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Background: Heart failure (HF) secondary to acute myocardial infarction (AMI)

remains a public health concern. Peripheral blood mononuclear cells (PBMCs)

are the essential initiators of heart failure after myocardial infarction (HFpAMI).

We aimed to identify PBMCs-related critical genes as diagnostic biomarkers

for HFpAMI and analyze the immune infiltration patterns.

Methods: Differential expression genes (DEGs) from PBMCs microarray data of

AMI with or without HF were identified. Functional enrichment analysis was

used to explore the biological roles of DEGs. Subsequently, candidate

biomarkers were identified using machine learning and the MCODE plugin,

with ROC used to describe the accuracy. CIBERSORT was utilized to

investigate immune infiltration. Multi-level validation of our findings was

conducted, including RNA-seq profiling of the external cohort, RT-qPCR, and

flow cytometry analyses on PBMCs samples.

Results: In the comparison between 30 HFpAMI and 34 non-HF samples, 27

DEGs were identified. Functional enrichment analysis suggested that DEGs

may be involved in the pathological process of HFpAMI by participating in

immune-inflammatory response. Employing machine learning and MCODE

assessment, we identified three robust potential biomarkers (CLU, FOS, and

CXCL8). Immunological analysis revealed a marked increase in neutrophils and

decrease in CD4T cells. In the external validation cohort, RNA-seq analysis

demonstrated consistent upregulation of CLU, FOS, and CXCL8 in HFpAMI

compared to non-HF controls. RT-qPCR and flow cytometry further

corroborated these expression trends and their correlations with neutrophil

infiltration, CD4T cells and M2 macrophage concentration reductio, aligning

with bioinformatics predictions. ROC analysis validated the diagnostic efficacy

of these biomarkers, with CLU exhibiting the highest AUC (0.833, 95% CI:

0.679–0.988), followed by FOS (0.809, 95% CI: 0.64–0.977) and CXCL8

(0.802, 95% CI: 0.635–0.970).
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Conclusions: Significantly upregulated DEGs, including CLU, FOS, and CXCL8,

might be served as novel diagnostic biomarkers for HFpAMI, and dysregulated

immune infiltration hinted possible the immune system intervention point in the

setting of HFpAMI.

KEYWORDS

heart failure, acute myocardial infarction, biomarker, immune infiltration, bioinformatics

analysis

1 Introduction

Heart failure (HF) is acknowledged as a global epidemic,

impacting around 64.34 million individuals globally, leading to a

5-year mortality rate as high as 50% (1). A comprehensive study

on heart failure incidence and prevalence in 2021 revealed a

standardized prevalence of 1.10% among the Chinese population

aged 25 and above, estimating a total of 12.1 million cases (2).

Each year, almost 3 million new cases arose, resulting in an

average of 3.3 hospitalizations, and incurring an average annual

hospitalization cost of $4,406.8 per person, thereby placing a

substantial economic burden on public health. Acute myocardial

infarction (AMI), a severe form of coronary heart disease, was a

primary contributor to HF (3). A growing body of evidence

suggested that approximately 40%–56% of patients experienced a

decline in cardiac function after AMI, with about 25%–33% of

patients progressing to HF (4, 5). The rehospitalization rate was

two times higher, and the mortality rate was four times higher

for these patients compared to those without AMI. Therefore,

early diagnosis is crucial for reducing the incidence of HF in

AMI patients at high risk of HF progression. Identifying early

biomarkers associated with heart failure after myocardial

infarction (HFpAMI) may help address this issue. Although

several biomarkers such as natriuretic peptides, cardiac troponin,

Galectin-3, and soluble suppression of tumorigenicity-2 (sST2)

have been proposed for the diagnosis and risk assessment of

HFpAMI, their effectiveness in early prediction remains limited.

For example, the specificity of natriuretic peptides may be

affected by confounding factors such as renal dysfunction and

aging (6). Cardiac troponin, despite its value in detecting

myocardial injury, provides limited sensitivity in predicting the

transition to heart failure (7). Similarly, while Galectin-3 and

sST2 are associated with fibrosis and inflammation, their

prognostic performance has been inconsistent across different

patient populations (8). These challenges suggest the need to

explore more reliable and mechanistically relevant biomarkers

that reflect key pathological processes such as immune and

inflammatory dysregulation, in order to improve early

identification and risk stratification of patients susceptible to

heart failure after acute myocardial infarction.

Following myocardial infarction, apoptotic and necrotic

myocardial cells release damage-associated molecular pattern

proteins, activating the innate immune system and triggering a

severe inflammatory response. Prolonged and excessive activation

of the inflammatory response can lead to an expansion of the

injury area, exacerbating tissue damage, ultimately resulting in

HF (9). Peripheral blood mononuclear cells (PBMCs) originate

from bone marrow hematopoietic stem cells and are closely

related to the occurrence and development of cardiac remodeling

after AMI. They swiftly migrate into the bloodstream from the

bone marrow and spleen within hours of myocardial injury,

infiltrating the infarcted region and contributing to the

inflammatory immune response (10). Therefore, genes implicated

in monocyte/macrophage recruitment for cardiac remodeling

may serve as potential biomarkers for early identification of HF

progression risk among AMI patients.

High-throughput next-generation transcriptome sequencing

offers an unbiased and comprehensive overview of gene

expression features in disease models, serving as a novel and

practical approach for screening specific biomarkers in

cardiovascular disease. Nevertheless, differential expression genes

(DEGs) detected in transcriptome analysis may exhibit

limitations in reproducibility and sensitivity. Machine learning

algorithms can improve the prediction and accuracy of

identifying DEGs using traditional microarray or next-generation

sequencing data, confirming potential biomarkers or disease

diagnostic features (11). Commonly utilized machine learning

techniques comprise the least absolute shrinkage and selection

operator (LASSO) regression, support vector machine recursive

feature elimination (SVM-RFE), and random forest (RF)

algorithms. In recent years, CIBERSORT algorithm, as a widely

applied analytical method, has been frequently used to study

immune cell infiltration patterns in diseases based on

transcriptomic sequencing or microarray data and to evaluate the

infiltration proportions of 22 immune cells in each sample (12).

