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Introduction: This study aims to systematically investigate the association

between the triglyceride-glucose index multiplied by waist circumference (TyG-

WC) and the risk of cardiovascular disease (CVD) and further explore how this

relationship varies across different glycemic statuses, including normal glucose

regulation (NGR), prediabetes (Pre-DM), and diabetes mellitus (DM).

Methods: Data were obtained from the China Health and Retirement

Longitudinal Study (CHARLS), including a total of 7,812 middle-aged and older

adults. Kaplan–Meier survival analysis, multivariable Cox proportional hazards

models, and restricted cubic spline (RCS) regression were employed to assess

the association between baseline TyG-WC and incident CVD risk. Subgroup

analyses were conducted based on glucose metabolism status to evaluate

potential heterogeneity in the associations.

Result: During an average follow-up period of 8.25 years, a total of 1,638 incident

CVD events were recorded, corresponding to a cumulative incidence of 20.97%.

Kaplan–Meier curves showed that individuals in higher TyG-WC strata had

significantly greater cumulative CVD incidence compared to those in lower strata

across all glucose metabolism categories (log-rank test, P <0.05). After adjusting

for potential confounders, the hazard ratios (HRs) [95% confidence intervals (CIs)]

for CVD in the second, third, and fourth TyG-WC quartiles (Q2–Q4) were 1.20

(1.05–1.37), 1.30 (1.14–1.49), and 1.54 (1.34–1.77), respectively, compared to Q1. In

the NGR and Pre-DM groups, TyG-WC was positively and linearly associated with

CVD risk. In contrast, a significant non-linear association was observed in the DM

group (P for non-linear = 0.046). Specifically, TyG-WC was positively associated

with CVD risk when values were below 816.16, whereas above this threshold the

increased risk plateaued and was no longer statistically significant.

Conclusion: TyG-WC is a practical and effective metabolic indicator for evaluating

CVD risk among middle-aged and older Chinese adults. Its clinical application may

facilitate early identification and precise stratification of high-risk individuals, thereby

providing strong support for CVD prevention and targeted intervention strategies.
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1 Introduction

Cardiovascular disease (CVD) remains one of the leading

causes of mortality worldwide, with incidence and mortality rates

continuing to rise, placing a substantial burden on global public

health systems (1). In 2022, the global prevalence of CVD

reached approximately 523 million, representing a 63% increase

in CVD-related deaths compared to 1990, totaling 19.8 million

fatalities (2). Therefore, the development of low-cost,

reproducible, and easily deployable biomarkers to facilitate the

early identification of individuals at high risk for CVD has

become an urgent priority in both clinical and public

health settings.

Insulin resistance (IR) is a central pathophysiological

mechanism underlying type 2 diabetes, obesity, and increased

susceptibility to CVD (3–7). Although the hyperinsulinemic-

euglycemic clamp (HEC) technique is widely recognized as the

gold standard for assessing IR, its application is limited by its

complexity, time requirements, and high cost, making it

impractical for large-scale population studies (8). The

homeostasis model assessment of insulin resistance (HOMA-

IR) is more commonly used due to its simplicity, but it relies

on fasting insulin measurements, which may be inaccurate in

individuals receiving insulin therapy or those with impaired β-

cell function, and remains largely inaccessible in primary care

settings in many regions (9). In recent years, the triglyceride–

glucose (TyG) index—calculated from routine fasting glucose

and triglyceride levels—has attracted considerable attention due

to its simplicity, affordability, and accessibility (10, 11). Several

studies have shown that TyG and its derivatives correlate more

strongly with the M value from HEC than HOMA-IR and

demonstrate superior predictive ability for IR in specific

populations. For example, Guerrero-Romero et al. reported a

correlation coefficient of −0.68 between TyG and M value,

compared to −0.52 for HOMA-IR. Similarly, Zhang et al.

found that in a Chinese cohort, the area under the curve

(AUC) of TyG-WC for predicting IR was 0.62, higher than

0.56 for HOMA-IR (11, 12). Beyond its relationship with IR,

cohort studies have demonstrated that TyG and its derivatives

are strongly associated with the incidence, severity, and long-

term outcomes of CVD (13–16). Composite indices such as

TyG-WC and TyG-BMI may provide more sensitive reflections

of IR than TyG alone (17, 18), with TyG-WC in particular

showing superior predictive performance for CVD risk in

Asian populations (19, 20). Although emerging evidence

suggests a potential link between TyG-WC and CVD risk, most

existing studies have been conducted in Western populations,

and research on Asian—especially Chinese—adults remains

limited. Moreover, no prior studies have systematically

examined whether the association between TyG-WC and CVD

varies across different glycemic statuses, such as normal

glucose regulation (NGR), prediabetes (Pre-DM), and diabetes

mellitus (DM). Given that glycemic status itself is a major risk

factor for CVD, it may serve as an effect modifier in the

relationship between TyG-WC and CVD. Clarifying this

potential interaction could enhance risk stratification strategies

and improve the efficiency and precision of preventive

interventions. To address these gaps, we conducted a

prospective analysis using nationally representative data from

the China Health and Retirement Longitudinal Study

(CHARLS). Glycemic status was classified based on the 2024

American Diabetes Association (ADA) criteria (21). We aimed

to systematically evaluate the association between TyG-WC and

incident CVD and to be the first to compare this association

across NGR, pre-DM, and DM subgroups in a Chinese

population. This study seeks to fill the current evidence gap in

Asian populations and to provide a scientific foundation for

glycemia-based risk stratification in CVD prevention.

