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Atherosclerosis has been defined as an inflammatory disease. As observed

during acute infections, excess inflammatory activity is associated with disease

severity and mortality. After myocardial infarction, several waves of

inflammatory cells play a crucial role in infarct size and cardiac remodeling. In

the short and long term, subtypes of inflammatory cells and cytokines

released orchestrate the healing and stability of coronary disease. In recent

years, some anti-inflammatory therapies have been shown to reduce the

residual cardiovascular risk. Furthermore, some medications for treating risk

factors and adoption of healthy lifestyle have decreased inflammatory markers

and cardiovascular outcomes. In this complex network of possibilities, multiple

interventions and not just on specific cell type or cytokine may provide better

results. Finally, mild or moderate inflammatory activity appears necessary for

better recovery and survival after acute myocardial infarction.
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Introduction

Role of inflammation in main mechanisms of acute
myocardial infarction

Despite continuous progress in therapeutic strategies, cardiovascular disease remains

the leading cause of death worldwide (1). These deaths are mainly related to

atherosclerosis, which can be defined as an inflammatory disease (2). Acute myocardial

infarction with or without ST segment elevation are the most common thrombotic

complications of coronary heart disease and are mainly related to plaque rupture or

endothelial erosion, respectively (3). However, there are differences in the inflammatory

mechanisms of these conditions in the set of acute coronary sindromes (3).

Vulnerable plaque is typically recognized in lesions characterized by a large lipid core

within macrophages associated with apoptosis of these foam cells, forming debris in the

intima. The imbalance between pro- and anti-inflammatory stimuli promoted by

subtypes of lymphocytes and macrophages in the intima layer seems crucial to plaque

rupture due to increased breakdown of matrix collagen (4). These proinflammatory

stimuli are also related to thin fibrous cap. After rupture, the vulnerable plaque exposes

highly thrombogenic constituents of plaque, leading to vessel occlusion (3, 4).
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Plaque erosion has become increasingly common as a cause of

acute coronary syndromes. Marked pathophysiological differences

have been described between plaque erosion and plaque rupture.

Eroded plaques usually occur in lipid poor plaques with

increased matrix tissue (3). These plaques have increased content

of proteoglycan and glycosaminoglycans (5, 6) and few

inflammatory cells (7). Endothelial apoptosis may contribute to

superficial erosion. Myeloperoxidase, a potent oxidant specie

released by inflammatory cells, may promote endothelial death

(8). More recently, the role of neutrophil extracellular traps was

reported, showing endothelial cells activation and increased

thrombogenicity through increased tissue factor expression (9).

Cytokines and inflammatory cells in acute
myocardial infarction

Acute myocardial infarction triggers waves of circulating

inflammatory cells, in part beneficial but harmful when in excess

(10). The first wave is characterized by the presence of

polymorphonuclear neutrophils in the damaged myocardium. The

second wave is dominated by the recruitment of macrophages that

seem important for removal of cell debris contributing to

myocardial healing (10). In parallel, there is an increased

participation of lymphocytes, which may raise the presence of

macrophages of pro-inflammatory phenotype (11). Alongside

macrophages, there is an important participation of lymphocytes

for changes in the phenotype of M1 pro-inflammatory

macrophages into M2 macrophages and release of protective

cytokines such as interleukins (IL) – 2, IL-4, and IL-10, involved

in the myocardial repair (10). Conversely, the release of IL-6 in the

first day of myocardial infarction seems related to increased

infarcted mass, and reduced left ventricular ejection fraction,

quantified by cardiac magnetic resonance imaging (12).

In patients with plaque erosion, the presence of neutrophil

extracellular traps is associated with endothelium activation,

promoting macrophage recruitment and increased thrombogenicity

associated with augmented expression of IL-1α and interferon type

1 (IFN-1) (13). In addition, neutrophil extracellular traps can

activate the NOD-,LRR-, and pyrin domain-containing protein

(NLRP)3 inflammasome (14). Further, this inflammatory platform

activates caspase 1, with subsequent release of IL-1β, and pro-IL-18,

triggering the inflammatory pathway related to cardiovascular

disease. Circulating IL-1β amplifies inflammatory and pro-

thrombotic pathways due to increased expression of IL-6 and also

due to its own expression by many inflammatory cells (15).