However, there has been no study combining machine learning

algorithms with CIBERSORT to identify peripheral monocyte-

associated genes of HFpAMI (13, 14). Therefore, in the present

study, we conducted an analysis of the GSE59867 dataset from

various perspectives. Initially, using the “limma” R package and

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis, we identified

Abbreviations

HF, heart failure; AMI, acute myocardial infarction; PBMC, peripheral blood

mononuclear cell; HFpAMI, heart failure after myocardial infarction; DEG,

differential expression gene; ROC, receiver operating characteristic; LASSO,
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DEGs and critical pathways involved in the progression to HF after

AMI at the resolution of PBMCs. Subsequently, we systematically

screened and identified diagnostic biomarkers related to

HFpAMI using three machine learning methods and molecular

complex detection (MCODE) algorithms. Moreover, CIBERSORT

was utilized to assess immune cell infiltration patterns in

HFpAMI, followed by a comprehensive analysis of the

correlation between candidate biomarkers and immune cells. To

further validate the robustness of our findings, we collected an

independent cohort of HFpAMI patients and AMI patients

without HF, and performed RNA sequencing (RNA-seq) on

these external samples. Finally, we validated the expression levels

of the selected candidate biomarkers and explored their role in

the mechanism of HFpAMI (Figure 1).

2 Methods

2.1 Data collection and quality control

Utilizing the GEO database (https://www.ncbi.nlm.nih.gov/

geo/), we conducted a search using “human,” “myocardial

infarction,” and “heart failure” as filtering criteria, ultimately

acquiring the GSE59867 dataset. This dataset was generated

using the Affymetrix Human Gene 1.0 ST Array (GPL6244),

covering 28,869 well-annotated genes. Raw microarray data

underwent rigorous quality control: missing values were imputed

via the *k*-nearest neighbors algorithm (k = 10) using the impute

R package and samples with >20% missing probes were excluded.

Probe-level filtering was performed with the arrayQualityMetrics

R package, removing probes with intensity values below the 10th

percentile or detection P-value >0.05. Probes were mapped to the

Ensembl GRCh38 genome annotations to ensure accuracy. The

final dataset included 64 PBMCs samples from AMI patients

with or without HF development during a 6-month follow-up

(HFpAMI, n = 30 vs. non-HF, n = 34).

2.2 DEGs screening and functional
enrichment analysis

The GSE59867 dataset underwent normalization using the

impute.knn function from the “impute” R package and the

normalizeBetweenArrays function from the “limma” package.

Filtering values were set at |logFC| > 0.585 and p-value < 0.05 to

obtain the DEGs from the GSE59867 dataset. R package

“Clusterprofiler” and “DOSE” were used to perform GO, and

KEGG enrichment analysis.

2.3 Protein-protein interaction (PPI)
network construction and module analysis

Mapping DEGs to the STRNG database (https://string-db.org/),

with a filter criterion of a minimum required interaction score of 0.4,

removing unconnected nodes to establish the PPI network. After

FIGURE 1

The flowchart of integrated bioinformatics and machine learning to identify predictive biomarkers of HFpAMI.
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downloading PPI analysis results, we input them into the cytoscape

software (version 3.10.2) for further optimization. The MCODE

plugin computes a score for each node in the network based on

the connections around the node and the average connections of

all nodes. It expands relevant nodes based on these scores to form

clusters. We proceeded to perform cluster analysis on the PPI

network using the MCODE plugin, configuring the parameters as

follows: node degree threshold ≥2, haircut ≥0.2, node score

threshold ≥0.2, K-core ≥2, maximum depth = 100, in order to

select significant functional clustering modules within the network.

2.4 Screening candidate biomarkers using
machine learning techniques

In this study, the LASSO analysis was performed using the

“glmnet” function in the R programming language to generate a

sequence of regularization parameters. Each regularization

parameter value underwent tenfold cross-validation (k = 10).

Following cross-validation, the regularization parameter associated

with the lowest cross-validation error was chosen as the optimal

parameter. The LASSO model was applied to identify differential

feature genes (15). The SVM-RFE can handle high-dimensional

data and nonlinear problems, showing robustness that enhances

algorithm accuracy. Through the SVM-RFE algorithm,

implemented using the “e1071” package in the R programming

language, we conducted randomized feature extension on the data

to choose the best feature subset. We employed cross-validation

methods to assess and optimize the SVM model, selecting the

most optimal differential genes. The RF algorithm, known for its

robustness, flexibility, and high accuracy, was utilized in this study.

Using the “random Forest” package in the R programming

language, the RF algorithm conducted random sampling of data

and built decision tree models. Following this, an evaluation of the

RF model was performed to select significant differential feature

genes. Ultimately, the intersection of differential feature genes

identified by the three machine learning methods was obtained to

determine the candidate biomarkers associated with the disease,

and the receiver operating characteristic (ROC) curves were plotted.

2.5 Gene set enrichment analysis (GSEA)

The exploration of potential biological markers’ functions and

biological processes was conducted using GSEA. Based on the

median expression levels of potential biological markers, they

were divided into high and low expression groups. GSEA using

the KEGG signaling pathway genes as the preset gene set was

performed to explore the functions and biological processes of

potential biological markers in the dataset.