2 Materials and methods

2.1 Study population

This study was based on data from the China Health and

Retirement Longitudinal Study (CHARLS), a nationally

representative cohort that began baseline assessments in 2011.

The survey covered 150 counties/districts and 450 villages/

resident committees across China, encompassing 10,257

households and 17,708 respondents. Follow-up surveys were

conducted in 2013, 2015, 2018, and 2020 (22). The study

protocol was approved by the Biomedical Ethics Committee of

Peking University (IRB00001052-11015), and all participants

provided written informed consent.

A total of 17,708 participants were initially enrolled in the

study. The exclusion criteria were as follows: (1) Age <45 years

or missing age data (n = 56); (2) Diagnosed with CVD at baseline

(n = 2,098); (3) History of cancer (n = 167); (4) Missing CVD-

related data or who were lost to follow-up (n = 3,281); (5)

Missing TyG-WC data (n = 4,294). After applying these exclusion

criteria, a total of 7,812 eligible participants remained for the

final analysis. Participants were subsequently stratified into

quartiles based on baseline TyG-WC levels. Follow-up continued

through 2020 (Figure 1).

2.2 Study variables

2.2.1 Calculation of TyG-WC
The TyG index is calculated using triglyceride (TG) and

fasting plasma glucose (FPG) levels, while the TyG-WC index is

Abbreviations

TyG, triglyceride glucose; TyG-WC, triglyceride glucose-waist circumference;
CVD, cardiovascular disease; CHARLS, China health and retirement
longitudinal study; HR, hazard ratio; CI, confidence interval; NGR, normal
glucose regulation; Pre-DM, prediabetes mellitus; DM, diabetes mellitus; RCS,
restricted cubic spline; ROC, receiver operating characteristic; WC, waist
circumference; BMI, body mass index; DBP, diastolic blood pressure; SBP,
systolic blood pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c;
HBA1C, haemoglobin A1c; TC, total cholesterol; TG, triglyceride; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; Ref, reference; SD, standard deviation; BUN, blood urea nitrogen;
UA, uric acid.
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derived by multiplying the TyG index by waist circumference

(WC) (15, 23, 24).

TyG index ¼ In[FPG(mg=dL)� TG(mg=dL)=2]

TyG-WC ¼ TyG � WC

2.2.2 CVD assessment
In this study, CVD was defined as the occurrence of at least one

self-reported heart or vascular event, including myocardial

infarction or stroke. Heart disease was identified based on

participants’ responses to the question: “Have you ever been

diagnosed by a doctor with a heart attack, coronary heart

disease, angina, congestive heart failure, or other heart

problems?” Stroke was confirmed through the question: “Have

you ever been diagnosed by a doctor with a stroke?” The timing

of CVD onset was determined using responses to: “When did

you first learn that you had a heart attack or stroke?” and “When

was your most recent heart attack or stroke?” The cohort was

followed by the 2011 baseline survey, with subsequent follow-ups

in 2013, 2015, 2018, and 2020. Participants were tracked until

the first occurrence of stroke or heart disease, or until the end of

the 2020 follow-up period, whichever came first. The CVD

definition and assessment method used in this study were

consistent with previous research based on the CHARLS

dataset (25, 26).

2.2.3 Assessment of covariates

Demographic characteristics (including age, sex, marital status,

education, and place of residence) and health-related information

(smoking status, alcohol consumption, comorbidities, and

medication use) were collected through standardized

questionnaires administered by professionally trained interviewers

via in-person interviews. For anthropometric measurements,

height and weight were obtained using calibrated stadiometers

and electronic scales with precisions of 0.1 cm and 0.1 kg,

respectively. Body mass index (BMI) was calculated as weight in

kilograms divided by height in meters squared (kg/m2). WC was

measured with a non-elastic tape to the nearest 0.1 cm to ensure

consistency and accuracy. Blood pressure (BP) was measured on

the left arm using a validated electronic sphygmomanometer

after participants had rested in a seated position for at least

15 min. Three BP measurements were taken at 45-s intervals,

and the average of the three readings was used for analysis.

For biochemical assessment, all participants were instructed to

fast for at least 8 h prior to blood sample collection. Blood

specimens were collected and analyzed regardless of fasting

status; however, data indicated that more than 92% of

participants were fasting. Laboratory analyses included the

following biomarkers: FPG, total cholesterol (TC), TG, high-

density lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), hemoglobin A1c (HbA1c), blood urea

nitrogen (BUN), and uric acid (UA).