Interestingly, the effects of NLRP3 inflammasome seem attenuated

in the acute phase of myocardial infarction, modulated by enzymes

released by monocytes, avoiding excessive inflammatory stimuli (16).

Lymphocytes, monocytes, neutrophils,
dendritic cells in acute myocardial
infarction

The first stimulus for inflammatory cells recruitment is

provided by necrotic myocytes with DNA fragments that act as

danger-associated molecular patterns (DAMPs) (17). Next, the

innate immune response is activated to clear cell debris from

the region of myocardial infarction (18). The first mobilization

of inflammatory cells is provided by neutrophils that are

present at the myocardial infarct region in the first 24 h (18).

In the same area, pro inflammatory monocytes and

macrophages can be seen in the next 48–72 h, but are replaced

by anti-inflammatory monocytes and macrophages for the days

4–7, which are important during the healing process of this

phase (18) (Figure 1). Some studies conducted to evaluate early

inhibition of neutrophils did not support protective effects in

myocardial infarction size (19, 20). According to Nahrendorf

(21), the initial infiltrate of monocytes are pro-inflammatory

(M1) or C-C chemokine receptor type 2+(CCR2+), producing

IL-1β and tumor necrosis factor alpha. Conversely, with the

time, the monocyte phenotype that predominates is anti-

inflammatory M2 or CCR2- (21, 22). Specimens obtained from

patients who died in different post-infarction periods revealed

a temporal accumulation of monocyte subsets. In the early

inflammatory phase predominates classical monocytes CD14

+CD16- in the infarct border region. In contrast, in the late

proliferative phase after myocardial infarction, the monocytes

subsets have comparable distribution. In the same study, a

marked depletion of monocytes from spleen was described in

the acute phase of myocardial infarction (23). These monocyte

subsets were examined in patients with STEMI, stable coronary

heart disease and healthy volunteers. Intermediate monocyte

subset is considered the most inflammatory subtype and was

associated with peak troponin and IL-6. Classical monocyte

subset was also associated with IL-6. Some years after the

publication of Nahrendorf (21), it was identified a third

monocyte subtype and currently, the monocytes can be

classified in three subsets, CD14++CD16- (classical

monocytes), CD14++CD16+ (intermediate monocytes), and

CD14+CD16++ (non-classical monocytes). Higher counts of

intermediate monocytes appear to be related to more extensive

myocardial infarction (24). Reduced CD16 expression in the

first day was an independent predictor of higher left

ventricular ejection fraction (25). On the other hand, late

recruitment of CD16+ monocyte subset seems important for

the myocardial repair (26). In elderly patients, an increase of

CD14+CD16+ monocyte subset has been reported (27). This

type of monocytes release pro-inflammatory cytokines,

contributing for a chronic systemic inflammation in these

patients (27). The persistence of pro-inflammatory subsets of

monocytes was reported among STEMI patients examined at

baseline, one month and six months, despite optimal medical

therapy with statins, antiplatelet, betablockers, and renin

angiotensin system blockers (28).

Circulating lymphocytes decrease 90 min after reperfusion and

is associated with worse prognostic (29). This drop in B and

T lymphocytes seem related to the presence of these cells in the

injured myocardial (18). B2 lymphocytes appear to be protective,

and 30 days after myocardial infarction in humans, there was an

association between these classical B2 cells (B2 memory plus B2

naïve) with better left ventricular ejection fraction examined by
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cardiac magnetic resonance imaging (12). T regulatory cells also

appear to be beneficial for the healing phenotype of monocytes/

macrophages, in part due to higher expression of transforming

growth factor-beta 1 (11).

Secondary lymphoid organs are reservoirs for a variety of

inflammatory cells, including B and T lymphocytes, and

dendritic cells. Inflammatory cells present in the peritoneal cavity

or even in the pericardium can influence tissue repair after

myocardial infarction (30) as well as in atherosclerosis (31).

Excessive pro-inflammatory responses after acute myocardial

infarction contributes to adverse ventricular remodeling. The

effects of regulatory B cells in heart failure were examined in an

experimental myocardial infarction model. The authors reported

that regulatory B cells decreased the CCR2 in monocytes,

reducing the mobilization of inflammatory monocytes to the

heart, decreasing fibrosis, and promoting better ventricular

function (32). In humans, reduced circulating regulatory B cells

were found among AMI patients compared with stable coronary

artery disease patients (33).

