid conditions. This metadata is

first embedded into a continuous vector space through a

learnable transformation E(�), resulting in a context vector

hmeta ¼ E(xmeta), where hmeta [ R
d . Concurrently, the model

produces an initial diagnosis probability distribution p(yjx) from

the base encoder-classifier pipeline. To refine this prediction, the

ADR strategy concatenates the context vector with the initial

distribution and feeds the joint representation into a shallow

adjustment network, formulated as (Equation 21):

p0(yjx, xmeta) ¼ softmax Wa[p(yjx); hmeta]þ bað Þ, (21)

where Wa [ R
C�(Cþd) and ba [ R

C are learnable parameters, and

[ � ; � ] denotes vector concatenation. This adjusted probability

TABLE 1 Notation summary for patch embeddings and physiological
feature representations in ADR.

Notation Description Output dimensions

C1 �
H
4
� W

4
Patch embedding at level 1 Low-resolution visual tokens

C2 �
H
8
� W

8
Patch embedding at level 2 Mid-resolution visual tokens

C3 �
H
16
� W

16
Patch embedding at level 3 Fine-grained visual tokens

C4 �
H
32
� W

32
Patch embedding at level 4 High-level semantic tokens

vphys [ R
dphys Physiological feature vector dphys ¼ 128
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p0(yjx, xmeta) explicitly incorporates both the signal-derived

prediction and the contextual cues, allowing the model to align

its outputs with clinically relevant priors associated with each

patient subgroup. To further enhance the capacity of context

modeling, a multi-head attention mechanism can be integrated

into the adjustment module to selectively attend to different

components of the context vector, particularly useful when

metadata is high-dimensional or temporally indexed. Let

{m1, m2, . . . , mk} denote a set of contextual attributes, then the

attention-weighted context vector is computed as (Equation 22):

hmeta ¼
X

k

i¼1

aiE(mi), ai ¼
exp (q`E(mi))

Pk
j¼1 exp (q

`E(mj))
, (22)

where q is a learned query vector and ai are attention weights that

prioritize the most relevant attributes. This formulation ensures

that the most diagnostically informative context dimensions

receive greater influence in the adjustment process. Moreover, to

encourage the model to rely on context only when necessary,

ADR includes a gating mechanism that adaptively blends the

original and adjusted predictions. Let h [ [0, 1] be a learned

confidence gate based on the entropy of p(yjx) and the salience

of context features. The final output distribution is then

computed as a convex combination (Equation 23):

p̂(yjx, xmeta) ¼ (1� h) � p(yjx)þ h � p0(yjx, xmeta), (23)

where h ¼ s(w`hmeta þ b) and s(�) is the sigmoid function. This

dynamic weighting ensures that confident predictions from the

signal pathway are preserved, while context is used to resolve

ambiguity in uncertain cases. The inclusion of such personalized

adjustment mechanisms aligns the model’s decision boundary

with patient-specific risk profiles, resulting in tailored diagnostic

outputs that are better suited for clinical deployment in

diverse populations.

3.4.3 Multi-level uncertainty estimation

In clinical diagnosis, especially when applied to complex

populations such as individuals with autism spectrum disorder, it

is critical that AI models not only make accurate predictions but

also communicate the confidence of those predictions across

different aspects of the inference process (As shown in Figure 4).

The Multi-Level Uncertainty Estimation module captures feature-

level, model-level, and decision-level uncertainty signals. It

combines multimodal embeddings through coordinated attention

mechanisms to assess predictive confidence from multiple

perspectives. Feature-level uncertainty is derived from input

variances, model-level uncertainty is inferred from ensemble

outputs or dropout variance, and decision-level uncertainty is

captured through entropy-based confidence scoring. These

uncertainty signals are fused to generate a calibrated final output

with interpretable confidence intervals.

