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Extracellular vesicles in
atherosclerosis cardiovascular
disease: emerging roles and
mechanisms

Haoxuan Deng, Wei Qiu, Yunyan Zhang and Junyi Hua*

Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

The pathogenesis of atherosclerotic cardiovascular disease is complex, involving

multiple cell types and biological processes. Extracellular Vesicles (EVs) are small,

cell-derived particles increasingly recognized for their role in cardiovascular

diseases. EVs are believed to play key roles in this context by promoting

inflammation, regulating intercellular communication, and influencing lipid

metabolism. As a crucial mediators of cell communication, EVs contribute to

both the progression of atherosclerosis (AS) and plaques stability. Although

research on the role of EVs in AS and the role of biomarkers or drug carriers

in clinical practice has been expanding, several challenges remain for clinical

applications, including the lack of specific therapeutic targets for EVs, flaws in

the separation and purification processes, and limited clinical trial data on their

safety. This review provides a comprehensive overview of the function of EVs

in AS and recent advances in their diagnostic and therapeutic potential, aiming

to inform future clinical applications.
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1 Introduction

Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of death

and disability worldwide, which both incidence and mortality continuing to rise (1).
ASCVD can also lead to severe complications such as heart failure, arrhythmias, and

renal failure (2), affecting the patients’ quality of life and imposing a substantial burden
on healthcare systems. Currently, lowering LDL-C levels remains the cornerstone of

ASCVD prevention and treatment. However, in clinical practice, many patients remain
at high risk of cardiovascular events despite achieving optimal LDL-C control (3). Even

with a combination of pharmacotherapy, lifestyle interventions, and surgical
interventions, some patients continue to exhibit residual cardiovascular risk (4).

Extracellular Vesicles (EVs), as important mediators of intercellular communication,
have garnered increasing interest in biomedical research. While early studies mainly

focused on their biological characteristics (5), more recent investigations have
highlighted their emerging potential in clinical diagnosis and therapy (6, 7). EVs

derived from endothelial cells, platelets, vascular smooth muscle cells, monocytes, and
macrophages are implicated in various mechanisms involved in atherosclerosis (AS),

including modulation of endothelial cell function, promotion of inflammatory
responses, platelet activation and vascular remodeling (8–10). Moreover, specific

molecules carried by EVs not only reflect the status of their cell of origin but can also
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serve as biomarkers for the early diagnosis and monitoring of
ASCVD (11, 12). From a therapeutic perspective, EVs are

considered ideal drug delivery vehicles due to their inherent
biocompatibility and targeting capabilities (13, 14), enabling

efficient delivery of therapeutic agents to diseased sites.
Engineered EVs, derived from natural ones, may further enhance

targeting capability and therapeutic efficacy (15), offering
innovative strategies for ASCVD treatment.

This review aims to elucidate the role of EVs in ASCVD
pathogenesis and progression, providing new insights for their

clinical application and laying the foundation for future
targeted therapies.

2 Classification and characterization of
extracellular vesicles

EVs are small, membrane-bound vesicles secreted by cells that

play a crucial role in intercellular communication and material
exchange. Based on their origin, size, and biological characteristics,

EVs are classified into the exosomes, the microvesicles, and the
apoptotic bodies (16).

2.1 Exosome

Exosomes are small EVs, typically ranging from 30 to 150
nanometers in diameter, surrounded by a lipid bilayer. They

contain various bioactive substances such as proteins, lipids, and
RNA (including miRNA and mRNA) (17). Surface proteins such

as cluster of differentiation 9 (CD9), cluster of differentiation
(CD63), and cluster of differentiation (CD81) are often present,

facilitating their formation, release, and recognition (18).
Additionally, exosomes lipid composition can influence their

binding to target cells and uptake efficiency (19), making them
valuable as drug delivery vehicles.

The biosynthesis and release process of exosomes is complex.
Exosome biogenesis involves the invagination of the cell

membrane to form endosomes, which mature into multivesicular
bodies (MVBs). Within MVBs, intraluminal vesicles form

through inward budding and are release as exosomes when
MVBs fuse with the plasma membrane (20). Exosomes play a

vital role in intercellular communication by transporting
signaling molecules, miRNA, mRNA, and proteins, and protein

to neighboring or distant cells, influencing various cellular
processes such as cell growth, differentiation, movement, and

death (21).

2.2 Microvesicles

Microvesicles (MVs) are EVs secreted by cells, typically ranging
from 100 to 1,000 nanometers in diameter. They contents mRNA,

miRNA, proteins, and lipids, which can influence target cells
function (22). MVs form through the budding of the cell
membrane in response to specific stimuli, with calcium influx,

cytoskeletal changes, and membrane movement regulating the
process (23).

MVs are efficient in cell-to-cell communication, primarily by
transporting bioactive substances and binding on target cells,

activating downstream signaling pathways (22). In immune
responses, MVs play a dual role, promoting immune responses

while potentially leading to immune suppression. MVs can
promote immuity by carrying tumor-specific antigens that activat

dendritic cells and enhance anti-tumor responses (24), but they
can also suppress immunity (25). MVs from tumor cells can

carry immunosuppressive factors that inhibit T cell function,
contributing to immune evasion in the tumor’s

microenvironment (17). Additionally, some MVs influence
macrophages differentiation, carrying cytokine that promote an
anti-inflammatory M2 phenotype (26), aiding tissue repair and

regeneration (27).