2.6 Immune infiltration analysis

The R package “CIBERSORT” was employed to quantify the

relative proportions of 22 immune cell subtypes in PBMCs

samples using the LM22 signature matrix (version 1.1), a

validated gene expression reference containing 547 marker genes

for 22 human hematopoietic cell types, including naive B cells,

memory B cells, plasma cells, CD8+ T cells, CD4+ T cells (naive,

memory resting, activated), regulatory T cells (Tregs), γδ T cells,

natural killer cells (resting/activated), monocytes, macrophages

(M0/M1/M2), dendritic cells (resting/activated), mast cells

(resting/activated), eosinophils, and neutrophils. Raw gene

expression data were normalized using the “voom” method to

adjust for sequencing depth and variance. CIBERSORT analysis

was performed with 1,000 permutations to ensure robust

deconvolution accuracy, and only samples with a CIBERSORT

P < 0.05 were retained for subsequent analyses. Differential

immune infiltration between HFpAMI and non-HF groups was

assessed via the Mann–Whitney U test. Spearman correlation

analysis (two-tailed, P < 0.05) was then applied to explore

associations between candidate biomarkers and immune

cell subtypes.

2.7 Independent clinical validation samples

From June 2022 to July 2023, 18 HFpAMI patients (HFpAMI

group) and 9 AMI patients without HF (non-HF group) were

recruited from the First Affiliated Hospital of Henan University

of Chinese Medicine. HFpAMI was defined as new-onset heart

failure occurring within 6 months after AMI diagnosis. All

patients had a history of coronary angiography and infarct-

related revascularization treatment. Pharmacological treatment

was administered according to the current guidelines. All

participants provided written informed consent prior to the

commencement of the study. This research protocol was

approved by the Ethics Committee of the First Affiliated Hospital

of Henan University of Chinese Medicine (20211HL-178) and

conducted in accordance with the Helsinki Declaration.

2.8 Diagnostic criteria

The diagnostic criteria for AMI followed the Chinese Society of

Cardiology’s 2019 “Diagnosis and Treatment Guidelines for Acute

ST-Segment Elevation Myocardial Infarction,” while the diagnostic

criteria for HF were in accordance with the “Chinese Guidelines for

the Diagnosis and Treatment of Heart Failure 2018” (16, 17).

2.9 Inclusion criteria

(1) age range of 40–80 years; (2) subjects meeting diagnostic

criteria for AMI and HF; (3) duration of disease within 6 months.

2.10 Exclusion criteria

(1) active inflammation; (2) patients with other potential

cardiac diseases (such as severe valve abnormalities, myocardial
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disease, or congenital heart disease); (3) patients with liver and/or

kidney dysfunction, tumors, and autoimmune diseases.

2.11 Clinical indicators measurement

NT-proBNP was measured using a colloidal gold assay kit

(GeteinBiotech, Nanjing, China). Left ventricular ejection fraction

(LVEF), and left ventricular end diastolic dimension (LVEDD)

were determined using a color Doppler ultrasound diagnostic

device (GE Vivid E95, USA) with the two-dimensional ultrasound

Simpson’s method. Neutrophil count was assessed using the

XN1000 fully automated hematology analyzer (SYSMEX, Japan).

2.12 RNA-seq-based transcriptomic study

2.12.1 Sample collection and RNA extraction
Fasting venous blood samples (2.5 ml) were collected from each

subject in the morning using PAXgeneTM Blood RNA Tubes

(PreAnalytiX, Cat. No. 765165, China). After gentle inversion (8–10

times for mixing), samples were labeled and stored at −80°C

following the manufacturer’s protocol. Total RNA was extracted

using the PAXgene Blood miRNA Kit (PreAnalytiX, Cat. No.

765444, China) with on-column DNase I digestion to remove

genomic DNA contamination. RNA concentration was quantified

using a Nanodrop spectrophotometer (BioForge, China), and RNA

integrity was assessed via the Agilent 5400 Bioanalyzer (Agilent

Technologies, USA) with RNA Integrity Number (RIN) ≥7.0 as the

inclusion criterion. Purity was confirmed by A260/A280 ratios (1.8–

2.1) and A260/A230 ratios (>1.5). Potential DNA contamination

was excluded by agarose gel electrophoresis (1% gel, 120 V, 20 min).

2.12.2 Library construction and sequencing
Total RNA (1 μg per sample) was used as input. mRNA was

enriched using poly-T oligo-attached magnetic beads [NEBNext

Poly(A) mRNA Magnetic Isolation Module, Cat. No. E7490,

USA]. The stranded RNA-seq library was constructed using the

NEBNext Ultra II RNA Library Prep Kit (Cat. No. E7770, USA)

following the manufacturer’ s protocol. Briefly, mRNA was

fragmented to ∼250 bp, followed by first-strand cDNA synthesis

with random hexamers and reverse transcriptase. Second-strand

cDNA was synthesized using dUTP to preserve strand specificity.

After end repair, adenylation, and ligation of indexed adapters,

cDNA fragments of 300–400 bp were selected using AMPure XP

beads (Beckman Coulter, USA). PCR amplification was performed

with 12 cycles. Library quality was verified using the Agilent 5,400

Bioanalyzer (DNA High Sensitivity Kit). Paired-end sequencing

(2 × 150 bp) was performed on the Illumina NovaSeq 6,000

platform (Illumina, USA) with an average sequencing depth of 50

million reads per sample. HISAT2 v2.0.5 was employed to

construct the reference genome index and align paired-end clean

reads to the reference genome. Read counts for each gene were

quantified using featureCounts (v1.5.0-p3). FPKM (Fragments Per

Kilobase of exon model per Million mapped reads) values were

then calculated for each gene, normalizing for gene length.

2.12.3 DEGs screening and functional enrichment

analysis
Gene counts were normalized using DESeq2 (v1.20.0), and fold

changes (FC) were calculated. P-values were adjusted using the

Benjamini-Hochberg method to control the false discovery rate.

DEGs were identified using the criteria of |log2FC|≥ 1 and

adjusted P < 0.05. Functional enrichment analysis of DEGs was

performed using the R packages “ClusterProfiler” (v4.0.5) and

“DOSE” (v3.18.1) for GO and KEGG pathways.