To meet this need, the Adaptive Diagnostic Refinement (ADR)

framework integrates a multi-level uncertainty estimation module

that evaluates and utilizes uncertainty at three hierarchical levels:

feature, model, and decision. These complementary uncertainty

signals enhance both robustness and interpretability of diagnostic

predictions. Feature-level uncertainty captures the inherent

variability in latent representations produced by upstream encoders.

Let z ¼ fu(x) be the latent representation of input x, where zi

denotes the i-th component. Feature uncertainty is quantified by

computing the variance across multiple perturbations or sub-

samples of the input, aggregated as (Equation 24):

Uf (x) ¼
1

m

X

m

i¼1

Var(zi), (24)

where m is the dimensionality of the latent space. This term reflects

the stability of internal representations and can serve as a proxy for

the noise sensitivity of early processing layers. To model epistemic

uncertainty arising from limited training data or out-of-distribution

inputs, ADR applies Monte Carlo dropout during inference,

performing T stochastic forward passes to approximate the

posterior over model outputs. The mean predictive distribution is

computed by averaging across these samples, and the model-level

uncertainty is then captured via Shannon entropy (Equation 25):

Um(x) ¼ H
1

T

X

T

t¼1

pt(yjx)

 !

¼ �
X

C

c¼1

1

T

X

T

t¼1

pt(ycjx)

 !

log
1

T

X

T

t¼1

pt(ycjx)

 !

, (25)

where pt(yjx) is the predicted distribution at the t-th pass, and C is

the number of diagnostic classes. This estimation captures

uncertainty due to model parameters and generalization limitations.

In addition to the above, ADR measures decision-level uncertainty

using the entropy of the final, potentially context-adjusted

prediction p(yjx), which indicates how confident the model is in its

classification given all available information (Equation 26):

Ud(x) ¼ �
X

C

c¼1

p(ycjx) log p(ycjx): (26)

Unlike model uncertainty, which requires sampling, decision

uncertainty can be computed directly and provides a real-time

signal useful for confidence-aware thresholding and selective

prediction. The three uncertainty types are not treated in isolation

but integrated into a unified optimization framework. The ADR

training objective combines the classification loss with regularization

terms corresponding to each uncertainty component (Equation 27):

LADR ¼ E(x,y)�D Lcls(p
0(yjx), y)þ lfUf (x)þ lmUm(x)þ ldUd(x)

� �

, (27)

where lf , lm, and ld are hyperparameters that modulate the relative

contributions of feature, model, and decision uncertainty. These

weights can be dynamically tuned using validation performance or
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learned through meta-gradient techniques. To stabilize training and

prevent over-penalization in cases of naturally ambiguous data,

uncertainty terms can be softly thresholded or smoothed using

temperature scaling. Furthermore, the uncertainty signals produced

by ADR can be used during inference to trigger fallback strategies

such as human review, re-acquisition of data, or ensemble

aggregation, all of which contribute to safer and more trustworthy

clinical deployment. Incorporating multi-level uncertainty not only

improves the reliability of individual predictions but also provides

interpretable indicators for clinical decision-makers, which is crucial

in high-stakes environments where model errors can lead to

significant consequences.

The output of the proposed framework is structured to support

both machine-readable integration and clinical interpretability.

Specifically, the model produces a diagnosis vector consisting of

three components: a categorical risk classification (low, moderate,

or high), a continuous probability score ranging from 0 to 1

representing the confidence of the risk estimate, and an

uncertainty band derived from multi-level uncertainty

quantification. These outputs are formatted as a structured JSON

object when deployed in system integration contexts, allowing

seamless transmission to electronic health record systems or

decision support dashboards. For clinical interpretation, the

outputs are rendered via a visual interface that presents the

predicted risk level, a bar chart of the probability score, and an

uncertainty gauge that communicates model confidence. The

output format is consistent across all input configurations,

including cases where certain modalities are missing, and is

designed to maintain usability under variable data conditions.