Dendritic cells are antigen-presenting cells, with crucial role in

adaptive and innate immunity. These cells are present shortly after

reperfusion myocardial injury, and contribute for a better cardiac

remodeling. Dendritic cells modulate the inflammatory responses

decreasing pro-inflammatory monocytes/macrophages and their

release of pro-inflammatory cytokines (34, 35). Table 1

summarizes the role of inflammatory cells.

Microbiota and systemic inflammation in
myocardial infarction

After myocardial infarction, an increase in intestinal permeability

to bacteria products contributes to systemic inflammation and

cardiac remodeling (36). Recently, bacteria translocation and

lipopolysaccharides were associated with STEMI and poor

prognosis (37, 38). Besides, dysbiosis and decrease in gut

microcirculation after myocardial infarction seems related not only

to systemic inflammation, but also to increased thrombus formation

(39). Circulating lipopolysaccharides are increased in patients with

myocardial infarction and are also present in coronary thrombi

FIGURE 1

Waves of inflammatory cells after acute myocardial infarction. After coronary occlusion, the first wave of inflammatory cells are dominated by

neutrophils (PMN) that can be seen in the first hours in the damaged myocardial. Dendritic cells (DC) are also early noted in the injured

myocardial after reperfusion and these cells modulate the macrophage phenotype. The second wave is characterized by the presence of

macrophages and, in parallel, lymphocytes. Macrophages are crucial for removal of cell debris. The lymphocytes are capable to modify the

phenotype of macrophages into protective cells. Macrophages M2 are implicate in the release of anti-inflammatory cytokines involved in the

myocardial healing (10–32).

TABLE 1 Monocyte and lymphocyte subsets and role in acute myocardial
infarction.

Cell types Role in AMI

CD14++CD16- monocytes Classical

CD14++CD16+ monocytes Intermediate

CD14+CD16++ monocytes Non-classical

B2 (naïve plus memory) lymphocytes Beneficial

Regulatory B lymphocytes Beneficial

Regulatory T lymphocytes Beneficial

Dendritic cells Beneficial

Higher amounts of intermediate monocytes are related to more extensive myocardial

infarction (24); B2 cells related to better left ventricular ejection fraction (12); Regulatory

B cells related to smaller fibrosis and better left ventricular ejection fraction (32);

Regulatory T cells beneficial for the healing of injured myocardial (11); Dendritic cells

change monocyte phenotypes to less inflammatory cells.
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(37). The mechanism linking lipopolysaccharides to thrombus

formation involves platelet activation by cathepsin G (37).

The heart gut microbiome immune axis was examined in

humans and by an experimental model of ischemia/reperfusion

(40). Compared to healthy controls, patients with myocardial

infarction had augmented circulating levels of markers of

increased gut permeability such as lipopolysaccharides (40). The

authors found that lipopolysaccharides positively correlated

with myocardial infarct size and negatively with left ventricular

ejection fraction (40). In the experimental model, an increased

intestinal mucosa injury was observed following myocardial

ischemia/reperfusion (40). Taken together, both studies

reinforce the relevance of the heart gut microbiome immune

axis (Figure 2).

Role of the immune system in myocardial
infarction

In patients with myocardial infarction, determinants of

ventricular remodeling are not only related to early reperfusion,

but also to the degree of inflammation and immune responses

(41). The innate immune system was developed to ward off

infections through a rapid protective response provided by a

variety of inflammatory cells. However, following myocardial

infarction, even in the absence of pathogens, the release of

DAMPs by injured myocytes can activate the immune system

(41). In the healthy myocardial, there are few resident mast

cells, but after ischemia/reperfusion, these cells can release

pro-inflammatory mediators capable to activate endothelium,

monocytes/macrophages and neutrophils (42, 43). In fact, smaller

infarct size was observed after ischemia/reperfusion, in mast cell

deficient mice (44).

The innate immune responses after myocardial infarction

can be activated by toll-like receptors and nucleotide-binding

oligomerization domain-like receptors after recognition of DAMPs

and inflammatory markers due to ischemia/reperfusion (41).

Several interventions on toll-like receptors (TLR2, TLR3,

TLR4) have been examined in their role for cardiac remodeling

after myocardial infarction (41). Among these toll-like receptors,

the TLR4 antagonist eritoran revealed promising results (45).