2.3 Apoptotic bodies

Apoptotic bodies are membrane-bound vesicles formed during
apoptosis, typically measuring 5–10 micrometers in diameter. They

arise from the breakdown of the cell membrane during the final
stages of programmed cell death (28). These vehicles contain a

complex mix of components, including membrane proteins,
cytoplasmic contents, and organelles fragments (28). The

membrane may carry proteins such as adhesion and transport
proteins (29), while the cytoplasmic components include

enzymes, RNA, and small molecules (30). Upon release, these
components can influence neighboring cells, potentially

promoting either apoptosis or proliferation (30). Additionally,
residual organelles like mitochondria and the endoplasmic

reticulum can release pro-inflammatory factors during apoptosis,
further affecting surrounding cells (31).

The formation of apoptotic bodies involves distinct
morphological changes, such as cell shrinkage, chromatin

condensation, and membrane blebbing (32, 33). Besides facilitating
the clearance of cellular debris, apoptosis bodies may also

modulate autophagy and apoptosis of adjacent cells through their
contents, forming a feedback regulation mechanism (34). In the

immune responses, apoptotic bodies enhance the phagocytic
activity of macrophages and dendritic cells by exposing signals like

phosphatidylserine, promoting the clearance of dying cells and
preventing autoimmune responses triggered by self-antigens (35).

3 The role of EVs in the pathogenesis
of ASCVD

3.1 Evs in endothelial cell activation and
dysfunction

EVs can adhere to and interact with endothelial cells through

various ligands like P-selectin (36), αvβ3, and α4β1 integrins
(37). Upon recognition and binding, endothelial cells internalize
EVs through mechanisms including endocytosis, membrane
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fusion, and phagocytosis (38). This uptake contributes to the

progress and exacerbation of AS by promoting inflammation,
apoptosis, and endothelial dysfunction (Figure 1).

Monocyte- and macrophage-derived EVs can carry pro-
inflammatory molecules such as tumor necrosis factor-alpha

(TNF-α), interleukin-1 beta (IL-1β), and IL-6 (39–42). Under
inflammatory conditions or upon ox-LDL stimulation, these EVs

transfer their cargo to endothelial cells, where ligands such as
lipopolysaccharides engage toll-like receptor 4 (TLR4), activating

the NF-κB signaling pathway (43, 44). Once activated, NF-κB
translocates to the nucleus, inducing the expression of cell

adhesion molecules, chemokines, and additional cytokines (42,
45). This persistent signaling forms a self-amplifying loop that

facilitates leukocyte adhesion, exacerbates vascular inflammation,
and accelerates the progression of atherosclerotic plaques.

EVs can contribute to endothelial apoptosis (Figure 1),
thereby compromising vascular endothelium. Studies have

shown that platelet-derived EVs (P-EVs) are significantly

elevated in patients with acute coronary syndrome (46). These

P-EVs can induce endothelial apoptosis via the mitochondrial
pathway (47). On the one hand, surface proteins on P-EVs,

such as thrombospondin-1 (TSP-1), can bind to integrin αvβ3
on endothelial cells, triggering the tumor necrosis factor

receptor superfamily member 6/tumor necrosis factor ligand
superfamily member 6(Fas/FasL) signaling cascade and

mitochondrial damage (48). On the other hand, P-EVs can
increase intracellular reactive oxygen species (ROS) levels (47,

49), leading to reduced mitochondrial membrane potential
(50), release of cytochrome c, activation of caspase-9, and

ultimately caspase-3 activation, initiating apoptosis (51).
Apoptosis endothelial cells compromised the vascular barrier,

facilitating the infiltration of lipids and inflammatory cells into
the subendothelial space, thereby promoting plaque instability

and rupture. However, EVs derived from pulmonary
microvascular endothelial cells have been found to enhance

the integrity of the endothelial barrier by transferring miR-

FIGURE 1

The role of EVs in the pathogenesis of ASCVD. M-EVs promote endothelial adhesion molecule expression via inflammatory ligands. P-EVs induce

endothelial apoptosis through TSP-1/αvβ3-mediated Fas/FasL signaling and ROS/caspase-3 activation. Cholesterol-rich EVs from macrophages

enter endothelial cells via SR-BI or stimulate ox-LDL uptake in SMCs via CD36/TLR4. Endothelial EVs with miR-126 and SMC-EVs with α-SMA/

miR-21 upregulate SR-A and CD36 in macrophages, promoting foam cell formation. PDGF and TGF-β in endothelial EVs drive SMC proliferation

(PI3K-Akt) and phenotype switching. MCP-1 in P-EVs promotes SMC migration via CCR2. P-EVs activate platelets via PS-receptor interaction,

thrombin/PAR1/4, and ADP/P2Y1/12 signaling, increasing Ca2+ and promoting aggregation. EVs, Extracellular Vesicles; SR-A, scavenger receptor

class A; CD-36, cluster of differentiation 14; Fas/FasL, tumor necrosis factor receptor superfamily member 6/tumor necrosis factor ligand

superfamily member 6; TSP-1, thrombus proteins like thrombospondin-1; PI3K/Akt, phosphatidylinositol 3-Kinase/protein kinase B; SR-BI,

scavenger receptor class B type I; TLR4, toll-like receptor 4; PLC-PKC, phospholipase C-protein kinase C; P2Y1, P2Y purinoceptor 1; P2Y12, P2Y

purinoceptor 12; PAR1, protease activated receptor 1; PAR4, protease activated receptor 4; PS, phosphatidylserine; PDGF, platelet-derived growth

factor; TGF-β, transforming growth factor beta; PSGL-1, P-selectin glycoprotein ligand-1; MCP-1, monocyte chemoattractant protein-1; CCR2,

C-C motif chemokine receptor 2.
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125b-5p and inhibiting cell apoptosis (52), providing a direction
for the treatment of ASCVD.