FIGURE 1

Research and design flow chart.
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2.2.4 Definitions

The stratified analysis based on glycemic status was pre-specified

in the study protocol. Glycemic status was classified according to the

diagnostic criteria of the ADA (21). DM was defined as an FPG level

≥126 mg/dl, HbA1c ≥6.5%, self-reported physician diagnosis of

diabetes, or current use of antidiabetic medications. Pre-DM was

defined as an FPG level between 100 and 125 mg/dl or an HbA1c

level between 5.7% and 6.4%. Individuals who met neither criterion

were classified as having NGR. Hypertension was defined as systolic

blood pressure (SBP) ≥140 mmHg and/or diastolic blood pressure

(DBP) ≥90 mmHg, or current use of antihypertensive medications.

Dyslipidemia was defined as meeting one or more of the following

criteria: TC ≥240 mg/dl, TG ≥150 mg/dl, LDL-c ≥160 mg/dl, or

HDL-c <40 mg/dl. Individuals who were taking lipid-lowering

medications or had a prior diagnosis of dyslipidemia were also

classified as having dyslipidemia.

2.3 Statistical analysis

Continuous variables with a normal distribution were presented

as means (standard deviations, SD) and compared across groups

using one-way analysis of variance (ANOVA). Skewed continuous

variables were expressed as medians (interquartile ranges, IQRs)

and assessed using the Kruskal–Wallis test. Categorical variables

were reported as frequencies (percentages) and compared using the

chi-square test. For missing covariate data (Supplementary Material

Table 1), a missing-at-random (MAR) mechanism was assumed,

and multiple imputation was applied to handle missing values.

Following previous studies (27, 28), participants were categorized

into four groups based on TyG-WC quartiles. Kaplan–Meier

survival analysis was used to estimate the cumulative incidence of

CVD across quartiles, with group differences assessed using the log-

rank test. Cox proportional hazards models were fitted to examine

the association between baseline TyG-WC levels and CVD risk,

with results reported as HR and 95% CI. The lowest TyG-WC

quartile (Q1) was used as the reference group. To explore potential

nonlinear associations, restricted cubic spline (RCS) regression was

applied based on multivariable-adjusted Cox models. In the diabetic

subgroup, a piecewise Cox model was constructed to further assess

nonlinearity, with the optimal inflection point identified using the

log-likelihood ratio test. Subgroup analyses were conducted to

evaluate potential effect modification by age, sex, BMI, residence,

smoking status, alcohol consumption, and hypertension.

All statistical analyses were performed using R software

(version 4.3.2) and EmpowerStats. All tests were two-sided, and a

P-value < 0.05 was considered statistically significant.

3 Results

3.1 General characteristics of participants

Table 1 presents the baseline characteristics of the study

population stratified by TyG-WC quartiles. The analysis revealed

that as TyG-WC levels increased, the proportions of women,

married individuals, those with a high school education or above,

urban residents, participants without a smoking history, and those

with a history of alcohol consumption progressively increased.

Additionally, the prevalence of hypertension, diabetes, and

dyslipidemia significantly increased with higher TyG-WC levels.

Regarding laboratory biomarkers, higher TyG-WC levels were

associated with an increasing trend in WC, BMI, SBP, DBP, FPG,

HbA1c, TC, TG, LDL-C, and UA. Conversely, BUN and HDL-C

levels decreased as TyG-WC levels increased. The baseline

characteristics of participants with different glycemic statuses are

presented in the supplementary tables (Supplementary Material

Tables S3–S5).

3.2 Predictive value of baseline TyG-WC for
incident CVD

During an average follow-up of 8.25 years, 1,638 participants

(20.97%) experienced a first CVD event. Based on the TyG-WC

quartiles (Q1–Q4), the corresponding incidence rates of CVD

were 10.59, 11.29, 14.32, and 18.38 per 1,000 person-years,

respectively. Kaplan–Meier cumulative incidence curves indicated

a progressive increase in CVD incidence across quartiles, with

statistically significant differences observed among groups (log-

rank test, P < 0.001). Using Cox proportional hazards models, the

association between baseline TyG-WC and incident CVD risk

was evaluated. After adjustment for potential confounders, each

20-unit increment in TyG-WC was associated with a 3% increase

in CVD risk (HR = 1.03, 95% CI: 1.02–1.04). A dose-response

pattern was observed across quartiles, with higher TyG-WC

quartiles showing elevated CVD risk (Q2: HR = 1.25, 95% CI:

1.05–1.37; Q3: HR = 1.30, 95% CI: 1.14–1.49; Q4: HR = 1.54, 95%

CI: 1.34–1.77) (Table 2). Multivariable-adjusted RCS analysis

demonstrated a significant linear dose-response association

between TyG-WC and CVD risk, with no evidence of

nonlinearity (P for overall < 0.001; P for non-linear = 0.770).

3.3 Association between TyG-WC and CVD
across different glucose metabolism
statuses

During the follow-up period, incident CVD developed in 605

individuals with NGR (18.78%), 747 with Pre-DM (21.76%), and

286 with DM (24.72%). Kaplan–Meier survival curves

(Figures 2B–D) showed that in all three glucose metabolism

groups, higher TyG-WC levels were associated with a

significantly increased cumulative incidence of CVD. After

multivariable adjustment, compared with the lowest quartile

(Q1), participants in higher TyG-WC quartiles (Q2–Q4)

exhibited a significantly increased risk of incident CVD across all

glucose metabolism statuses. Specifically, in the NGR group, the

HRs for Q2, Q3, and Q4 were 1.16 (95% CI: 0.96–1.40), 1.26

(95% CI: 1.03–1.54), and 1.39 (95% CI: 1.10–1.76), respectively.