The innate immune system can also be activated by the

inflammasome platform (NLRP3). Several stimuli, including

ischemia/reperfusion, activates NOD-like receptors promoting the

release of IL-1β and IL-18 (15, 46). Once in the circulation, IL-

1β interacts with inflammatory cells increasing the expression of

IL-6 (15, 46). In CANTOS trial (47), the monoclonal human

antibody canakinumab decreased high-sensitivity C-reactive

protein (hsCRP) and IL-6 levels and main cardiovascular events,

in the long term after myocardial infarction (48, 49). Inhibition

of NLRP3 is an interesting target and may be associated with

smaller myocardial infarct size (50–53). Common cardiovascular

risk factors have been associated with inflammasome activation,

including traditional risk factors linked to atherosclerosis. In this

scenario, cholesterol crystals, ischemia/reperfusion, neutrophil

extracellular traps, atheroprone flow, and local hypoxia are

capable to activate inflammasome triggering the inflammatory

cascade mediated by IL-1β and IL-6 (54) (Figure 3).

How to estimate systemic inflammation?

Despite being a non-specific marker of inflammation, hsCRP is

a very useful marker for cardiovascular risk stratification and for

monitoring the treatment of cardiovascular disease (55). Plasma

CRP is produced by the liver under transcriptional control

FIGURE 2

The heart-gut-microbiome-immune axis. After myocardial infarction, decrease in intestinal perfusion contributes to increase in intestinal permeability

of bacteria products, including lipopolysaccharides (LPS). Increased LPS has been associated to poor ventricular function and increased infarction size.

Circulating LPS is also related to increased thrombus formation (31–40).
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by IL-6 (55). In patients with acute myocardial infarction, increase

in hsCRP levels in the first 24 h was correlated with microvascular

infarction estimated by cardiac magnetic resonance (56).

After myocardial infarction, hsCRP levels also predict adverse

ventricular remodeling (12, 57–59). Recently, a large primary

prevention population followed over a period of 20 years in the

EPIC-NORFOLK cohort confirmed the independent association of

hsCRP with major adverse cardiovascular events (60). In other large

cohort involving US women, hsCRP was also independent predictor

of major adverse cardiovascular events in a 30-year follow-up (61).

Interleukin 6 is also a strong marker for future myocardial

infarction, supporting an important role of this cytokine in the

complications of coronary atherosclerosis (62). In the CANTOS

trial, decrease in IL-6 levels by canakinumab was associated with

reduction in major cardiovascular events (49).

The effects of IL-6 receptor inhibition was also examined in the

setting of acute myocardial infarction. Patients were randomized 1:1

to receive tocilizumab or matching placebo during percutaneous

coronary intervention and the myocardial salvage index was

quantified by cardiac magnetic resonance imaging 3–7 days after

intervention (63). An increase in the myocardial salvage index

(primary objective) was observed in the tocilizumab arm (63).

Inflammation detected by magnetic
resonance imaging

In patients with acute myocardial infarction, impaired right

ventricular ejection fraction and higher NT-proBNP values were

related by T1 mapping by hepatic magnetic resonance, an useful

biomarker of cardio-hepatic axis to be explored in the setting of

inflammation (64). Myocardial edema in non-injured tissue after

myocardial infarction may indicate inflammation and adverse

outcomes. On this regard, cardiac magnetic resonance performed

in patients with myocardial infarction showed that higher T2

mapping values in non-infarcted myocardial or surrounding

tissue were related to larger infarct size, microvascular

obstruction, left ventricular dysfunction, and adverse

cardiovascular outcomes (65).

Role of adipokines in acute myocardial
infarction

The role of adipokines in myocardial infarction has been

reviewed. In the Copenhagen General Population Study (66),

adiponectin was measured in 30.034 individuals. This

observational study revealed that elevated plasma adiponectin

was associated with heart failure, atrial fibrillation, aortic valve

stenosis, and myocardial infarction. In the same study, genetic

analysis did not show causality (66). There are pro-inflammatory

adipokines beyond adiponectin, such as visfatin and resistin and

anti-inflammatory adipokines as omentin and ghrelin, and some

of uncertain effects such as leptin or apelin (67). Therefore,

as in the case of cytokines, the imbalance of pro- and anti-

inflammatory adipokines may affect the occurrence of myocardial

infarction and its evolution.