2.13 PBMCs isolation, RNA extraction, and
reverse transcription

The density gradient centrifugation using Ficoll Paque Plus

(Cytiva, USA) was conducted following the prescribed procedure

to isolate PBMCs from 10 ml of EDTA-containing whole blood

(12). RNA extraction from PBMCs was performed using TRIzol

reagent (GeneCopoeia, USA) as per the manufacturer’s

instructions, and RNA concentration was measured using a

nanodrop spectrophotometer. Reverse transcription was carried

out using the SurescriptTM First-Strand cDNA Synthesis Kit

(GeneCopoeia, USA) at 37°C for 60 min, followed by incubation

at 85°C for 5 min, and the resulting cDNA was stored at −80°C.

2.14 Real-time quantitative polymerase
chain reaction (RT-qPCR)

The RT-qPCR was conducted using BlazeTaqTM SYBR® Green

qPCR mix 2.0 (GeneCopoeia Green, USA), with primer sequences

listed in Table 1. A housekeeping gene (GAPDH) was used as an

endogenous control for normalization. The Relative mRNA

expression was calculated using the 2−ΔΔCt method in a

triplicated manner.

2.15 Flow cytometry

Removed the PBMCs samples from −80°C storage, rapidly

thawed them at 37°C, and then diluted them with preheated

TABLE 1 Primer information.

Gene Primer

CLU Forward CTACTTCTGGATGAATGGTGACC

Reverse CGGGTGAAGAACCTGTCCT

FOS Forward TCCAAGTGCCGAAAAAGGAAG

Reverse CGAGTTCTGAGCTTTCAAGGT

CXCL8 Forward ACTGAGAGTGATTGAGAGTGGAC

Reverse AACCCTCTGCACCCAGTTTTC

TLR4 Forward AGACCTGTCCCTGAACCCTAT

Reverse CGATGGACTTCTAAACCAGCCA

MYD88 Forward GGCTGCTCTCAACATGCGA

Reverse CTGTGTCCGCACGTTCAAGA

GAPDH Forward CCATGGGTGGAATCATATTGGA

Reverse TCAACGGATTTGGTCGTATTGG

Wei et al. 10.3389/fcvm.2025.1611668

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1611668
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


culture medium, adding 500 ul of PBS (Solarbio, Beijing, China) to

resuspend the cells to a density of 1–2 × 106/ml. The cell suspension

was collected afterward. Subsequently, the cells were resuspended in

1 ml of staining buffer (Elabsience, Wuhan, China), centrifuged at

300 × g for 5 min, repeating this step twice. Then, 5 ul of Anti-

Human CD45 Antibody (Elabsience, Wuhan, China), Anti-Human

CD3 Antibody (Elabsience, Wuhan, China), Anti-Human CD4

Antibody (Elabsience, Wuhan, China), and Anti-Human CD8a

Antibody (Elabsience, Wuhan, China) were added to the

resuspended cells according to the antibody instructions and

incubated at room temperature, avoiding light, for 15 min. After

washing, the cells were resuspended in 300 μl of staining buffer

and finally analyzed using the FACSCelesta flow cytometer (BD,

USA). A similar methodology was used for macrophage typing,

wherein 5 ul of Anti-Human CD11b Antibody (Elabsience,

Wuhan, China), and Anti-Human CD86 Antibody (Elabsience,

Wuhan, China) were added to the resuspended cells. Following the

wash, it was important to add 250 μl of 1X Cytofix/Cytoperm

Buffer (BD, USA) to the resuspended cells and incubate them at

room temperature, avoiding light, for 20 min. Subsequently, the

fixed-permeabilized cells were resuspended, Anti-Human CD206

Antibody (Elabsience, Wuhan, China) was added, and they were

incubated at room temperature while avoiding light for 30 min.

Following this, the cells were resuspended using Permeabilization

Wash Buffer (BD, USA) and analyzed using a flow cytometer.

2.16 Statistical analysis

The statistical analysis was designed and executed by the data

administrator from the Henan Evidence-based Medicine Center

of Chinese Medicine. All statistical analyses were performed

using R statistical software (version 4.3.1, R Foundation for

Statistical Computing, Vienna, Austria). Categorical data were

presented as frequencies and percentages. Quantitative data were

assessed for normality using the Shapiro–Wilk test and expressed

as mean ± standard deviation (SD). Depending on the normality

of the data, either Student’s t-test or Mann–Whitney U test was

utilized to compare continuous data between groups. Spearman’s

rank correlation coefficient was employed for correlation analysis.

ROC curves were generated to assess the diagnostic capability of

candidate biomarkers for HFpAMI. All statistical analysis tests

were conducted using two-sided hypothesis tests. P < 0.05 was

considered to be statistically significant for the differences tested.

3 Results

3.1 Identification of HFpAMI-related DEGs in
GSE59867

We downloaded the microarray expression dataset from the

GEO database and conducted differential expression analysis

based on the aforementioned selection criteria. Consequently, we

identified 27 DEGs in the GSE59867 dataset, with 13

downregulated and 14 upregulated expressions (Supplementary

Table S1). Figure 2A illustrates the volcano plot of DEGs, while

Figure 2B presents the clustered heatmap showing the expression

profiles of DEGs across different samples.

3.2 Functional enrichment analysis of DEGs

For elucidating the biological functions and pathways

associated with HFpAMI-related DEGs, we conducted GO

functional annotation and KEGG pathway analysis. The GO

enrichment analysis unveiled the involvement of DEGs primarily

in biological processes concerning protein demethylation and

neutrophil migration. In terms of cellular components, DEGs

exhibited strong associations with blood micro-particles,

platelet alpha granules, and the MLL3/4 complex. Molecular

functions emphasized significant enrichment of DEGs in

activities such as protein demethylase, protein binding, and

oxidoreductase activities (Figure 2C). The KEGG pathway

analysis demonstrated that the DGEs were primarily enriched in

pathways related to atherosclerosis, and immune inflammatory

responses, including the Toll-like receptor (TLR) signaling

pathway and IL-17 signaling pathway (Figure 2D). Based on

these enrichment results, DEGs may impact the pathogenesis of

HFpAMI by regulating protein demethylation, kinases, and

immune cell inflammatory responses.