3.2 Evs are involved in foam cell formation

EVs are not only important mediators of intercellular
communication but also regulate multiple aspects of lipid

metabolism through various mechanisms, thereby promoting
foam cells formation and influencing the initiation and

progresses of AS (Figure 1).
The promotion of cholesterol synthesis by EVs primarily

involves the sterol regulatory element-binding protein 2 (SREBP-
2) pathway. EVs derived from cardiomyocytes and endothelial

cells (53, 54) containing miR-9-5p and oxidized lipids, such as
7-ketocholesterol, can activate this pathway. Specifically, miR-

9-5p inhibits Insig1 (55), thereby relieving its suppression of
SREBP cleavage-activating protein and allowing for the activation

and nuclear translocation of SREBP-2 (56); oxidized lipids can
also induce endoplasmic reticulum stress, promoting the cleavage

of SREBP-2 into its active forms (57). As a key transcription
factor, SREBP-2 enhances the expression of 3-hydroxy-
3-methylglutaryl-CoA reductase and squalene epoxidase upon

nuclear entry (58), thereby boosting cholesterol synthesis (59).
Simultaneously, it upregulates LDL-R expression (60), promoting

uptake. Moreover, SREBP-2 increases proprotein convertase
subtilisin/kexin type 9(PCSK9) expression, accelerating LDLR

degradation and leading to elevated LDL-C levels, thereby
increasing intracellular cholesterol concentrations.

Regarding cholesterol uptake, EVs exert influence via two primary
mechanisms: directly cholesterol uptake and modulation of cell surface

receptors involved in uptake. Firstly, EVs can directly transport
cholesterol; macrophages under cholesterol overload conditions

encapsulate cholesterol into EVs via transporters such as ATP-
binding cassette sub-family A member 1 (ABCA1) and scavenger

receptor class B type I (SR-BI) (61). These EVs can taken up by
endothelial cells specific receptors (like SR-BI), or interact with

cluster of differentiation 36 (CD36) carried on the EVs surface (62),
which in turn binds to TLR4 on the smooth muscle cells, enhancing

ox-LDL uptake (63, 64). This promotes droplet accumulation in
endothelial cells (65) and activates the NLR family pyrin domain

containing 3 (NLRP3) inflammasome in smooth muscle cells (66),
accelerating their transformation into foam cells. Secondly, EVs can

modulate ox-LDL receptor expression. Endothelial cell-derived EVs,
once taken up by macrophages, can release miR-126, which inhibits

sprouty-related EVH1 domain-containing protein 1 (Spred-1)
expression (67), thereby activating the rat sarcoma/extracellular

signal-regulated kinase (RAS-ERK) signaling pathway (68). The
activation enhances scavenger receptor class A (SR-A) and CD36

expression (69), promoting ox-LDL uptake by macrophage (70).
Meanwhile, smooth muscle cell-derived EVs can upregulate SR-A

and CD36 in macrophages via activation of the
phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling

pathway (71), further promoting foam cell formation (72).
EVs also inhibit intracellular cholesterol efflux mainly by

suppressing cholesterol transporters proteins, ABCA1 and ATP-

binding cassette sub-family G member 1 (ABCG1), and by
inhibiting macrophage autophagy. Under pathological conditions

such as obesity, adipocyte-derived EVs enriched wirh fatty acid
binding protein 4 inhibit the peroxisome proliferator-activated

receptor gamma signaling pathway upon uptake by macrophages,
resulting in downregulation of liver X receptor alpha(LXRα) (73,

74). Consequently, LXRα-mediated transcription of ABCA1 and
ABCG1 is reduced, impairing cholesterol efflux (75).

Furthermore, EVs enriched in miR-155-released by macrophages
upon TNF-αstimulation (76), can suppress LXRαexpression, and

directly inhibit translation of autophagy-related protein 5 and
autophagy-related protein 7 mRNA (77). This impairs

macrophage autophagy (78), reducing the degradation of ox-LDL
and promoting foam cell formation.

Furthermore, EVs can promote foam cell formation by

influencing macrophages polarization. M1 macrophages,
characterized by high expression of scavenger receptors such as

SR-A and CD36 (79), exhibit reduced expression of ABCA1 and
ABCG1, leading to enhance lipid uptake and impair efflux,

thereby promoting cholesterol accumulation and foam cells
transformation. EVs from different sources influence this

polarization through specific mechanisms. Under oxLDL
stimulation, endothelial cells secrete EVs rich in miR-126, which,

after being taken by macrophages, upregulate M1 polarization-
related genes such as inducible nitric oxide synthase(NOS2) and

interleukin-12(IL-12) (80) through pathways involving
phosphatase and tensin homolog(PTEN), PI3K/AKT, and NF-κB

(81). The NO produced by NOS2 (82), not only promotes
inflammation response but also reacts with ROS to generate

peroxynitrite (83), exacerbating local tissue damage and creating
a vicious cycle. In addition, platelet-derived EVs containing

platelet-derived growth factor(PDGF) can activate the RAS/ERK
pathway by binding to PDGF receptors on macrophages (84),

regulatin transcription factors such as activator protein 1(AP-1)
and cAMP response element-binding protein (85), thereby

enhancing the expression of pro-inflammatory genes such as
TNF-α and IL-12 (86). PDGF can also promotes macrophage

proliferation and migration (87), further amplifying the local
inflammatory response.