FIGURE 3

Role of the immune system in myocardial infarction. After ischemia/reperfusion there is a release from the injured myocardial of DAMPs that activate

the immune system. The amount of resident mast cells are implicated in the degree of immune and inflammatory responses. After the release of

DAMPs, the innate immune responses can be activated by toll-like receptors (TLR) and by the inflammasome platform. Several stimuli can trigger

the activation of inflammasome, including ischemia/reperfusion, cholesterol crystals, neutrophil extracellular traps, atheroprone flow and hypoxia

with subsequent release of pro-inflammatory cytokines. DAMPs, damage-associated molecular patterns; IL, interleukin; CRP, C-reactive protein;

NFKB, Nuclear factor kappa beta (41–54).

Fonseca et al. 10.3389/fcvm.2025.1609705

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1609705
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


New perspectives for inflammation control
and cardiovascular outcomes

A comprehensive review of major findings from several anti-

inflammatory clinical trials has already been reported (68). In

our review we chose some of the most relevant to clinical

practice or those that served as proof of concept.

In CANTOS trial, involving patients with previous

myocardial infarction, baseline hsCRP levels were predictors of

hospitalization due to heart failure (69). Treatment with

canakinumab not only decreased atherothrombotic events, but

also rates of hospitalization due to heart failure (69). However,

neutropenia was more common among patients treated with

canakinumab than those assigned to placebo, and more deaths

were attributed to infections in patients treated with the

canakinumab pooled groups (incidence rate, 0.31 vs. 0.18 per

100 person-years) (47).

Ziltivekimab is a fully human monoclonal antibody against

IL-6 ligand. In the RESCUE-2 trial, involving high risk patients

with chronic kidney disease (stages 3–5) also presenting hsCRP

levels ≥2 mg/L, a substantial decrease in hsCRP levels (> 90%)

was found (68). In a similar study, the RESCUE trial, a

comparable decrease in hsCRP was reported (71). In both

studies the treatment was well tolerated and additional benefits

were described, such as decrease in fibrinogen, serum amyloid

A, haptoglobin, phospholipase A2, and lipoprotein (a) (70, 71).

Based on these findings, large outcome studies are currently

ongoing. The ZEUS trial enrolling patients with established

atherosclerotic disease, chronic kidney disease (stages 3–4) and

elevated hsCRP levels, aims to evaluate the effects of

ziltivekimab compared to placebo in major cardiovascular and

renal outcomes (72). Ziltivekimab is also currently tested

among patients with preserved or moderately decreased left

ventricular ejection fraction in the HERMES trial (73). In

addition to these studies, in patients with acute myocardial

infarction, early therapy with ziltivekimab is being tested in the

ARTEMIS trial (NCT06118281).

Colchicine is an inexpensive anti-inflammatory drug that

has been tested in patients with chronic and acute coronary

disease. In the setting of acute myocardial infarction, the

use of colchicine (0.5 mg once daily) or placebo, started

within the first 30 days was examined in 4,745 patients with a

median follow-up of 22.6 months (74). Those assigned to

colchicine had 23% relative risk reduction on major

cardiovascular events. The drug was well tolerated, but a

modest increase in pneumonia rate was reported (74). More

recently, a new large trial with a 2-by-2 factorial design, in

patients with myocardial infarction, tested the effects of

colchicine or placebo and spironolactone or placebo (75). In

the trial, treatment with these drugs started soon after

myocardial infarction, but neither spironolactone nor

colchicine reduced major cardiovascular events (76, 77). Thus,

after the CLEAR SYNERGY (OASIS 9) trial results, the effects

of colchicine in major cardiovascular events after AMI seem

controversial (76, 77) (Table 2).