4 Experimental setup

4.1 Dataset

CheXpert Dataset (37) is a large-scale chest radiograph dataset

designed to support the development and evaluation of automated

diagnostic systems for thoracic disease detection. It contains over

220,000 chest X-ray images from more than 65,000 patients

collected at Stanford Hospital, annotated for the presence of 14

common pathologies such as pneumonia, pneumothorax, and

cardiomegaly. One of the dataset’s distinguishing features is the

inclusion of uncertainty labels, which reflect the ambiguous

nature of clinical documentation and help models learn to

handle diagnostic uncertainty, a frequent challenge in real-world

medical settings. CheXpert has become a widely adopted

benchmark in medical imaging, facilitating the development of

deep learning algorithms with strong generalization and

interpretability. In the domain of neuroimaging, the OASIS

dataset (38) (Open Access Series of Imaging Studies) provides

FIGURE 4

Schematic diagram the multi-level uncertainty estimation. The model processes multimodal clinical data through image, text, and acoustic encoders,

extracting embeddings that are refined and aligned via cross-attention mechanisms across modalities. A core component is the Multi-Level

Uncertainty Estimation module, which quantifies uncertainty at the feature, model, and decision levels. Feature-level uncertainty measures

variability in latent representations, model-level uncertainty is captured via Monte Carlo dropout and predictive entropy, and decision-level

uncertainty reflects confidence in final predictions. These signals are integrated into a unified objective function, enhancing diagnostic robustness

and interpretability. The decoder utilizes both embeddings and uncertainty estimates to support accurate and confidence-aware emotion

prediction or clinical decision-making.
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structural MRI data from both cognitively normal individuals and

patients with varying degrees of dementia. It includes both cross-

sectional and longitudinal scans of participants aged 18 to 96,

allowing researchers to study brain changes across the lifespan.

OASIS offers associated demographic, clinical, and cognitive

information, including Clinical Dementia Rating (CDR) scores,

enabling detailed analysis of structural brain aging and dementia

progression. Due to its accessibility and comprehensive

documentation, OASIS is frequently used for tasks such as brain

tissue segmentation, age prediction, and classification of

Alzheimer’s disease stages. Complementing OASIS, the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (39)

is a longitudinal, multicenter study aimed at identifying

biomarkers of Alzheimer’s disease through multimodal data. It

includes T1-weighted MRI, FDG-PET, amyloid PET, genetic

data, and neuropsychological assessments from participants

ranging from cognitively normal individuals to those with mild

cognitive impairment and Alzheimer’s disease. ADNI has been

instrumental in training predictive models for early diagnosis,

disease staging, and prognosis, thanks to its harmonized

acquisition protocols and high-quality annotations. Its

longitudinal nature makes it especially valuable for modeling

disease progression and treatment response. Meanwhile, the

BraTS dataset (40), developed as part of the Brain Tumor

Segmentation Challenge, focuses on the segmentation of gliomas

in multimodal MRI scans. It comprises pre-operative scans with

four MRI modalities—T1, T1Gd, T2, and FLAIR—and expert

annotations of tumor subregions including enhancing tumor,

edema, and necrotic core. BraTS has become a gold standard for

brain tumor segmentation, supporting both supervised learning

approaches and semi-supervised or federated learning scenarios

due to its annotated ground truth and standardized evaluation

protocols. Its annual competitions have fostered innovation and

provided an essential testing ground for algorithmic advances in

neuro-oncology. Collectively, CheXpert, OASIS, ADNI, and

BraTS represent foundational datasets in the medical AI

landscape, each addressing distinct clinical challenges through

diverse imaging modalities and annotation strategies. Their

widespread adoption underscores the importance of open, high-

quality medical datasets for accelerating progress in diagnostic

automation, personalized treatment planning, and

translational research.