3.3 EVs affect plaque stability

EVs not only participate in lipid metabolism but also
influence plaque stability by mediating inflammatory responses,

regulating vascular smooth muscle cell(VSMC) proliferation,
migration, and phenotypic transformation, and promoting AS

plaque calcification (Figure 1).
During AS progression, inflammatory cells such as

macrophages and T lymphocytes accumulate within plaques and
release EVs enriched with specific cytokines (88). T lymphocyte-

derived EVs carry pro-inflammatory factors like interferon-
gamma (IFN-γ) (89), which inhibit cholesterol efflux, promote

foam cell formation, and contribute to lipid core expansion (90).
In advanced plaques, inflammatory cell-derived EVs are rich in

matrix metalloproteinases (MMPs) (91), such as MMP-2 and
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MMP-9, which degrade extracellular matrix components like
collagen and elastin (92), thinning the fibrous cap and increasing

the risk of rupture.
EVs from endothelial cells and platelets influence plaque

structure by regulating VSMC behavior. Endothelial cell-derived
EVs contain platelet-derived growth factor (PDGF) and

transforming growth factor beta (TGF-β), which act via distinct
pathways. PDGF activates the PI3K-Akt pathway to upregulate

Cyclin D1 expression (93, 94), promoting G1/S phase transition
and VSMC proliferation (95). TGF-β activates the Smad

pathway, inducing phenotypic switching of VSMCs from
contractile to synthetic states (96, 97). These synthetic VSMCs

secrete more type I collagen, reduce elastin content, and
upregulate MMP-9 (98), thereby weakening the fibrous cap (99).
Platelet-derived EVs carry chemokines such as monocyte

chemoattractant protein-1 (MCP-1) (100), which bind to C-C
motif chemokine receptor 2 (CCR2) on VSMCs and activate

G protein-coupled signaling to promote migration (101).
EVs also contribute to plaque calcification via bone

morphogenetic proteins (BMPs) and miR-221/222. BMP-2 binds
to BMP receptors on VSMCs and activates Smad signaling (102),

inducing osteogenic transcription factors such as runt-related
transcription factor 2 and Osterix (103), leading to calcium

deposition (104). EVs enriched in miR-221/222 enhance VSMC
proliferation, migration, and phenotypic switching (105), and may

regulate phosphate metabolism by modulating ectonucleotide
pyrophosphatase/phosphodiesterase 1 and phosphate transporter 1

(106), thereby promoting calcification (107).
Endothelial-VSMC communication also relies on EVs. Damaged

or inflamed endothelial cells release EVs containing PDGF (108),
which bind to receptors on VSMCs and activate the mitogen-

activated protein kinase (MAPK) signaling pathway. ERK1/2
translocates into the nucleus, phosphorylates transcription factors

such as Ets-like transcription factor 1 (Elk-1), and enhances the
expression of FBJ murine osteosarcoma viral oncogene homolog

(c-Fos) and Jun proto-oncogene (c-Jun), forming the AP-1
complex (109, 110). This complex promotes transcription of genes

such as Cyclin D1 (111) and MMPs (112), facilitating VSMC
proliferation, extracellular matrix degradation, and plaque

progression. In addition, miR-21 from endothelial-derived EVs
(113) suppresses programmed cell death protein 4 (114), reducing

MMP inhibition and further impairing plaque stability.
Macrophage-VSMC communication is another critical axis.

Macrophages exposed to ox-LDL secrete EVs containing
chemokines such as MCP-1 (115), which activate the PI3K-Akt

signaling pathway upon uptake by VSMCs (116). This enhances
pseudopodia formation and promotes VSMC migration (117).
Meanwhile, the PI3K-Akt pathway also upregulates MMP-9,

facilitating elastin degradation, VSMC infiltration into the intima,
and AS plaque development (118, 119).

3.4 The role of EVs in thrombosis

EVs play an important role in thrombosis by promoting

platelet activation and aggregation, and regulating coagulation

cascade (Figure 1). In inflammatory or thrombotic micro-
environments, P-selectin on endothelial cell-derived EVs bind to

P-selectin glycoprotein ligand-1 (PSGL-1) on platelets, triggering
their transformation from a resting discoid shape to an activated

state with pseudopod (120). Activated platelets and erythrocytes
(121) release EVs enriched in phosphatidylserine (PS) (122),

which, along with thrombin carried by EVs, can activate platelets
(123) via protease-activated receptors protease-activated receptor

1(PAR1) and protease-activated receptor 4(PAR4), initiating the
phospholipase C (PLC) pathway (124, 125). PLC promotes

inositol 1,4,5-trisphosphate(IP3), leading to calcium release from
the endoplasmic reticulum and increasing intracellular ca2+

levels, enhancing platelet activation (126).
EVs also deliver pro-aggregatory factors. ADP within P-EVs

(127) bind to P2Y purinoceptor 1 (P2Y1) and P2Y purinoceptor

12 (P2Y12) receptors (128) on the platelets, activating the PLC-
protein kinase C (PKC) signaling pathway. This cascade further

elevates intracellular ca2+, induces shape changes and activates
fibrinogen receptors (glycoprotein IIb/IIIa complex), promoting

platelet aggregation (129).
TF (Tissue factor)-positive EVs are central to initiating the

coagulation During vascular inflammation (130, 131), activated
monocytes release a large number of TF-rich MDEVs (40, 132).