Vaccines and immune therapies

Notably, the incidence of recurrent CV events is

disproportionately higher within the first 30 days post-acute

coronary syndrome compared to the long-term period,

highlighting a critical window of vulnerability (78). Influenza and

pneumococcal vaccines are associated with decrease in the risk of

cardiovascular disease (79). Influenza infection has been identified

as a potential catalyst for systemic inflammation and plaque

destabilization, particularly during seasonal outbreaks. The virus

may act as an external trigger that exacerbates the inflammatory

milieu associated with unstable atherosclerotic lesions, thereby

elevating the risk of both cardiovascular and cerebrovascular

events during the influenza season (80). Particularly in the elderly,

influenza vaccination is related to lower rates of acute coronary

syndromes and stroke, or new cardiovascular events (80–82). The

mechanism of cardiovascular protection after influenza vaccination

seems related to decrease in plaque rupture and in the

prothrombotic stimuli (83, 84). The hypothesis that preventing

influenza infection during or shortly after an acute myocardial

infarction (AMI) may reduce subsequent cardiovascular events was

prospectively evaluated in the Influenza Vaccination After

Myocardial Infarction (IAMI) trial, conducted across Scandinavian

countries. This multicenter, double-blind, placebo-controlled trial

investigated the in-hospital administration of a standard-dose

(15 μg per strain) quadrivalent influenza vaccine vs. placebo in

TABLE 2 Cardiovascular outcomes in clinical trials with anti-
inflammatory therapy.

Trial Therapy Main results References

CANTOS Three doses of

Canakinumab

(monoclonal antibody

against IL-1beta) vs.

placebo, median

follow-up of 3.7 years

Decrease CV death,

non-fatal MI, non-fatal

stroke (primary

objective) and secondary

end point including

hospitalization for UA

leading to urgent

revascularization

(58, 66)

COLCOT Colchicine 0.5 mg

once daily vs. placebo,

median follow-up of

22.6 months

Decrease in 23% CV

death, resuscitated

cardiac arrest,

myocardial infarction,

stroke, urgent

hospitalization due to

UA leading to coronary

revascularization

(primary objective)

(71)

CLEAR

SYNERGY

2 by 2 factorial design

including

spironolactone vs.

placebo and either

colchicine vs. placebo,

median follow-up of 3

years

Negative results for the

primary objective (CV

death, recurrent MI,

stroke, unplanned

ischemia-driven

revascularization)

(75–77)

RESCUE

and

RESCUE-2

Ziltivekimab

(monoclonal antibody

against IL-6 ligand),

three doses vs.

placebo, every 4 weeks,

follow-up 24 weeks

Decrease in C-reactive

protein, fibrinogen,

serum amyloid A,

haptoglobin,

phospholipase A2,

lipoprotein(a)

(67, 68)

CV, cardiovascular; MI, myocardial infarction; UA, unstable angina.
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patients with acute myocardial infarction who were eligible for

percutaneous coronary intervention (85). The trial was designed to

test whether influenza vaccination, administered during the peak

of immune activation—within 72 h of coronary angiography—

could reduce major adverse cardiovascular events over 12 months.

Findings from the IAMI trial were promising. Influenza

vaccination, compared to placebo, was associated with a 28%

relative reduction in the composite primary endpoint of all-cause

mortality, recurrent myocardial infarction, or stent thrombosis

[hazard ratio 0·72 (95% CI 0·52–0·99)]. Meta-analysis comprising

six randomized controlled trials (RCTs) evaluated the impact of

influenza vaccination compared with placebo in patients at high

cardiovascular risk, encompassing a total of 6,735 participants

(mean age 67 years; 51.3% women; 36.2% with established cardiac

disease). The analysis demonstrated an association between

influenza vaccination and a lower incidence of subsequent

cardiovascular events, with a more pronounced effect observed in

patients with recent acute coronary syndrome (86). In the context

of patients with acute coronary syndromes, a large, multicenter,

randomized study, evaluated the effects of double-dose influenza

vaccine vs. standard dose, started during the first week after the

coronary acute event. The patients were followed up to 12 months

but no differences in cardiopulmonary outcomes were observed

between groups (87). Therefore, the strategy of doubling the dose

of influenza seems insufficient to enhance cardiopulmonary

protection. These findings are in agreement with other large study

showing neutral effects of the high-dose trivalent influenza vaccine

compared with standard dose of quadrivalent influenza vaccine for

mortality or cardiopulmonary hospitalization (88). A recent

updated meta-analysis, incorporating the most recently published

randomized trials, demonstrated that influenza vaccination is

associated with a 34% reduction in the risk of major

cardiovascular events compared to placebo or standard care. This

protective effect was particularly pronounced in patients with

recent acute coronary syndrome, among whom vaccination

conferred a 45% lower risk of cardiovascular events within 12

months post-vaccination (89).