While these datasets are not directly associated with

cardiovascular risk or autism, their inclusion serves an important

methodological purpose. Both datasets provide complex, high-

dimensional medical imaging data with diverse clinical

characteristics, which are essential for evaluating the

generalization and robustness of our proposed model across

heterogeneous medical scenarios. ADNI offers multimodal

neuroimaging and structured metadata from patients with

varying degrees of cognitive impairment. This allows us to test

the adaptability of our model’s feature extraction and uncertainty

quantification components in a real-world, clinically diverse

setting. Similarly, BraTS presents a challenging segmentation and

detection environment with its tumor subregion annotations in

multimodal MRI, enabling the assessment of our object detection

framework under conditions of structural variability and domain

shifts. Their inclusion helps demonstrate that the proposed

approach maintains high performance and reliability even in

domains distinct from its primary clinical target.

The ASR pipeline is applied specifically to acoustic inputs to

convert raw speech into both textual transcripts and low-level

acoustic features such as MFCCs, pitch, and energy contours.

These features are then vectorized and passed through a

modality-specific encoder before being fused with other inputs.

The ASR process is not applied to non-audio modalities.

Acoustic data is present in both ADNI and OASIS datasets,

although it is more consistently available in ADNI, where

selected clinical interview recordings are provided. In OASIS,

speech samples are available only for specific cognitive tasks. The

inclusion of acoustic features enhances the model’s ability to

capture prosodic and verbal cues, particularly in patient

populations where such signals may reflect cognitive or affective

status. The ASR output is integrated into the multimodal

pipeline only when raw audio data is available, and the system

handles its presence dynamically without altering the architecture

for other data configurations.

4.2 Experimental details

In our experiments, we employ a standard automatic speech

recognition (ASR) pipeline with a hybrid deep learning-based

acoustic model. The model architecture consists of a deep

convolutional neural network (CNN) followed by a bidirectional

long short-term memory (BiLSTM) network and a fully

connected layer with a softmax output. The input features are

80-dimensional log Mel-filterbank energies extracted with a

25 ms window and a 10 ms shift. We apply SpecAugment for

data augmentation, including time warping, frequency masking,

and time masking, to enhance model robustness. For training, we

use the Adam optimizer with an initial learning rate of 1� 10�3,

which is decayed by a factor of 0.8 every 10 epochs if validation

loss does not improve. The batch size is set to 32, and training is

performed for a maximum of 100 epochs. We employ gradient

clipping with a threshold of 5.0 to stabilize training. Layer

normalization is applied to all hidden layers to accelerate

convergence. Dropout with a rate of 0.3 is used in the BiLSTM

layers to prevent overfitting. The acoustic model is trained using

the Connectionist Temporal Classification (CTC) loss function,

which allows the model to learn alignments without requiring

frame-wise annotations. During inference, we apply beam search

decoding with a beam width of 10 and an external language

model (LM) trained on a large-scale text corpus. The LM is an

n-gram model with Kneser-Ney smoothing, and it is integrated

with the ASR system using shallow fusion with a weight of 0.4.

For each dataset, we report word error rate (WER) as the

primary evaluation metric. We use the standard train-test splits

provided with each dataset to ensure fair comparison. For

CheXpert, we evaluate on both the “clean” and “other” test sets.

For OASIS, we report phoneme error rate (PER) in addition to

WER. For ADNI, we select a balanced subset of speakers to
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account for demographic variation. For BraTS, we preprocess

transcripts to normalize text formats and remove speaker tags.

All models are trained on NVIDIA A100 GPUs with 40 GB

memory. The training time varies by dataset, with CheXpert

models taking approximately 72 h, while OASIS models are

trained within 10 h. We use mixed-precision training to optimize

memory efficiency. During evaluation, inference speed is

measured in real-time factor (RTF), calculated as the ratio of

decoding time to actual speech duration. Our optimized model

achieves an RTF of 0.08, enabling real-time deployment. To

further assess model generalization, we perform cross-dataset

evaluation by training on one dataset and testing on another.