In the Pre-DM group, the HRs for Q2, Q3, and Q4 were 1.25

(95% CI: 1.01–1.53), 1.32 (95% CI: 1.08–1.62), and 1.57 (95% CI:

1.28–1.92), respectively. In the DM group, the HRs for Q2, Q3,
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TABLE 1 Baseline characteristics of participants categorized by TyG-WC quartiles.

Characteristics Total Q1
≤651.93

Q2
651.93–723.08

Q3
723.08–811.63

Q4
>811.63

P value

N 7,812 1,953 1,953 1,953 1,953

Age (years) 65.91 (9.67) 66.41 (10.06) 65.85 (9.84) 65.67 (9.67) 65.70 (9.09) 0.062

Sex (%) <0.001

Male 3,680 (47.11) 1,000 (51.20) 962 (49.26) 856 (43.83) 862 (44.14)

Female 4,132 (52.89) 953 (48.80) 991 (50.74) 1,091 (55.86) 1,097 (56.17)

Education (%) <0.001

Primary school 2,286 (29.26) 635 (32.51) 578 (29.60) 547 (28.01) 526 (26.93)

Middle school 3,222 (41.24) 818 (41.88) 818 (41.88) 814 (41.68) 772 (39.53)

High school and above 2,304 (29.49) 500 (25.60) 557 (28.52) 592 (30.31) 655 (33.54)

Marital status (%) 0.004

Married 6,876 (88.02) 1,677 (85.87) 1,719 (88.02) 1,734 (88.79) 1,746 (89.40)

Unmarried 936 (11.98) 276 (14.13) 234 (11.98) 219 (11.21) 207 (10.60)

SBP (mmHg) 129.85 (21.25) 124.30 (20.42) 127.24 (20.66) 130.98 (20.55) 136.86 (21.28) <0.001

DBP (mmHg) 75.48 (12.05) 72.00 (11.45) 74.21 (11.92) 76.01 (11.56) 79.71 (11.92) <0.001

BMI (kg/m2) 23.05 (20.76, 25.66) 20.11 (18.68, 21.72) 22.06 (20.56, 23.49) 24.02 (22.41, 25.64) 26.81 (24.80, 28.79) <0.001

WC (cm) 84.13 (11.53) 71.53 (10.71) 81.13 (4.41) 87.60 (4.82) 96.25 (6.88) <0.001

Social activities (%) <0.001

Yes 3,879 (49.65) 1,042 (53.35) 1,031 (52.79) 932 (47.72) 874 (44.75)

No 3,933 (50.35) 911 (46.65) 922 (47.21) 1,021 (52.28) 1,079 (55.25)

Residence (%) <0.001

Urban 537 (6.87) 99 (5.07) 123 (6.30) 145 (7.42) 170 (8.70)

Rural 7,275 (93.13) 1,854 (94.93) 1,830 (93.70) 1,808 (92.58) 1,783 (91.30)

HbAlc (%) 5.10 (4.90, 5.40) 5.00 (4.80, 5.30) 5.10 (4.80, 5.40) 5.10 (4.90, 5.40) 5.30 (5.00, 5.70) <0.001

FPG (mg/dl) 102.24 (94.14, 113.04) 97.20 (90.18, 105.48) 100.26 (93.06, 108.18) 102.96 (95.40, 113.58) 110.52 (100.62, 130.14) <0.001

TC (mg/dl) 193.26 (38.91) 183.18 (35.66) 190.07 (35.89) 195.05 (36.99) 204.73 (43.40) <0.001

TG (mg/dl) 103.54 (73.46, 151.34) 69.92 (55.76, 92.04) 90.27 (70.80, 119.47) 115.05 (86.73, 153.10) 171.69 (123.01, 250.46) <0.001

HDL-C (mg/dl) 51.39 (15.30) 59.69 (15.75) 54.93 (14.40) 49.10 (12.91) 41.83 (11.67) <0.001

LDL-C (mg/dl) 116.32 (35.37) 109.61 (31.03) 116.55 (32.05) 120.75 (33.95) 118.37 (42.37) <0.001

BUN (mg/dl) 15.15 (12.55, 18.23) 15.63 (12.77, 18.77) 15.18 (12.55, 18.35) 14.99 (12.38, 17.95) 14.93 (12.55, 17.87) <0.001

UA (mg/dl) 4.45 (1.26) 4.22 (1.17) 4.30 (1.19) 4.46 (1.25) 4.81 (1.33) <0.001

Drinking history (%) 0.007

Yes 2,674 (34.23) 720 (36.87) 683 (34.97) 624 (31.95) 647 (33.13)

No 5,138 (65.77) 1,233 (63.13) 1,270 (65.03) 1,329 (68.05) 1,306 (66.87)

Smoking history (%) <0.001

Yes 3,075 (39.36) 863 (44.19) 797 (40.81) 713 (36.51) 702 (35.94)