Obesity and hypertension are common cardiovascular risk

factors that are also associated with interesting differences in the

immune responses against oxidized LDL. Among hypertensive

patients, body mass index (BMI) and abdominal circumference

were inversely related to the antibodies (Abs) anti oxidized LDL

(90). Systolic and diastolic blood pressure were also inversely

related to the titers of oxidized LDL-Abs and increased titers of

inflammatory cytokines (91). Furthermore, treatment of

hypertension increased the titers of oxidized LDL-Abs (89). In

fact, high titers of autoantibodies against oxidized LDL appear to

be a health marker, as suggested by the findings of their elevated

titers in stable clinical cardiovascular conditions and lower titers

in unstable patients (92). In this scenario of immune strategies,

vaccination based on epitopes of apoB has been investigated, and

promising anti-atherosclerotic results have been reported

experimentally, suggesting a protective role mediated by

regulatory T cells (93, 94) (Figure 4).

FIGURE 4

Vaccines and oxidized LDL Abs. Vaccines reduce the incidence of myocardial infarction due to decrease in inflammatory stimuli for plaque rupture and

thrombosis. Uncontrolled cardiovascular risk factors seem related to decreased titers of oxidized LDL Abs. Conversely, stable clinical conditions are

associated with higher titers of oxidized LDL Abs. Vaccination based on apo B epitopes have shown promising initial studies. Abs, antibodies (73–85).
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Inflammation and perspectives with
photobiomodulation

The possibility of modulating inflammatory responses after

myocardial infarction has also been described in experimental

model using photobiomodulation by laser. The authors reported

transcriptional and post-transcriptional changes that can modify

ventricular remodeling (95). As mentioned before, recovery of the

heart after myocardial infarction is a complex process involving

various inflammatory components and cardiomyocyte responses to

ischemia (96). In this context, photobiomodulation, a non-invasive

therapeutic modality that utilizes low-level light sources — typically

low-power lasers or light-emitting diodes (LEDs) has proven to be

a promising alternative (97). Oron’s research team pioneered the

demonstration of reduced mitochondrial damage and increased

ATP content in the infarcted myocardial region of dogs treated

with low-power lasers (96). The authors also demonstrated that

low-power lasers reduced mortality and infarct size compared to

untreated dogs. In addition to improving cellular energy potential,

the mechanisms targeted by photobiomodulation to achieve a

cardioprotective effect may include increased release of nitric

oxide, vascular endothelial growth factor and new blood vessel

formation (98, 99). Preclinical studies have also shown that

photobiomodulation can modulate the enhanced inflammatory

response after myocardial infarction. Our group has previously

shown that application of low-power lasers to the myocardium

immediately after coronary occlusion effectively reduces infarct size

and the incidence of large infarcts and attenuates systolic

dysfunction in rats at 3 days (100, 101). These findings were

associated with reduced myocardial expression of IL-1β and IL-6

compared to non-irradiated rats. In two subsequent studies, our

group carried out high-throughput gene expression analysis to

identify differentially expressed genes in infarcted myocardium

between 24 h and 3 days post-infarction, with low-power lasers

therapy initiated approximately 60 s after coronary occlusion.

Notably, low-power lasers induced a marked reduction in the

mRNA expression of key mediators involved in post-MI

inflammation and extracellular matrix remodeling, including IL-6,

tumor necrosis factor receptor, transforming growth factor beta 1,

and collagens type I and III (95, 102). Finally, additional studies

utilizing prolonged low-power lasers therapy in infarcted rodent

models have demonstrated improved outcomes in heart failure

progression, including attenuation of myocardial hypertrophy and

fibrosis, reduced pulmonary congestion, and enhanced left

ventricular function (103, 104). These findings were associated with

a potent antioxidant and anti-inflammatory effect of low-power lasers.

In summary, the immunomodulatory role of

photobiomodulation, particularly low-power lasers therapy, may

hold significant promise in attenuating the inflammatory

response and promoting favorable post-infarction cardiac

remodeling. This therapeutic strategy may be especially beneficial

for individuals exhibiting an overactive and prolonged post-

infarction inflammatory state, where improved inflammatory

regulation could contribute to enhanced cardiac structure and

function, reduced fibrosis, and decreased electrical instability via

the suppression of pro-inflammatory cytokines (105–107).