3.3 PPI network and candidate biomarkers
selection

The PPI network of DEGs, constructed and refined using

Cytoscape, consisted of 3 subnetworks, comprising a total of 18

nodes and 27 edges (Figure 3A, Supplementary Table S2).

Following modular evaluation using the MCODE plugin, two

crucial clustered functional modules were identified within this

network (Figure 3B). Functional Module 1 did not exhibit any

pertinent biological functions, while Functional Module 2 (CLU,

FOS, and CXCL8) was primarily associated with immune

inflammatory response functions.

In the LASSO analysis, the four DEGs exhibiting the least bias

in the binomial distribution model were identified as disease

feature genes: FOS, CLU, CXCL8, and EIF1AY (Figure 3C).

Meanwhile, the SVM-RFE algorithm identified six DEGs with

the highest accuracy in 10-fold cross-validation as disease feature

genes: USP9Y, UTY, CLU, FOS, EIF1AY, and CXCL8

(Figure 3D). Additionally, the RF algorithm selected DEGs with

MeanDecreaseGini values >3 as disease feature genes: CXCL8,

UTY, USP9Y, CLU, and FOS (Figure 3E). The intersection of the

three algorithms derived differential feature genes was presented

in a Venn diagram, yielding the disease candidate biomarkers

CLU, FOS, and CXCL8 (Figure 3F), which aligned with the

significant clustering module 2 obtained through the MCODE

plugin. Furthermore, statistical analysis was conducted on the

expression levels of these candidate biomarkers among different

groups within the dataset. The expression levels of all three

candidate biomarkers were significantly elevated in the HFpAMI
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group compared to non-HF group (P < 0.05) (Figures 4A–C). ROC

analysis of the candidate biomarkers revealed area under the curve

(AUC) area under the curve (AUC) values of 0.770, 0.732, and

0.760 for FOS, CLU, and CXCL8, respectively (Figures 4D–F),

indicating the accuracy and reliability of the selected candidate

biomarkers. These findings underscored the high diagnostic value

of the candidate biomarkers for HFpAMI, indicating their

potential as relevant biological indicators.

3.4 GSEA of candidate biomarkers

Further exploration was conducted on the specific signaling

pathways associated with the candidate biomarkers and their

potential molecular mechanisms affecting HF progression. GSEA

results indicated the activation of CLU in ECM receptor

interaction, hematopoietic cell lineage, and ribosome pathways,

while its inhibition in TLR signaling, taste transduction, and

asthma (Figure 5A); FOS activation was observed in

complement and coagulation cascades, oxidative

phosphorylation, and TLR signaling, with suppression in

intestinal immune network for IgA and primary

immunodeficiency pathways (Figure 5B); CXCL8 activation

occurred in cellular signaling, gene expression, NLR receptor

signaling, and TLR signaling, while being suppressed in

Aminoacyl trna biosynthesis, and N-glycan biosynthesis, and

systemic lupus erythematosus pathways (Figure 5C). These

findings suggested that these candidate biomarkers may impact

the occurrence and development of post-myocardial infarction

HF through the modulation of immune-inflammatory responses.

Furthermore, KEGG enrichment analysis of DEGs demonstrated

significant enrichment of the TLR signaling pathway, which

aligns with the prominent enrichment of the same pathway in

the GSEA of candidate biomarkers. Consequently, this study

postulated the pivotal role of this signaling pathway in the

pathological process of post-myocardial infarction HF and

suggests it as a critical pathway for further exploration of the

pathological mechanisms of HFpAMI.

FIGURE 2

Volcano plot, heatmap and functional enrichment analysis of DEGs. (A) The volcano plot of DEGs. Red: upregulated genes; Green: downregulated

genes; (B) the clustered heatmap showed the expression profiles of DEGs across different samples; (C) GO enrichment analysis; (D) KEGG

pathway analysis.
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3.5 Results of immune cell infiltration

Through studying the relationship between immune infiltration

and feature genes in the dataset, we explored the potential

molecular mechanisms by which feature genes affect the

progression of HFpAMI. Based on the results of immune cell

infiltration (Figure 5D), the HFpAMI group exhibited

significantly lower levels of immune infiltration for naive CD4T

cells and naive B cells compared to the non-HF group (P < 0.05).

Conversely, the immune infiltration level of neutrophils in the

HFpAMI group was notably higher than that in the non-HF

group (P < 0.05) (Figure 5D). Moreover, an exploration was

conducted into the relationship between feature genes and

immune cells. The findings revealed that CLU was inversely

correlated with naive B cells and activated dendritic cells; CLU

and CXCL8 showed a positive correlation with resting mast cells,

while FOS and CXCL8 exhibited a positive correlation with

monocytes and a negative correlation with naive CD4T cells.

Particularly, FOS, CLU, and CXCL8 were concurrently negatively

correlated with M2 macrophages and positively correlated with

neutrophils (Figure 5E). The aforementioned outcomes showed

the close association between feature genes and the infiltration

levels of immune cells, demonstrating their pivotal role within

the immune microenvironment.

3.6 Characteristics of the external clinical
cohort

The study population comprised 18 patients with heart failure

post-acute myocardial infarction (age: 64.39 ± 7.75) and 9 patients

without heart failure (age: 61.44 ± 8.8), all meeting the inclusion

criteria. Table 2 summarizes baseline demographic and cardiac

function parameters. No significant differences were observed

between the groups in age, gender, BMI, heart rate, or blood

pressure (P > 0.05). All participants were of Han ethnicity.

FIGURE 3

PPI network and candidate biomarkers selection. (A) The PPI network between DEGs has 18 nodes and 25 edges, the color of the nodes reflects up-

regulated or down-regulated gene expression, with orange representing up-regulated expression and green representing down-regulated expression.