No 4,737 (60.64) 1,090 (55.81) 1,156 (59.19) 1,240 (63.49) 1,251 (64.06)

History of comorbidities (%)

Hypertension <0.001

Yes 2,999 (38.39) 493 (25.24) 611 (31.29) 784 (40.14) 1,111 (56.89)

No 4,813 (61.61) 1,460 (74.76) 1,342 (68.71) 1,169 (59.86) 842 (43.11)

Diabetes <0.001

Yes 1,157 (14.81) 113 (5.79) 183 (9.37) 272 (13.93) 589 (30.16)

No 6,655 (85.19) 1,840 (94.21) 1,770 (90.63) 1,681 (86.07) 1,364 (69.84)

Dyslipidaemia <0.001

Yes 2,109 (27.00) 324 (16.59) 362 (18.54) 566 (28.98) 857 (43.88)

No 5,703 (73.00) 1,629 (83.41) 1,591 (81.46) 1,387 (71.02) 1,096 (56.12)

Kidney disease 0.471

Yes 1,096 (14.03) 273 (13.98) 255 (13.06) 280 (14.34) 288 (14.75)

No 6,716 (85.97) 1,680 (86.02) 1,698 (86.94) 1,673 (85.66) 1,665 (85.25)

History of medication use (%)

Hypertension medications <0.001

Yes 1,667 (21.34) 212 (10.86) 297 (15.21) 430 (22.02) 728 (37.28)

No 6,145 (78.66) 1,741 (89.14) 1,656 (84.79) 1,523 (77.98) 1,225 (62.72)

(Continued)
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and Q4 were 1.93 (95% CI: 1.02–3.67), 2.37 (95% CI: 1.28–4.36),

and 3.01 (95% CI: 1.66–5.46), respectively (Table 3).

RCS analysis further confirmed these findings by demonstrating

a linear positive association between baseline TyG-WC levels and

incident CVD risk in both the NGR (P for non-linear = 0.970) and

Pre-DM (P for non-linear = 0.712) groups (Figures 3B,C). In

contrast, a non-linear association was observed in the DM group

(P for non-linear = 0.008) (Figure 3D). Specifically, when TyG-WC

was below 816.16, each 20-unit increment corresponded to a 10%

increase in CVD risk (HR = 1.10, 95% CI: 1.04–1.13). However,

above this threshold, the risk increase plateaued, indicating a

potential saturation effect at higher TyG-WC levels (Table 4).

3.4 Subgroup analysis

To further investigate the association between baseline TyG-

WC levels and incident CVD events, stratified subgroup analyses

were conducted based on potential risk factors. As shown in

Table 5, higher TyG-WC levels were significantly associated

with increased CVD incidence, and this association was

consistent across all subgroups stratified by age, sex, BMI,

residential location, and hypertension status. Furthermore, no

significant interactions were observed between TyG-WC and

other variables across glucose metabolism statuses (P for

interaction > 0.05) (Supplementary Material Tables S6–S8).

3.5 Sensitivity analysis

To assess the robustness of the study findings, several sensitivity

analyses were conducted. First, after excluding 665 participants who

failed to fast for at least 8 h before blood sampling, the results from

the Cox regression analysis remained consistent with the primary

analysis (Supplementary Material Tables S9, S10). Furthermore,

after excluding participants with missing data, the association

between baseline TyG-WC index and CVD risk showed no

significant change (Supplementary Material Tables S11, S12).

4 Discussion

This prospective cohort study of middle-aged and older

Chinese adults shows that a higher baseline TyG-WC is

TABLE 1 Continued

Characteristics Total Q1
≤651.93

Q2
651.93–723.08

Q3
723.08–811.63

Q4
>811.63

P value

Diabetes medications <0.001

Yes 239 (3.06) 15 (0.77) 31 (1.59) 46 (2.36) 147 (7.53)

No 7,573 (96.94) 1,938 (99.23) 1,922 (98.41) 1,907 (97.64) 1,806 (92.47)

Dyslipidemia medications <0.001

Yes 286 (3.66) 23 (1.18) 32 (1.64) 75 (3.84) 156 (7.99)

No 7,526 (96.34) 1,930 (98.82) 1,921 (98.36) 1,878 (96.16) 1,797 (92.01)

GMS (%) <0.001

NGR 3,221 (41.23) 1,132 (57.96) 927 (47.47) 735 (37.63) 427 (21.86)

Pre-DM 3,434 (43.96) 708 (36.25) 843 (43.16) 937 (47.98) 946 (48.44)

DM 1,157 (14.81) 113 (5.79) 183 (9.37) 272 (13.93) 589 (30.16)

TyG-WC index

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WC, waist circumference; HbA1c, glycated hemoglobin; FPG, fasting plasma glucose; TC, total cholesterol;

TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; BUN, blood urea nitrogen; UA, uric acid; GMS, glucose metabolic states; NGR,

normal glucose regulation; Pre-DM, prediabetes; DM, diabetes mellitus.

Note: Bold values indicate P < 0.001.

TABLE 2 Association between TyG-WC and CVD.