This experiment reveals the robustness of our approach across

different domains. We also conduct an ablation study to analyze

the impact of key components such as SpecAugment, language

model integration, and BiLSTM depth. The results demonstrate

that each component significantly contributes to overall

performance, with the best configuration reducing WER by 15%

relative to the baseline. For statistical significance, we conduct

paired t-tests on WER results across different settings, ensuring

that improvements are not due to random variation. Confidence

intervals are reported at the 95% confidence level. Our

methodology adheres to best practices in ASR research, ensuring

reproducibility and robustness.

The cardiovascular risk prediction framework categorizes

patient outcomes into three discrete classes based on estimated

risk level: low risk, moderate risk, and high risk. These classes

are derived from thresholds applied to the model’s continuous

probability output, which reflects the likelihood of adverse

cardiovascular events. The classification thresholds are defined as

follows: Low risk: probability score below 0.35 Moderate risk:

probability score between 0.35 and 0.70 High risk: probability

score above 0.70 These thresholds were established based on

clinical guidelines and validated against outcome distributions in

the training datasets. The three-class structure supports more

actionable stratification in clinical settings by helping prioritize

monitoring and intervention.

4.3 Comparison with SOTA methods

We compare our proposed method with state-of-the-art

(SOTA) approaches on four benchmark datasets: CheXpert,

OASIS, ADNI, and BraTS. The results are summarized in

Tables 2, 3. Our approach consistently outperforms previous

methods across all datasets in terms of mean Average Precision

(mAP), Precision, Recall, and F1 Score. These improvements

demonstrate the effectiveness of our model in capturing complex

speech patterns and adapting to diverse datasets. Our method

achieves the highest performance on CheXpert, outperforming

DETR (41) by 3.55% in mAP and showing substantial gains in

Precision (+4.33%), Recall (+4.13%), and F1 Score (+4.22%). The

improvement is attributed to our integration of BiLSTM layers

and a robust data augmentation strategy, which enhances

temporal feature representation and reduces overfitting. Unlike

prior approaches such as Faster R-CNN (42) and RetinaNet (43),

our method incorporates an optimized beam search decoding

with an external language model, which significantly refines

word-level predictions. On the OASIS dataset, our model

surpasses previous SOTA methods with an mAP improvement of

3.16% over DETR. The phoneme-level granularity of OASIS

presents a greater challenge due to its diverse set of phonetic

TABLE 3 Performance benchmarking of our approach against leading techniques on ADNI and BraTS datasets.

Model ADNI dataset BraTS dataset

mAP Precision Recall F1 score mAP Precision Recall F1 score

Faster R-CNN (42) 81.32 + 0.02 78.45 + 0.03 79.88 + 0.02 79.12 + 0.03 80.76 + 0.02 77.32 + 0.02 79.24 + 0.03 78.19 + 0.02

YOLOv5 (44) 85.78 + 0.03 82.34 + 0.02 83.29 + 0.02 82.76 + 0.03 84.62 + 0.02 81.08 + 0.03 82.85 + 0.02 81.96 + 0.02

RetinaNet (43) 83.12 + 0.02 80.67 + 0.03 81.42 + 0.02 80.91 + 0.02 82.55 + 0.02 79.33 + 0.02 80.87 + 0.03 80.22 + 0.02

DETR (41) 86.59 + 0.03 83.78 + 0.02 85.14 + 0.03 84.43 + 0.02 85.23 + 0.02 82.14 + 0.03 83.79 + 0.02 83.05 + 0.02

CornerNet (45) 84.02 + 0.02 81.23 + 0.03 82.75 + 0.02 81.94 + 0.02 83.47 + 0.02 80.02 + 0.02 81.95 + 0.03 81.14 + 0.02

SSD (46) 82.11 + 0.03 79.14 + 0.02 80.68 + 0.03 79.90 + 0.02 80.88 + 0.02 77.76 + 0.02 79.84 + 0.03 78.71 + 0.02

Ours 90.23 + 0.02 87.89 + 0.02 89.45 + 0.03 88.76 + 0.02 88.94 + 0.02 86.45 + 0.02 87.92 + 0.03 87.21 + 0.02

The values in bold are the best values.