Treatment of hypertension, diabetes,
and chronic kidney disease as a key
inflammatory and neglected
concomitant diseases

Together, several inflammatory pathways lead to

atherosclerosis and its complications, but in addition to specific

therapies, many drugs in clinical practice have anti-inflammatory

effects. In this context, meta-analysis of inhibitors of the renin-

angiotensin system showed a significant decrease in markers of

inflammation (108). However, decrease in hsCRP obtained with a

renin-angiotensin system blocker may be abolished by

concomitant use of hydrochlorothiazide (109).

Several antidiabetic drugs have anti-inflammatory properties,

such as pioglitazone (110), glucagon like peptide-1 receptor

agonists (111), and dipeptidyl peptidase-4 inhibitors (112).

Conversely, meta-analysis with 38 randomized controlled studies

evaluated the effects of inflammatory markers among sodium-

glucose cotransporter-2 inhibitors and did not find anti-

inflammatory effects, including effects on hsCRP levels (113).

Lipid-lowering agents such as statins, present anti-

inflammatory properties, reducing hsCRP and cardiovascular

events (114, 115). The combination of statin with ezetimibe

promoted an additional reduction on concentrations of hsCRP

and in cardiovascular events when compared to statin

monotherapy (116). Despite the benefits on cardiovascular

parameters across hsCRP strata, the inhibitor of proprotein

convertase subtilisin/kexin type 9 (PCSK9) evolocumab did not

change C-reactive protein levels in the Fourier trial (117, 118).

Inclisiran, a novel small-interfering RNA against PCSK9 did not

show effects on markers of inflammation or adverse events in

immune parameters (119).

In addition to the anti-inflammatory properties of renin-

angiotensin system inhibitors, finerenone, a nonsteroidal selective

mineralocorticoid antagonist presents anti-inflammatory effects,

with proven renal and cardiovascular benefits (120–122). In the

ischemia/reperfusion model of kidney injury, finerenone showed

favorable effect increasing the M2 protective macrophages in

glomeruli (122).

A healthy lifestyle also reduces inflammation markers. In fact,

lower levels of hsCRP were observed among professional runners,

despite their high-intensity training, and they showed lower

intima-media thickness, and higher percentage of circulating

endothelial progenitor cells (123, 124). In a large cohort, changes

in lifestyle with better risk factor control were strongly and

independently associated with lower hsCRP levels (125).

Is there a link between inflammation and
bleeding?

Acute coronary syndromes are related to increased bleeding

risk after percutaneous coronary intervention compared to

chronic coronary syndromes (126). In the JUPITER trial, among

primary prevention patients with hsCRP levels ≥2 mg/L and

relatively normal LDL-cholesterol levels, those treated with
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rosuvastatin had an impressive decrease in cardiovascular events

(114). In the same trial a pre-specified secondary outcome was

the effect of rosuvastatin in the rate of venous thromboembolism.

Surprisingly, a marked decrease of venous thromboembolism

was found among these patients, with elevated levels of hsCRP,

receiving rosuvastatin (127). The link between C-reactive

protein and thrombosis seems related to C-reactive protein

destabilized isoforms that are not only pro-inflammatory but

atherothrombotic (128).

The link between inflammation and bleeding was assessed in

1,864 consecutive patients with acute coronary syndromes.

Patients were followed for one year, and baseline hsCRP levels

were predictive of major cardiovascular outcomes, but not for

bleeding risk (129). Therefore, inflammation per se does not

seem related to bleeding, but possibly to increased thrombotic risk.

Conclusions

In brief, addressing the residual inflammatory cardiovascular risk

requires a comprehensive understanding of the intricate network of

inflammatory pathways, whose relevance may vary between

the acute and chronic phases of coronary artery disease. While

lifestyle modifications and control of traditional risk factors

remain fundamental, particularly in primary prevention, targeted

modulation of inflammation, whether through specific cytokine

inhibition or broader immunomodulatory approaches, holds

significant promise, especially in the acute setting of myocardial

infarction. Although biomarkers like hsCRP are valuable for

risk stratification, they lack causal specificity. In contrast, IL-6

has emerged as a particularly promising therapeutic target,

given its more direct mechanistic involvement in atherosclerotic

inflammation. Furthermore, growing evidence supports the

potential of leveraging immune-modulatory strategies, including

vaccines, to achieve long-term reduction in cardiovascular events.

Future research should focus on refining these interventions to

balance efficacy and safety, ultimately translating into more

personalized and effective cardiovascular care.
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