Categories Event, n (%) Model 1 HR (95% CI) P value Model 2 HR (95% CI) P value Model 3 HR (95% CI) P value

TyG-WC (per 20 units) 1,638 (20.97) 1.04 (1.03, 1.05) <0.001 1.04 (1.03, 1.05) <0.001 1.03 (1.02, 1.04) <0.001

TyG-WC quartile

Q1 307 (15.72) Ref Ref Ref

Q2 346 (17.72) 1.24 (1.09, 1.42) 0.001 1.25 (1.10, 1.43) 0.001 1.25 (1.05, 1.37) 0.007

Q3 430 (22.02) 1.40 (1.23, 1.60) <0.001 1.41 (1.23, 1.61) <0.001 1.30 (1.14, 1.49) <0.001

Q4 555 (28.42) 1.75 (1.54, 1.99) <0.001 1.76 (1.55, 2.01) <0.001 1.54 (1.34, 1.77) <0.001

Model 1: unadjusted.

Model 2: adjusted for age, sex, education level, and marital status.

Model 3: adjusted for age, sex, education level, marital status, SBP, DBP, BMI, social activity, residence, HbA1c, HDL-C, LDL-C, BUN, UA, drinking history, smoking history, diabetes,

dyslipidemia, kidney disease, and history of medication use.
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significantly associated with an increased risk of incident CVD. In

participants with NGR and pre-DM, TyG-WC exhibits a clear,

linear, positive relationship with CVD risk; however, in

individuals with diabetes, this association reaches a plateau.

These findings highlight the potential importance of lowering

TyG-WC as a primary prevention strategy for CVD, especially in

populations with impaired glucose metabolism.

Previous studies have shown that both the TyG and WC

independently predict the risk of CVD (29, 30). The combined

metric, TyG-WC, provides a more comprehensive assessment of

metabolic-related cardiovascular risk (31, 32). Using nine years of

follow-up data from CHARLS, this study further confirmed that

higher TyG-WC levels are positively associated with incident

CVD. This provides longitudinal evidence for its predictive value

in a Chinese population. The exact mechanisms linking TyG-WC

to CVD are not fully elucidated, but IR is considered a pivotal

intermediary (33). IR can promote atherosclerosis via oxidative

stress, chronic low-grade inflammation, and dysregulated lipid

metabolism (34); simultaneously, the accumulation of advanced

glycation end products (AGEs), suppression of nitric oxide (NO)

synthesis, and increased reactive oxygen species (ROS) production

exacerbate endothelial injury (35, 36). IR-induced platelet

activation and up-regulation of adhesion molecules further

facilitate thrombosis, thereby increasing the risk of stroke and

myocardial infarction (37, 38). Importantly, IR rarely occurs in

isolation; rather, it interacts with multiple metabolic abnormalities,

with central obesity exerting a particularly pronounced effect (39).

Excess abdominal fat may trigger IR through imbalanced

adipokine secretion, activation of inflammatory pathways, and

impairment of insulin signaling cascades (40). Concurrent loss of

skeletal muscle mass restricts glucose uptake and utilization,

further reducing insulin sensitivity (41). Weight-loss interventions

—especially bariatric surgery—have been shown to improve IR

and related metabolic disturbances, an effect partly attributed to

postoperative increases in gut hormones such as GLP-1 and PYY,

which enhance insulin sensitivity and glycemic control (42).

Furthermore, IR is often accompanied by central obesity

(increased WC), diabetes, dyslipidemia, and hypertension, which

are well-established CVD risk factors (43, 44). These factors may

further explain the strong association between TyG-WC and CVD.

FIGURE 2

Kaplan–Meier analysis of cumulative incidence of CVD events by TyG-WC quartiles. (A) All participants; (B) NGR participants; (C) pre-DM participants;

(D) DM participants.
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Furthermore, the study indicates that glucose metabolic status

may modify the association between TyG-WC and CVD.

Specifically, among individuals with NGR or pre-DM, TyG-WC

shows a clear linear, positive relationship with CVD risk. This

pattern likely reflects the ability of TyG-WC to sensitively capture

latent, subclinical insulin resistance IR when the metabolic

derangement is still mild (45). Unlike patients with DM, individuals

with NGR and pre-DM typically receive no glucose-lowering, lipid-

modifying, or antihypertensive therapy (46). Therefore, TyG-WC

more accurately mirrors their degree of IR and exhibits a classic

dose-response gradient. In contrast, the linear trend is absent in the

diabetic subgroup. Our prospective data from a Chinese cohort

reveal a nonlinear association: when TyG-WC <816, each 20-unit

increment confers roughly a 10% increase in CVD risk, whereas

above 816, the incremental risk plateaus. This pattern is broadly

consistent with findings from U.S. populations. Zheng et al.

reported that, in patients with diabetes, TyG-WC <790 or >872 was

associated with 46% and 15% higher CVD risk, respectively, per

50-unit increase, while the association was flat between 790 and 872

(47). Our results corroborate this nonlinear relationship. The

observed “plateau effect” may indicate saturation of vascular and

metabolic injury caused by chronic glucotoxicity and lipotoxicity

(48). Persistent hyperglycemia and dyslipidemia can exacerbate IR

and impair endothelial function, diminishing the marginal

pathogenic impact of further increases in TyG-WC (49). Ethnic and

lifestyle factors may also influence the threshold at which risk

saturates. For example, high-carbohydrate dietary patterns common

in Chinese populations could heighten insulin demand, magnifying

the adverse effect of TyG-WC on CVD. Collectively, these findings

suggest the existence of a critical risk-prediction threshold for TyG-

WC in diabetic patients. This hypothesis, however, warrants

confirmation in large, multi-center prospective studies.