The size of the node reflects the degree value, and the larger the node, the higher the degree value; (B) the PPI network of 2 high-scoring module

genes based on Cytoscape plug-in MCODE analysis; (C) LASSO analysis screening of feature genes; (D) SVM-RFE algorithm screening of feature

genes; (E) RF algorithm screening of feature genes; (F) Venn diagram of the intersection of diagnostic markers obtained by the three algorithms.
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Notably, the HFpAMI group exhibited significantly higher NT-

ProBNP and LVEDD values, and lower LVEF compared to the

non-HF group. These findings indicate compromised cardiac

structure and function in the HFpAMI group, consistent with the

diagnostic criteria for HF.

3.7 Transcriptomic analysis of the external
clinical cohort

Transcriptome profiles of blood samples from the HFpAMI

and non-HF groups were generated using the Illumina high-

throughput sequencing platform. Differential expression analysis

identified 388 DEGs (100 downregulated, 288 upregulated)

between groups (Figure 6A). We performed intersection analysis

between the 27 DEGs from the GSE59867 cohort and the 388

DEGs from our independent cohort. Venn diagram analysis

revealed 19 overlapping DEGs (Figure 6B). Crucially, heatmap

visualization demonstrated consistent expression patterns for

these 19 genes across both cohorts (Figure 6C). Notably, the

three candidate biomarkers CXCL8 (log2FC = 2.25, P = 0.02),

CLU (log2FC = 1.60, P = 0.04), and FOS (log2FC = 2.36, P = 0.01)

exhibited consistent upregulation in the HFpAMI group

(Figures 6D–F). ROC analysis further confirmed their diagnostic

potential, with AUC values of 0.762 (95% CI: 0.635–0.888) for

CXCL8, 0.722 (0.579–0.865) for CLU, and 0.796 (0.673–0.919)

for FOS (Figure 6G), the combined diagnostic performance of

these biomarkers yielded an AUC of 0.883 (95% CI: 0.741–0.988)

(Figure 6H). These results not only corroborated the findings

from the GSE59867 dataset but also highlighted the robustness of

CXCL8, CLU, and FOS as candidate biomarkers for HFpAMI.

3.8 Validation of the expression pattern of
candidate biomarkers and immune cell
infiltration

The RT-qPCR results confirmed that the expression patterns of

CLU, FOS, and CXCL8 were consistently upregulated in PBMCs

samples of HFpAMI compared to non-HF group (P < 0.01)

FIGURE 4

The expression levels and ROC curves of FOS, CLU, and CXCL8 in GSE59867. (A) The expression of FOS in GSE59867; (B) the expression of CLU in

GSE59867; (C) The expression of CXCL8 in GSE59867; (D) ROC curve of FOS; (E) ROC curve of CLU; (F) ROC curve of CXCL8.
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(Figures 7A–C), aligning with the main bioinformatics analysis.

Moreover, we assessed key genes TLR4 and MYD88 in the TLR

signaling pathway. The RT-qPCR results revealed elevated

expression levels of TLR4 and MYD88 in the HFpAMI group

compared to the non-HF group (P < 0.01) (Figures 7D,E),

indicating the significant role of this signaling pathway in the

pathophysiology of HFpAMI. Additionally, we measured the

neutrophil count in patients. The results indicated a higher

neutrophil count in the HFpAMI group compared to the non-

HF group, although without statistical significance (Figure 7F)

(P = 0.28). Furthermore, we validated immune infiltration and the

correlation between feature genes and immune cells. CD4T cells,

CD8T cells, M1 macrophages, and M2 macrophages could be

detected in the PBMCs by flow cytometry. The findings indicated

a significant decrease in CD4T cell concentration in the HFpAMI

compared to the non-HF group (P < 0.01) (Figures 7G,J), with no

significant differences observed in CD8T cells (Figures 7G,K),

M1 macrophages (Figures 7H,L), and M2 macrophages

(Figures 7I,M) between the two groups. Spearman correlation

analysis unveiled a significant negative correlation between CLU

and M2 macrophage concentration in patients with HFpAMI

(r =−0.51, p = 0.032) (Figure 8A). CLU also showed a significant

positive correlation with neutrophil count (r = 0.51, p = 0.034)

(Figure 8B); Regarding FOS, a substantial negative correlation

with M2 macrophage concentration was observed (r =−0.48,

p = 0.044) (Figure 8C), along with a positive correlation with

neutrophil count, although statistical significance was lacking

FIGURE 5

GSEA of candidate biomarkers and analysis of immune cell infiltration. (A) Biological pathways involved in CLU by GSEA; (B) biological pathways

involved in FOS by GSEA; (C) biological pathways involved in CXCL8 by GSEA; (D) violin plot showing the comparison of 22 kinds of immune cells

between HF and non-HF groups; (E) the heatmap of correlation between immune infiltrating cells and candidate biomarkers.

TABLE 2 Baseline demographic and cardiac function parameters.

Parameters HFpAMI group
(n = 18)

Non-HF group
(n= 9)

P-value

Age (years) 64.39 ± 7.75 61.44 ± 8.89 0.384

Female/male (n) 3/15 3/6 0.367

The Han nationality,

n (%)

18 (100.00%) 9 (100.00%) 1

SBP (mmHg) 129.00 ± 22.17 127.78 ± 19.56 0.885

DBP (mmHg) 72.83 ± 12.72 74.33 ± 9.91 0.760

BMI, kg/cm2 23.64 ± 3.30 23.75 ± 2.62 0.937

HR, beat per minute 67.78 ± 10.02 66.78 ± 7.95 0.797

NT-ProBNP (pg/ml) 1,149.50 (498.75,

2,430.00)

114.67 (100.00,

125.50)

<0.001

LVEF (%) 39.17 ± 6.63 61.33 ± 3.77 <0.001

LVEDD (mm) 58.00 ± 5.17 47.33 ± 4.95 <0.001

Data are presented as mean ± SD or median (Q1, Q3) when appropriate.