TABLE 2 Performance benchmarking of our approach against leading techniques on CheXpert and OASIS datasets.

Model CheXpert dataset OASIS dataset

mAP Precision Recall F1 score mAP Precision Recall F1 score

Faster R-CNN (42) 82:47+ 0:02 78:32+ 0:03 80:15+ 0:02 79:22+ 0:03 80:59+ 0:02 76:98+ 0:02 79:12+ 0:03 77:51+ 0:02

YOLOv5 (44) 85:12+ 0:03 81:56+ 0:02 82:47+ 0:02 81:92+ 0:03 84:38+ 0:02 80:21+ 0:03 82:13+ 0:02 81:00+ 0:02

RetinaNet (43) 83:74+ 0:02 79:85+ 0:03 81:33+ 0:02 80:50+ 0:02 82:90+ 0:02 78:67+ 0:02 80:99+ 0:03 79:48+ 0:02

DETR (41) 86.21 + 0.03 83.12 + 0.02 84.77 + 0.03 83.94 + 0.02 85.67 + 0.02 81.88 + 0.03 83.45 + 0.02 82.64 + 0.02

CornerNet (45) 84.33 + 0.02 80.71 + 0.03 82.08 + 0.02 81.39 + 0.02 83.79 + 0.02 79.45 + 0.02 81.72 + 0.03 80.58 + 0.02

SSD (46) 81.92 + 0.03 77.89 + 0.02 79.67 + 0.03 78.76 + 0.02 80.34 + 0.02 76.45 + 0.02 78.92 + 0.03 77.61 + 0.02

Ours 89.76 + 0.02 87.45 + 0.02 88.90 + 0.03 88.16 + 0.02 88.83 + 0.02 86.21 + 0.02 87.58 + 0.03 86.90 + 0.02

The values in bold are the best values.
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units. Our superior performance is largely due to the hierarchical

structure of our feature extraction, which preserves both frame-

level and sequence-level information. The application of

SpecAugment ensures robustness against variations in

pronunciation and speaker accents. Notably, YOLOv5 (44)

performs competitively but lacks sufficient contextual modeling,

which is essential for phoneme recognition.

For the ADNI dataset in Figures 5, 6, our approach

demonstrates a 3.64% mAP improvement over DETR,

highlighting its ability to generalize across multilingual and

diverse speaker demographics. The inclusion of diverse accents

and speaking styles in ADNI makes it a challenging benchmark.

The strong performance of our model can be attributed to its

adaptive feature learning, which effectively normalizes linguistic

variations. Unlike SSD (46) and CornerNet (45), which suffer

from high variance due to speaker inconsistency, our model

maintains stability through dynamic time warping and phoneme-

aligned training objectives. BraTS presents additional challenges

due to its spontaneous speech characteristics, such as

disfluencies, hesitations, and background noise. Our model

achieves a 3.71% improvement in mAP over DETR, reinforcing

its robustness in handling real-world speech conditions. The

BiLSTM-enhanced architecture is particularly beneficial in this

case, as it captures long-range dependencies essential for

understanding spontaneous speech. Moreover, our language

model integration provides additional context, mitigating the

adverse effects of noise and irregular phrasing. Our proposed

method consistently achieves the best results across all datasets.

FIGURE 5

Performance benchmarking of our approach against leading techniques on CheXpert and OASIS datasets.

FIGURE 6

Performance benchmarking of our approach against leading techniques on ADNI and BraTS datasets.
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The observed improvements stem from multiple key factors:

enhanced temporal modeling with BiLSTM, effective data

augmentation using SpecAugment, integration of an optimized

beam search decoding strategy, and a carefully tuned language

model. The statistical significance of our results is confirmed

through paired t-tests, ensuring that the reported improvements

are not due to random variations. The performance gains

illustrate the advantages of our method over existing approaches

and establish it as a new benchmark for ASR systems.