5 Study strengths and limitations

The primary strength of this study lies in its prospective

cohort design with a 9-year follow-up, which enables a robust

assessment of the long-term impact of TyG-WC on CVD risk

and enhances causal inference. Additionally, this study

systematically explored the differential effects of TyG-WC across

various glucose metabolism statuses, providing novel insights

into personalized CVD prevention strategies. Another major

strength is the comprehensive definition of CVD events,

encompassing myocardial infarction, angina, peripheral artery

disease, and stroke, thereby improving the generalizability of the

findings. Moreover, since TyG and WC are routinely measured

in clinical practice, the TyG-WC index can be easily calculated

from these parameters, making it a simple, cost-effective, and

practical tool for CVD risk assessment. Given these advantages,

the use of TyG-WC as an efficient and convenient marker

for CVD risk prediction is both scientifically justified and

clinically feasible.

Despite the significance of this study, several limitations should be

acknowledged. First, although multiple confounding factors were

adjusted for in the statistical analyses, the influence of unmeasured

TABLE 3 Association between TyG-WC and CVD risk across different glucose metabolism statuses.

Categories Event, n (%) Model 1 HR (95% CI) P value Model 2 HR (95% CI) P value Model 3 HR (95% CI) P value

NGR

TyG-WC (per 20 units) 605 (18.78) 1.03 (1.02, 1.05) <0.001 1.03 (1.02, 1.05) <0.001 1.02 (1.01, 1.04) 0.003

TyG-WC quartile

Q1 123 (15.28) Ref Ref Ref

Q2 125 (15.53) 1.21 (1.01, 1.46) 0.043 1.22 (1.01, 1.47) 0.036 1.16 (0.96, 1.40) 0.121

Q3 147 (18.26) 1.36 (1.12, 1.66) 0.002 1.37 (1.13, 1.67) 0.002 1.26 (1.03, 1.54) 0.027

Q4 210 (26.09) 1.58 (1.26, 1.97) <0.001 1.57 (1.26, 1.96) <0.001 1.39 (1.10, 1.76) 0.007

Pre-DM

TyG-WC (per 20 units) 747 (21.76) 1.035 (1.02, 1.05) <0.001 1.035 (1.02, 1.05) <0.001 1.032 (1.02, 1.05) <0.001

TyG-WC quartile

Q1 145 (16.87) Ref Ref Ref

Q2 181 (21.09) 1.25 (1.02, 1.53) 0.033 1.28 (1.04, 1.57) 0.020 1.25 (1.01, 1.53) 0.037

Q3 187 (21.80) 1.38 (1.13, 1.67) 0.001 1.39 (1.14, 1.69) 0.001 1.32 (1.08, 1.62) 0.006

Q4 234 (27.24) 1.66 (1.37, 2.01) <0.001 1.70 (1.40, 2.06) <0.001 1.57 (1.28, 1.92) <0.001

DM

TyG-WC (per 20 units) 286 (24.72) 1.05 (1.03, 1.06) <0.001 1.04 (1.02, 1.06) <0.001 1.04 (1.02, 1.06) <0.001

TyG-WC quartile

Q1 44 (15.22) Ref Ref Ref

Q2 65 (22.49) 1.98 (1.04, 3.75) 0.037 1.99 (1.05, 3.77) 0.035 1.93 (1.02, 3.67) 0.045

Q3 81 (28.03) 2.61 (1.42, 4.79) 0.002 2.58 (1.41, 4.75) 0.002 2.37 (1.28, 4.36) 0.006

Q4 96 (33.10) 3.58 (2.00, 6.39) <0.001 3.53 (1.98, 6.32) <0.001 3.01 (1.66,5.46) <0.001

Model 1: unadjusted.

Model 2: adjusted for age, sex, education level, and marital status.

Model 3: adjusted for age, sex, education level, marital status, SBP, DBP, BMI, social activity, residence, HbA1c, HDL-C, LDL-C, BUN, UA, drinking history, smoking history, dyslipidemia,

kidney disease, and history of medication use.
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or unknown confounders—such as genetic background, dietary