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; HR, heart

rate; NT-proBNP, N-terminal pro-B-type natriuretic peptide; LVEF, left ventricular ejection

fraction; LVEDD, left ventricular end diastolic dimension.
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(r = 0.17, p = 0.51) (Figure 8D); Similarly, CXCL8 exhibited a

significant negative correlation with M2 macrophage

concentration (r =−0.63, p = 0.0057) (Figure 8E) and a

significant positive correlation with neutrophil count (r = 0.45,

p = 0.063) (Figure 8F). These findings indicated an imbalance in

certain types of immune cells during the progression of HFpAMI.

3.9 Verification of the candidate biomarkers
for HFpAMI

Furthermore, we conducted ROC curve analysis to verify the

diagnostic value of the selected candidate biomarkers by

assessing the gene expression levels between the HFpAMI and

non-HF groups, as illustrated in Figures 8G–I. The AUC values

for CLU, FOS, and CXCL8 were 0.833 [95% confidence interval

(CI): 0.679–0.988], 0.809 (95% CI: 0.64–0.977), and 0.802 (95%

CI: 0.635–0.970), respectively. These findings showed that these

peripheral monocyte-associated genes are pivotal biomarkers for

the progression of HFpAMI. Additionally, we investigated the

correlation between CLU, FOS, and CXCL8 and cardiac function

indicators to further evaluate diagnostic accuracy and reliability.

The results demonstrated that CLU and CXCL8 had a strongly

positive connection with NT-proBNP and LVEDD, with

correlation coefficients between 0.47 and 0.65 (Figures 9A–D).

Conversely, CLU and CXCL8 presented dramatically negative

FIGURE 6

Transcriptomic analysis of the external clinical cohort. (A) Volcano map of transcriptome analysis; (B) venn diagram identifying 19 overlapping DEGs

between GSE59867 and the external cohort; (C) heatmap demonstrating concordant expression patterns of the 19 shared DEGs; (D) the expression of

CXCL8 in RNA-Seq; (E) the expression of CLU in RNA-Seq; (F) the expression of FOS in RNA-Seq; (G) ROC curve of CXCL8, CLU, and FOS;

(H) combined diagnostic ROC curves of feature genes.
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correlation with LVEF, with correlation coefficients of −0.65 and

−0.52, respectively (Figures 9E,F). there was no observed

correlation between FOS and cardiac function indicators

(Figures 9G–I).

4 Discussion

AMI is widely recognized as a prevalent and significant

contributor to HF worldwide.3 Although there have been

improvements in the outcomes of HFpAMI due to the

development of pharmaceutical and non-pharmaceutical

treatments over the past few decades, the overall mortality rate,

cardiovascular event occurrence, and readmission rates still

remain discouraging. Many patients with HFpAMI remain

undiagnosed in the early stages of the disease. Additionally, the

lack of timely interventions or early preventive treatments in

many patients is one of the major contributors to poor

prognosis. Hence, there is an urgent need to identify and explore

potential biomarkers for early screening and diagnosis of

HFpAMI. Recent studies have demonstrated that combining

high-throughput transcriptomics sequencing with various

FIGURE 7

RT-qPCR, and flow cytometry analyses in the clinical samples. (A) The expression level of CLU; (B) the expression level of FOS; (C) the expression level

of CXCL8; (D) the expression level of TLR4; (E) the expression level of MYD88; (F) the expression level of neutrophil count; (G) representative flow

cytometry plots showing CD4T cells and CD8T cells; (H) representative flow cytometry plots showing M1 macrophages; (I) representative flow

cytometry plots showing M2 macrophages; (J) expression of CD4T cells in different groups; (K) expression of CD8T cells in different groups;

(L) expression of M1 macrophages in different groups; (M) expression of M2 macrophages in different groups.
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machine learning algorithms is an effective approach for

identifying potential biomarkers and novel therapeutic targets in

complex diseases (18, 19). To our knowledge, this study is the

first to integrate multiple machine learning with the CIBERSORT

algorithm and transcriptomics sequencing to identify and

validate candidate diagnostic biomarkers for HFpAMI. This

hybrid approach not only prioritizes robust biomarkers through

consensus across three machine learning models but also

contextualizes their roles within immune microenvironment

dynamics—revealing their correlation with neutrophil infiltration

and CD4+ T cell depletion, a dimension overlooked in prior

biomarker studies. This approach provides new insights into the

molecular mechanisms underlying the pathogenesis of HFpAMI.

In this study, a series of bioinformatics analyses were

conducted to screen DEGs related to post-AMI HF and non-HF

PBMCs in the GSE59867 dataset, yielding a total of 27 DEGs. To

elucidate the biological functions and pathways associated with

the DEGs, GO functional annotation and KEGG pathway

analyses were conducted. GO functional annotation revealed that

the biological processes and molecular functions of the DEGs

primarily involve the regulation of interleukin secretion,

granulocyte migration, chemokine activity, and CXCR chemokine

receptor binding. KEGG pathway analysis revealed significant

enrichment involving the TLR signaling pathway, Lipid and

atherosclerosis and NF-kappa B signaling pathway. These

findings indicated active involvement of DEGs in the process of

immune inflammation. To identify potential diagnostic

biomarkers for HFpAMI, we employed three machine learning

methods, multiple algorithm evaluations using the CytoHubb

plugin, and validation with the external independent clinical

cohort. This comprehensive approach led to the identification of

three robust potential biomarkers from the DEGs: CLU, FOS,

and CXCL8. CLU, constitutively expressed in most mammalian

tissues, is a highly conserved protein with various biological

functions including regulation of complement activity, lipid

transport, and inhibition of cell apoptosis. Normally, CLU

FIGURE 8

Correlation between the expression level of infiltrating immune cells and candidate biomarkers and ROC curve analysis in clinical samples.