In circulation, TF on MDEVs (133) binds to factor VII, forming
a TF-VIIa complex (134) that activates coagulation factor X,

which can promote the release of endothelial cell-derived
TF + EVs (135), and triggers the extrinsic coagulation pathway

(136). However, activated coagulation factor VII can also play a
protective role by inducing endothelial cells to secrete EVs rich

in miR-10a through the activated Factor VII-endothelial protein
C receptor-protease activated receptor 1(FVIIa-EPCR-PAR1) axis

(137). After being taken up by monocytes, these EVs can
downregulate the transforming growth factor-β-activated kinase 1

pro-inflammatory signaling pathway, creating an anti-
inflammatory environment (138). In addition, tumor cell-derived

TF + EVs can also promote thrombosis (139). Concurrently, PS
exposure on the EV surface facilitates the assembly of the

prothrombinase complex, which effectively converts prothrombin
to thrombin (140, 141), promoting the release of EVs rich in

pro-coagulation proteins and adhesion proteins from platelets
(142) and amplying coagulation.On the contrary, EVs derived

from endothelial cells and leukocytes carry plasmin and
plasminogen activators, playing a comprehensive role in

regulating thrombus balance (143).

4 Evs in ASCVD diagnosis and
treatment

4.1 EVs as biomarkers

In recent years, EVs have shown increasing value in the early

diagnosis of cardiovascular diseases like ASCVD, as well as in
monitoring disease progression, evaluating prognosis, and

assessing treatment response (Figure 2; Table 1).
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Studies indicates that specific EVs subpopulations and their
bioactive components could be potential early diagnostic markers

or indicators of disease progression (144). For example,
monocytes-derived EVs are significantly elevated in the blood of

patients with early AS (145), which may contribute to
endothelial dysfunction. This plays a role in ASCVD initiation

and progression (12). IL-33 can induce a significant increase in
TF + EVs derived from monocytes, promoting thrombosis,

suggesting that IL-33 may serve as a biomarker for predicting
ASCVD (146). The expression levels of miR-146a, miR-223, and

miR-126 in EVs change significantly in AS patients (147). miR-
126, which is abundant in endothelial-derived EVs (148), plays a

protective role. Reduced miR-126 increases Spred-1, blocks
VEGF signaling, and impairs endothelial function, promoting

ASCVD (149). miR-146a-5p derived from cardiomyocyte-derived

EVs can inhibit M1 macrophage activation and reduce
inflammatory responses by targeting CD80 (150) and TNF

receptor-associated factor 6 (151). Therefore, the expression of
miR-146a-5p in cardiomyocyte-derived EVs from ST-segment

elevation myocardial infarction patients is significantly
reduced (152). miR-223 is highly expressed in monocyte-

derived EVs and can alleviate myocardial inflammation by
targeting semaphorin 3A and signal transducer and activator

of transcription 3 (153). Therefore, miR-223 is significantly
reduced in EVs from patients with heart failure due to

inflammation-induced myocardial fibrosis (154). EV proteins
like heat shock protein 47 (Hsp47) and human ether-à-go-go-

related gene 1 (hERG1) also aid early diagnosis—Hsp47
reflects cardiac stress and fibrosis (155), while hERG1

dysfunction may cause arrhythmias (156).

FIGURE 2

The application of EVs in the diagnosis and treatment of ASCVD. EVs serve as diagnostic markers in ASCVD. M-EVs and EVs enriched with miR-146a,

miR-223, and miR-126 are elevated in early atherosclerosis. Hsp47 and hERG1-related changes reflect cardiac stress and arrhythmia risk. EV quantity

and origin vary by stage: SMC- and macrophage-derived EVs increase during plaque formation, while platelet- and endothelial-derived EVs rise in ACS.

EVs from severe cases show elevated IL-6, TNF-α, TSP-1, P-selectin, miR-21, and miR-155. Therapeutically, EVs can deliver ABCA1, miR-146a, TGF-β1,

VEGF, PCSK9 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists to reduce inflammation, promote angiogenesis, and improve endothelial

function. Plant-derived EVs activate AMPK-SIRT1-LXRα, PI3K/Akt, and SIRT1-FoxO1 pathways to enhance endothelial repair and autophagy.