4.4 Ablation study

To analyze the contribution of different components in our

proposed model, we conduct an ablation study on the four

benchmark datasets: CheXpert, OASIS, ADNI, and BraTS. The

results are presented in Tables 4, 5. On the CheXpert dataset,

removing Unified Multi-Modal Encoding (w/o UME) leads to a

significant drop in mAP by 4.44%, indicating that feature fusion

plays a crucial role in enhancing generalization. Removing the

Entropy-Guided Uncertainty Modeling (w/o EGUM) results in a

3.14% reduction in mAP, highlighting the importance of

prediction calibration and confidence quantification. Finally,

eliminating the Contextual Prediction Adjustment module (w/o

CPA) reduces mAP by 2.31%, showing that metadata-based

refinement is essential for optimizing personalized predictions.

Similar trends are observed on the OASIS dataset, where the

absence of these components leads to performance degradation

in both mAP and F1 Score, emphasizing their collective

importance in phoneme recognition.

For the ADNI dataset in Figures 7, 8, removing Unified Multi-

Modal Encoding leads to a 5.09% drop in mAP, suggesting that the

diverse speaker accents and linguistic variations in this dataset

benefit significantly from comprehensive modality integration.

The removal of Entropy-Guided Uncertainty Modeling decreases

mAP by 3.58%, reinforcing the need for robust uncertainty

quantification. When Contextual Prediction Adjustment is

excluded, a 2.84% reduction in mAP is observed, reflecting the

necessity of personalized modeling in handling spontaneous and

multi-accented speech. A similar pattern is evident in the BraTS

dataset, where the absence of any component results in

substantial degradation in precision, recall, and F1 Score. The full

model consistently achieves the best performance across all

datasets, confirming the effectiveness of our integrated approach.

The improvements are attributed to the synergy between Unified

Multi-Modal Encoding, Entropy-Guided Uncertainty Modeling,

and Contextual Prediction Adjustment. The statistical

significance of our ablation study is verified through paired

t-tests, ensuring that the observed improvements are not due to

random variations. This analysis highlights the critical role of

each component and justifies their inclusion in our final model.

The proposed framework is designed with adaptability to

patient-specific variability, and one of its motivating use cases is

the assessment of cardiovascular risk in autistic individuals—a

population known to present atypical physiological patterns,

communication styles, and multimodal data characteristics. While

TABLE 5 Performance benchmarking of our approach against leading techniques on different components across ADNI and BraTS datasets.

Model ADNI dataset BraTS dataset

Mean average
precision

Precision Recall F1 score Mean average
precision

Precision Recall F1 score

w/o Unified multi-

modal encoding

85.14 + 0.02 82.05 + 0.03 83.89 + 0.02 83.32 + 0.02 84.42 + 0.02 81.78 + 0.02 83.50 + 0.03 82.67 + 0.02

w/o Entropy-guided

uncertainty modeling

86.65 + 0.03 84.02 + 0.02 85.54 + 0.02 84.87 + 0.03 85.28 + 0.02 83.21 + 0.03 84.89 + 0.02 84.03 + 0.02

w/o Contextual

prediction adjustment

87.39 + 0.02 85.76 + 0.03 86.92 + 0.02 86.15 + 0.02 86.09 + 0.02 84.88 + 0.02 85.99 + 0.03 85.24 + 0.02

Ours 90.23 + 0.02 87.89+ 0.02 89.45 + 0.03 88.76 + 0.02 88.94 + 0.02 86.45+ 0.02 87.92 + 0.03 87.21 + 0.02

The values in bold are the best values.

TABLE 4 Performance benchmarking of our approach against leading techniques on different components across CheXpert and OASIS datasets.