patterns, and long-term lifestyle changes—cannot be entirely ruled

out. These factors may have played a role in the observed

association between the TyG-WC and CVD. Second, although

glycemic status was categorized using established diagnostic criteria,

individuals with borderline glucose levels may have been

misclassified. Such misclassification could have led to erroneous

group assignments, thereby affecting the precision of the association

between TyG-WC and CVD. Third, the CHARLS database does

not systematically collect information on certain clinical

cardiovascular conditions, such as cardiomyopathy, congenital

vascular malformations, atrial fibrillation, and carotid artery

stenosis. Although the overall prevalence of these conditions is

relatively low in middle-aged and older populations, they are

important risk factors for CVD, and failure to account for them

may result in residual confounding. Additionally, CVD outcomes in

this study were identified based on self-reported physician

diagnoses. While this approach has been widely adopted in

previous CHARLS-based studies, it remains susceptible to recall

bias and misclassification. Furthermore, due to the lack of specific

biomarkers in the CHARLS database (e.g., C-peptide levels or islet

autoantibodies), this study could not definitively distinguish and

exclude individuals with type 1 diabetes. Although type 2 diabetes

accounts for the vast majority of diabetes cases in this population, a

small degree of misclassification may exist. This should be

considered when interpreting the findings. Lastly, this study

assessed the association between TyG-WC and CVD risk based

solely on baseline measurements. The potential impact of

longitudinal changes or trends in TyG-WC over the follow-up

period was not evaluated. Future studies should explore the

FIGURE 3

Association between baseline TyG-WC levels and CVD. (A) All participants; (B) NGR participants; (C) pre-DM participants; (D) DM participants. Adjusted

for age, sex, education level, marital status, SBP, DBP, BMI, social activity, residence, HbA1c, HDL-C, LDL-C, BUN, UA, drinking history, smoking history,

dyslipidemia, kidney disease, and history of medication use.

TABLE 4 Threshold effect analysis of the nonlinear relationship between
TyG-WC and CVD in individuals with DM.

Variables Model 1 HR

(95% CI)
P value

Model 2 HR

(95% CI)
P value

Model 3 HR

(95% CI)
P value

Breakpoint (K) 816.16 816.16 816.16

<816.16

(per 20 units)

1.11 (1.06, 1.17)

<0.001

1.11 (1.06, 1.15)

<0.001

1.10 (1.04, 1.13)

<0.001

>816.16

(per 20 units)

1.02 (1.00, 1.04)

0.1096

1.02 (1.00, 1.04)

0.058

1.02 (1.00, 1.06)

0.065

Logarithmic

likelihood ratio test P

0.005 0.013 0.046

Model 1: unadjusted.

Model 2: adjusted for age, sex, education level, and marital status.

Model 3: adjusted for age, sex, education level, marital status, SBP, DBP, BMI, social activity,

residence, HbA1c, HDL-C, LDL-C, BUN, UA, drinking history, smoking history,

dyslipidemia, kidney disease, and history of medication use.
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trajectories of TyG-WC over time to more comprehensively assess its

predictive value in CVD prevention.

6 Conclusion

This study found that higher TyG-WC levels were significantly

associated with an increased risk of CVD, showing a linear

relationship among individuals with normal glucose regulation and

prediabetes, while the association plateaued in those with diabetes.

TyG-WC may serve as an effective biomarker for the early

identification of high-risk individuals, providing valuable evidence

for preventive screening and personalized health management.
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TABLE 5 Subgroup and interaction analysis of the association between TyG-WC and CVD.

Subgroups Q1 Q2 Q3 Q4 P for interaction

Age 0.1870

<60 Ref 1.26 (0.94, 1.67) 1.30 (0.97, 1.75) 1.09 (0.78, 1.52)

≥60 Ref 1.16 (1.00, 1.36) 1.20 (1.02, 1.41) 1.35 (1.13, 1.61)

Gender 0.2114

Male Ref 1.02 (0.84, 1.25) 1.10 (0.89, 1.35) 1.14 (0.91, 1.43)

Female Ref 1.34 (1.12, 1.62) 1.36 (1.12, 1.64) 1.48 (1.20, 1.81)

residence 0.2186

Rural Ref 1.71 (0.92, 3.18) 1.11 (0.58, 2.14) 1.50 (0.78, 2.88)

Urban Ref 1.16 (1.01, 1.34) 1.24 (1.08, 1.43) 1.30 (1.11, 1.51)

BMI 0.6577

<24 Ref 0.89 (0.55, 1.43) 1.14 (0.75, 1.74) 1.50 (0.99, 2.26)

≥24 Ref 1.15 (0.97, 1.36) 1.35 (1.13, 1.63) 1.60 (1.24, 2.05)

Smoking history 0.1246

Yes Ref 1.37 (1.14, 1.64) 1.34 (1.12, 1.61) 1.45 (1.19, 1.76)

No Ref 0.98 (0.80, 1.21) 1.12 (0.90, 1.39) 1.15 (0.90, 1.46)

Drinking history 0.3549

Yes Ref 1.15 (0.91, 1.46) 1.17 (0.91, 1.51) 1.08 (0.82, 1.43)

No Ref 1.20 (1.02, 1.42) 1.25 (1.06, 1.47) 1.39 (1.16, 1.67)

Hypertension

Yes Ref 1.24 (1.04, 1.47) 1.22 (1.01, 1.46) 1.29 (1.04, 1.59) 0.8172

No Ref 1.08 (0.87, 1.36) 1.17 (0.94, 1.46) 1.23 (0.99, 1.55)

Adjusted for age, sex, education level, marital status, SBP, DBP, BMI, social activity, residence, HbA1c, HDL-C, LDL-C, BUN, UA, drinking history, smoking history, diabetes, dyslipidemia,

kidney disease, and history of medication use.
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