ASCVD, atherosclerotic cardiovascular disease; Hsp47, heat shock protein 47; hERG1, human ether-à-go-go-related gene 1; M-EVs, macrophage-

EVs; VSMC-EVs, vascular smooth muscle cell-EVs; IL-6, interleukin-1; TNF-α, tumor necrosis factor-alpha; TSP-1, thrombus proteins like

thrombospondin-1; P-EVs, platelet-EVs; EC-EVs, endothelial-derived EVs; MSC-EVs, mesenchymal stem cell-EVs; EPC-EVs, endothelial progenitor

cell-EVs; ABCA1, ATP-binding cassette transporter A1; TGF-β1, transforming growth factor beta 1; VEGF, vascular endothelial growth factor;

PCSK9, proprotein convertase subtilisin/kexin type 9; AMPK-SIRT1-LXRα, AMP-activated protein kinase-sirtuin 1-liver X receptor alpha; PI3K/Akt,

phosphatidylinositol 3-kinase/protein kinase B; SIRT1-FoxO1, sirtuin 1-forkhead box protein O1.
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EVs are also valuable for prognostic assessment. During early
plaque formation, levels of EVs derived from VSMCs and

macrophages significantly increases (157), potentially reflecting
plaque stability. Meanwhile, in acute coronary syndrome, EVs

from platelets and endothelial cells increase sharply, correlating
with myocardial injury and the risk of cardiovascular events

(158). Moreover, EVs composition Reflects disease severity:
inflammatory cytokines such as IL-6 and TNF-α, TSP-1 and

P-selectin (159), and miRNAs such as miR-21, miR-155 (160)
and miR-133 (161), are evaluated in patients with severe

ASCVD. miR-21 and miR-155 in EVs enhance inflammation in
AS plaques and worsen prognosis, making them potential

biomarkers for disease progression and outcome prediction.In
the MINERVA study, researchers conducted a retrospective case-

control analysis of 269 patients with acute chest pain and found
that low levels of the plasma EVs protein Cystatin C in patients

with low levels of high-sensitivity cardiac troponin were
associated with unstable angina (162, 163). This suggests that EVs

may be useful in the risk stratification of cardiovascular events.
Data analysis from the Athero-Express biobank showed that

among 864 patients undergoing carotid endarterectomy,
preoperative levels of EV-related proteins (such as CD14 and

Cystatin C) were significantly associated with the risk of major
cardiovascular events within three years after surgery (164, 165).

This indicates that EV-derived proteins could serve as biomarkers
for assessing remaining cardiovascular risk and may help identify

high-risk patients for more tailored secondary prevention.
EVs also have potential in motoring treatment responses. In

patients with AMI receiving statin therapy, levels of monocyte-
derived CD14+ EVs and platelet-derived CD41+ EVs significantly

decreased post-treatment (166), reflecting the anti-inflammatory

and antithrombotic effects of statins and serving as markers of
therapeutic efficacy (167). In patients with AMI after PCI who

were treated with the P2Y12 antagonist ticagrelor, the
concentrations of plasma platelet-derived EVs, endothelial cell-

derived EVs, leukocyte-derived EVs, fibrinogen-exposed EVs, and
PS-exposed EVs all significantly decreased (168), indicating that

this regimen has good anti-inflammatory and antithrombotic
effects (169). Furthermore, Changes in inflammatory-related

EVs content may indicate treatment tolerance (170), helping
guide timely therapeutic adjustments and improving clinical

decision-making.

4.2 EVs as drug delivery systems

The therapeutic value of EVs lies in their role as intervention

targets and drug delivery vehicles (Figure 2; Table 1). During AS
progression, EVs affect the disease progression in several ways,

such as regulating lipid metabolism, inflammation and endothelial
function (12). Therefore, regulating their production or altering

their cargo offers new approaches for ASCVD treatment.
Recent researches indicates that natural IgM antibodies may

inhibit thrombosis by competing with coagulation factor X/Xa
for binding to coagulation-related EVs (171). Exosomes derived

from adipose-derived mesenchymal stem cells can significantly
reduce the expression of pro-inflammatory cytokines such as

TNF-α and IL-6 (172). This anti-inflammatory effect is mainly
attributed to the transfer of miR-21 and miR-146a, which inhibit

TLR4/NF-κB signaling in macrophages, thereby suppressing M1
polarization and reducing the production of pro-inflammatory

mediators. These exosomes also significantly improve cardiac

TABLE 1 Summary of the diagnosis and treatment of EVs in ASCVD.

Category Application Key components/mechanisms Function/outcome

EVs as Biomarkers Early Diagnosis Monocyte-derived EVs (elevated in early AS) Promote endothelial dysfunction, thrombosis (149)

miR-146a, miR-223, miR-126 (dysregulated in
EVs) (147)

miR-146a-5p↓: M1 macrophage activation↑; miR-223↓: myocardial
fibrosis↑ (152)

Hsp47, hERG1 (EV proteins) (155) Hsp47↑: cardiac fibrosis; hERG1 dysfunction: arrhythmias (156)

Prognostic Assessment VSMC/macrophage EVs↑ (plaque formation)
(157)

Reflect plaque stability (157)

Platelet/endothelial EVs↑ (ACS) (157) Correlate with myocardial injury, cardiovascular risk (158)

Treatment Monitoring CD14+/CD41+ EVs↓ (post-statin therapy) (166) Anti-inflammatory, antithrombotic effects (167)

EVs as Drug
Carriers

Anti-inflammatory
Therapy

MSC-derived EVs (miR-146a, TGF-β1) (182) Suppress NF-κB signaling, reduce plaque inflammation (184)

Cholesterol Regulation Macrophage EVs (ABCA1) (180, 181) Enhance cholesterol efflux in foam cells (180, 181)

Angiogenesis EPC-derived EVs (VEGF) (185) Promote endothelial proliferation, improve perfusion (185)