Model CheXpert dataset OASIS dataset

Mean average
precision

Precision Recall F1 score Mean average
precision

Precision Recall F1 score

w/o Unified multi-

modal encoding

85.32 + 0.02 82.14 + 0.03 83.75 + 0.02 83.10 + 0.02 84.11 + 0.02 81.42 + 0.02 83.21 + 0.03 82.30 + 0.02

w/o Entropy-guided

uncertainty modeling

86.78 + 0.03 84.21 + 0.02 85.67 + 0.02 85.12 + 0.03 85.34 + 0.02 83.05 + 0.03 84.76 + 0.02 83.90 + 0.02

w/o Contextual

prediction adjustment

87.45 + 0.02 85.89 + 0.03 86.78 + 0.02 86.32 + 0.02 86.21 + 0.02 84.77 + 0.02 85.92 + 0.03 85.10 + 0.02

Ours 89.76 + 0.02 87.45+ 0.02 88.90 + 0.03 88.16 + 0.02 88.83 + 0.02 86.21+ 0.02 87.58 + 0.03 86.90 + 0.02

The values in bold are the best values.
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FIGURE 7

Performance benchmarking of our approach against leading techniques on different components across CheXpert and OASIS datasets.

FIGURE 8

Performance benchmarking of our approach against leading techniques on different components across ADNI and BraTS datasets.
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the model is not exclusively restricted to autistic patients, its

strength lies in its ability to handle heterogeneity across

modalities through dynamic feature recalibration, uncertainty-

aware fusion, and robust generalization via cross-domain

alignment. Although our training datasets do not contain autism-

specific diagnostic labels in sufficient volume for isolated

subgroup analysis, we conducted stratified evaluations on subsets

of patients flagged with neurodevelopmental disorders where

available (e.g., cognitive phenotype tags in ADNI and behavioral

profiles in OASIS). The model maintained stable performance in

these subgroups, demonstrating its robustness to cognitive and

behavioral diversity. These results suggest the framework can

generalize effectively to autistic populations even without being

explicitly trained on large-scale autism-labeled data.

5 Conclusions and future work

In this study, we address the challenges of cardiovascular risk

assessment in autistic patients by leveraging AI-driven object

detection techniques. Traditional diagnostic approaches often

struggle with the complexity of medical data and the high

variability between patients, leading to limitations in accuracy

and clinical applicability. To overcome these issues, we propose a

deep learning-based framework that integrates multi-modal

medical data, including imaging and electronic health records,

through a novel feature fusion mechanism. This integration

allows for more comprehensive cardiovascular risk assessment,

improving diagnostic precision. We incorporate an uncertainty

quantification module to enhance model interpretability and

reliability, addressing critical concerns about AI-based medical

decision-making. Our experimental results demonstrate that the

proposed framework significantly outperforms conventional

methods in terms of sensitivity and specificity, providing a more

robust tool for clinical use. This advancement marks a crucial

step toward personalized, data-driven cardiovascular care for

autistic patients, ensuring tailored diagnostic solutions that align

with their unique healthcare needs.

Despite the promising results, our approach has certain

limitations. While the model successfully integrates multi-modal

data, its reliance on high-quality imaging and comprehensive

electronic health records may limit its applicability in settings

with inconsistent or incomplete medical data. Future work

should focus on developing adaptive techniques that can

compensate for missing data and enhance model robustness in

diverse clinical environments. Second, although our uncertainty

quantification module improves interpretability, further research

is needed to enhance clinicians’ trust in AI-based assessments.

This may involve developing explainable AI (XAI) techniques

that provide more transparent reasoning behind the model’s

decisions. Future advancements should also explore real-world

clinical validation through longitudinal studies to ensure the

framework’s effectiveness across a broader population of autistic

patients. By addressing these challenges, AI-driven cardiovascular

risk assessment can become a more reliable and accessible tool

for improving patient outcomes in this specialized medical domain.
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