Synthetic EVs Lipid Metabolism PCSK9 inhibitor-loaded EVs (191) LDL receptor ↑, promote LDL-C clearance (191)

Vascular Homeostasis NO-releasing EVs (192) Improve endothelial function (192)

Immune Modulation Anti-PD-L1 antibody-loaded EVs (195, 196) Block PD-1/PD-L1 pathway, enhance T cell activity (195, 196)

Plant-Derived
Vesicles

Cholesterol Efflux Curcumin EVs (AMPK-SIRT1-LXRα pathway)
(204)

ABCA1↑, inhibit NLRP3 inflammasome (205)

Anti-Oxidative Stress Rhodiola EVs (salidroside) (208) Activate SIRT1-FoxO1 autophagy, oxidative damage↓ (209)

Anti-Inflammatory Ginseng EVs (ginsenosides) (207) Activate PI3K/Akt, eNOS phosphorylation↑, NF-κB↓ (207)

EVs, extracellular vesicles; SR-A, scavenger receptor class A; CD-36, cluster of differentiation 14; Fas/FasL, tumor necrosis factor receptor superfamily member 6/tumor necrosis factor ligand
superfamily member 6; TSP-1, thrombus proteins like thrombospondin-1; PI3K/Akt, phosphatidylinositol 3-Kinase/protein kinase B; SR-BI, scavenger receptor class B type I; TLR4, toll-like
receptor 4; PLC-PKC, phospholipase C-protein kinase C; P2Y1, P2Y purinoceptor 1; P2Y12, P2Y purinoceptor 12; PAR1, protease activated receptor 1; PAR4, protease activated receptor 4; PS,
phosphatidylserine; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor beta; PSGL-1, P-selectin glycoprotein ligand-1; MCP-1, monocyte chemoattractant protein-1;
CCR2, C-C motif chemokine receptor 2.
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function after myocardial infarction by modulating macrophage
phenotypes and reducing myocardial fibrosis and inflammatory

cell infiltration (173). Exosomes derived from umbilical cord
mesenchymal stem cells are rich in miR-29a-3p, which can

activate the VEGF signaling pathway (174), thereby enhancing
the proliferation and migration of endothelial cells and

promoting angiogenesis (175). Mechanistically, miR-29a-3p
targets PTEN and upregulates the PI3K/Akt/eNOS axis,

increasing NO production and supporting vascular homeostasis.
As drug carriers, EVs have distinct advantages: they exhibit

good biocompatibility and low immunogenicity (176), enabling
them to evade immune clearance. Their surface molecules can

mediate targeted delivery to specific cells (177), and their lipid
bilayer protects encapsulated drugs from degradation (178, 179),
allowing efficient release via membrane fusion (167).

Therapeutically, EVs are involved in key ASCVD processes.
Macrophage-derived EVs carrying ABCA1 promote cholesterol

efflux from foam cells by enhancing reverse cholesterol transport
pathways (180, 181). This process helps stabilize plaques and

prevent necrotic core expansion. Mesenchymal stem cell-derived
EVs loaded with miR-146a and TGF-β1 (182) can target

atherosclerotic plaques, suppress NF-κB signaling (183), reduce
vascular inflammation, and regulate VSMC phenotype by

inhibiting osteogenic transition and promoting contractile
markers (184). Furthermore, EPC-derived EVs enriched with

VEGF promote angiogenesis and improve tissue perfusion in
ischemic myocardium (185). These EVs activate VEGFR2 on

endothelial cells and downstream PI3K/Akt signaling, which
enhances endothelial proliferation, migration, and capillary

network formation (186).

4.3 Application of synthetic EVs

Artificially synthesized EVs can mimic natural EVs by carrying

therapeutic molecules and targeting specific tissues (Figure 2 and
Table 1). Compared with natural EVs, synthetic EVs allow for

improved surface modification to enhance targeting and drug-
loading capacity and their profucing yields higher purity with

reduced batch variability (187), addressing limitations in the
clinical applications of natural EVs (188). Moreover, emerging

light-responsive EVs have been developed, which enable
spatiotemporal control of drug release upon specific light

stimulation, thus improving delivery precision and minimizing
off-target toxicity (189, 190).

In the treatment of ASCVD, synthetic EVs show broad potential
across multiple pathological mechanisms. To regulate lipid

metabolism, synthetic EVs can deliver PCSK9 inhibitors, which
increase hepatic LDL receptor levels and promote LDL-C

clearance (191). By encapsulating these agents in EV-mimetic
nanocarriers, hepatic uptake is enhanced and systemic side effects

reduced. To improve vascular homeostasis, synthetic EVs have
been designed to release nitric oxide (NO), which activates the

soluble guanylate cyclase pathway and promotes vasodilation (192).
Furthermore, synthetic EVs can encapsulate SGLT2 inhibitors

or GLP-1 receptor agonists to improve endothelial function and

glycemic control in patients with metabolic syndrome (193).
Their surface can be functionalized with endothelial-targeting

peptides (e.g., RGD motifs) to enhance specificity and
accumulation in vascular lesions. Synthetic EVs can also carry

VEGF to stimulate angiogenesis through VEGFR2-mediated
PI3K/Akt/eNOS signaling (194), or transport anti–PD-L1

antibodies to block the PD-1/PD-L1 pathway, thus enhancing
T-cell activation and restoring immune balance within the plaque

microenvironment (195, 196).
In terms of inflammation regulation, artificially synthesized

EVs loaded with miR-146a can significantly reduce inflammatory
factors and inhibit the polarization of M1 macrophages (197) by

intervening in the TLR4/NF-κB pathway (198). In maintaining
plaque stability, artificially synthesized EVs can deliver tissue
inhibitor of metalloproteinases 3 mRNA, suppress the expression

of MMPs, and reduce collagen degradation (199).
However, synthetic EVs may still be cleared by the immune

system or bind to non-target cells during circulation. To improve
targeting accuracy, it may be necessary to develop multi- ligand

surface modifications that recognize several key targets, reducing
off-target effects and enhancing therapeutic efficacy.

4.4 Applications of medicinal plant vesicles

Medicinal plant vesicles, due to their natural origin, show
unique therapeutic potential in treating ASCVD by regulating

lipid metabolism, reducing oxidative stress and inflammation,
and promoting angiogenesis (200) (Figure 2 and Table 1). They

offer strong targeting ability (201) and excellent biocompatibility
(202), making them less likely to trigger immune responses

compared to synthetic carriers. Recent studies have also found
that microsphere systems using poly(lactic-co-glycolic acid)

(PLGA) as a carrier can achieve sustained release in vivo,
prolonging the duration of drug action and reducing the

frequency of administration for patients (203). In the future, it
may be considered to apply PLGA to load medicinal plant

vesicles, extending the in vivo circulation time of the plant
vesicles through the sustained release characteristics of PLGA.

Curcumin-derived EVs (204), for instance, activate the AMPK-
SIRT1-LXRα pathway in foam cells, upregulating ABCA1 and

enhancing cholesterol efflux (205). They also directly bind and
inhibit the NLRP3 inflammasome, thereby attenuating the

downstream release of IL-1β and suppressing vascular
inflammation associated with atherosclerosis progression (206).

Ginseng-derived EVs, enriched in ginsenosides, promote eNOS
phosphorylation and NO production through PI3K/Akt pathway

activation while inhibiting NF-κB–mediated inflammatory gene
transcription via SIRT1 modulation (207). Rhodiola-derived EVs,

containing salidroside (208), activate the sirtuin 1-forkhead box
O1(SIRT1-FoxO1) to induce autophagy and reduce oxidative

damage in endothelial cells, while also promoting ABCA1 and
inhibiting ox-LDL receptor expression to reduce foam cell

formation. Despite their promise and good biocompatibility
(209), further studies are needed to assess their safety and

potential side effects.
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5 Limitations of EVs in the clinical
application of ASCVD

Although EVs have shown great promise in ASCVD, their
clinical application still faces considerable challenges. As

biomarkers, their utility is hindered by technical limitations in
isolation and purification. EVs are typically present in low

abundance in body fluids (210), and conventional isolation
methods such as ultracentrifugation, precipitation, and

immunocapture often suffer from drawbacks including prolonged
processing time, high cost, sample loss, and compromised EV

integrity (211, 212). Moreover, these methods frequently co-
isolate contaminants from other cellular components, which can
reduce the specificity of EV detection and introduce false-positive

or false-negative results in biomarker analysis (213, 214).
It is important to note that the impact of purity varies depending

on the intended application of EVs.When EVs are studied asmediators
of intercellular communication or therapeutic agents, the presence of

non-vesicular contaminants may significantly distort functional
interpretations. However, in the context of EVs as biomarkers, minor

contamination may not critically impair their diagnostic value,
provided that marker-specific signatures are preserved.

To address purification challenges, newer methods such as size-
exclusion chromatography (SEC) have gained attention. SEC allows

for the gentle separation of EVs from complex biofluids by physical
exclusion, avoiding the use of harsh mechanical or chemical

conditions that could damage vesicle integrity or surface proteins
(215, 216). This approach improves EV purity while maintaining

their biological functionality, which is crucial for downstream
diagnostic and therapeutic applications. Nonetheless, SEC also

has limitations. It is not very effective in removing certain high-
density protein aggregates or lipoproteins, which may still

interfere with subsequent analyses (217).
In terms of therapeutic applications, long-term efficacy and

safety data on EV-based treatments remain limited. Challenges
such as low yield, suboptimal purity, and potential functional

degradation of EVs during processing continue to hinder their
clinical translation (218). Therefore, overcoming these barriers

will require the development of innovative isolation techniques,
standardized quality control frameworks, and rigorous preclinical

and clinical studies to fully realize the diagnostic and therapeutic
potential of EVs in ASCVD.

6 Summary and outlook

As important mediators of intercellular communication, EVs
play multifaceted roles in the development of ASCVD. This

review summarizes the biological characteristics of EVs and their
involvement in the initiation and progression of ASCVD.

Clinically, EVs act as emerging biomarkers for early diagnosis
and prognosis assessment. Their natural targeting ability and

biocompatibility also make them promising drug delivery
vehicles, with engineered and plant-based EVs offering new

personalized therapy.

Future research should integrate multi-omics technologies to
track dynamic changes in EV components, establish standardized

isolation and identification protocals, and validate therapeutic
strategies in preclinical models. Further exploration of EVs

interactions with metabolic and immune system, along with AI-
based prediction models, may open new ideas for

precision medicine.
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