(A) Correlation between CLU and M2 macrophage expression; (B) correlation between CLU and neutrophil count; (C) correlation between FOS

and M2 macrophage expression; (D) correlation between FOS and neutrophil count; (E) correlation between CLCL8 and M2 macrophage

expression; (F) correlation between CLCL8 and neutrophil count; (G) ROC curve of CLU in clinical samples; (H) ROC curve of FOS in clinical

samples; (I) ROC curve of CXCL8 in clinical samples.
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expression levels are low but significantly elevate under stress-

induced pathological conditions (20). Several studies have

demonstrated that after AMI, patients exhibit increased CLU

levels in the heart and blood, which were correlated with left

ventricular remodeling (21). Although recent studies have

suggested an independent association of CLU with the severity of

the condition and the survival of patients with HF (22), it

remains inconclusive whether CLU levels in PBMCs of post-AMI

can serve as valuable biomarkers for determining HF

progression. FOS can be expressed in cardiomyocytes, endothelial

cells, and vascular smooth muscle cells, and its expression level is

closely associated with the development and progression of

various cardiovascular disease (23). The protein encoded by FOS

can form a transcription factor complex AP-1 with Jun family

proteins through a leucine zipper. In ischemic cardiomyopathy

and dilated cardiomyopathy, the expression of AP-1 in cardiac

tissue significantly increases (24). Recently, Zhuang L and

colleagues reported that the abnormal activation of Fos/AP-1

transcriptional activity is associated with pro-inflammatory

responses. Inhibiting Fos/AP-1 signal activity could effectively

reduce ischemia-induced immune responses and produce

therapeutic effects by alleviating adverse cardiac remodeling and

HF (25). CXCL8, also known as IL-8, is a major mediator of

inflammatory responses, primarily activating or attracting

neutrophils. Previous studies have indicated that serum IL-8

levels in AMI patients after percutaneous intervention might

serve as predictive markers of HF development (26). Here, our

team reported for the first time the aberrant levels of CLU, FOS,

and CXCL8 between PBMCs samples of post-AMI HF and non-

HF. Furthermore, ROC analysis confirmed their high specificity

and sensitivity in diagnosing HFpAMI. Importantly, in our

cohort, our team validated that the expression levels of CLU,

FOS, and CXCL8 in the HFpAMI group were significantly

upregulated compared to non-HF group. Moreover, CLU and

CXCL8 exhibited significant positive correlations with NT-

proBNP and LVEDD, while demonstrating significant negative

correlations with LVEF. Our research findings suggested that

CLU, FOS, and CXCL8 serve as potential diagnostic biomarkers

for HFpAMI.

Intriguingly, our GSEA targeting three potential diagnostic

biomarkers showed a significant enrichment of the TLR signaling

pathway, which was further substantiated by significant

FIGURE 9

Spearman correlation analysis of candidate biomarkers and cardiac function indicators. (A) correlation analysis between CLU and NT-proBNP;

(B) correlation analysis between CLU and LVEDD; (C) correlation analysis between CXCL8 and NT-proBNP; (D) correlation analysis between

CXCL8 and LVEDD; (E) correlation analysis between CLU and LVEF; (F) correlation analysis between CXCL8 and LVEF; (G) correlation analysis

between FOS and NT-proBNP; (H) correlation analysis between FOS and LVEDD; (I) correlation analysis between FOS and LVEF.
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enrichment in the KEGG analysis of DEGs, suggesting the TLR

signaling pathway as a crucial pathway in the progression of

HFpAMI. TLRs function as primary receptors of the innate

immune system, triggering innate immune defense through

interactions with pro-inflammatory pathways, thus contributing

to the onset and exacerbation of inflammatory diseases. Reports

indicated that following myocardial infarction, necrotic

myocardial cells and damaged extracellular matrix released

danger signals (27). Throughout HF progression, various TLRs

engaged across diverse cardiovascular tissues and cells,

amplifying the inflammatory response. Among these receptors,

TLR4 stood out as one of the most abundantly expressed and

extensively studied receptors in myocardial injury (28). MyD88,

an adaptor protein, constitutes a vital element of the TLR4

signaling pathway. Upon TLR4 activation, MyD88 associates with

TLR4, subsequently initiating downstream signaling pathways

such as NF-κB and MAPK, thereby instigating inflammatory

responses and modifications in cellular function (29). The

potential of the TLR4/MyD88 signaling axis as a preventive or

therapeutic strategy for HFpAMI is increasingly gaining

attention. Subsequently, in our cohort, we conducted an

exploration of the TLR4/MyD88 signaling axis in the

pathological process of HFpAMI using RT-qPCR methods,

revealing significantly elevated expression levels of TLR4 and

MYD88 in PBMC samples from the HFpAMI group compared

to the non-HF group. We hypothesized that these dysregulated

genes related to PBMCs may contribute to the pathogenesis of

HFpAMI by mediating the TLR4/MyD88 signaling axis.

Recent research has increasingly emphasized the pivotal role of

immune cell infiltration in the development and progression of

heart failure subsequent to myocardial infarction (7). The

increase in neutrophils and decrease in CD4T lymphocytes have

been demonstrated to be correlated with the mortality rate

among AMI patients (30). In our investigation, we utilized the

CIBERSORT algorithm to confirm the link between heightened

peripheral neutrophils and reduced peripheral CD4T cells with

the progression of HFpAMI, consistent with previous research,

thereby validating the reliability of CIBERSORT. Previous

research has suggested the correlation between white blood cell

count and its subtypes with the progression of AMI. During the

acute phase, increased white blood cells are frequently concurrent

with AMI, correlating with the degree of necrosis, coronary

artery inflammation, and systemic inflammation. Specifically,

immediate neutrophil activation occurs post-AMI, with

neutrophils being the primary leukocytes detected in infarcted

myocardium (31). Given that HF is a severe AMI complication,

timely and accurate prediction of HFpAMI is crucial. Arlier

studies have demonstrated an independent positive association

between increased neutrophil count and larger infarction area,

mechanical complications, and mortality rates in AMI patients

(32). The role of CD4T cells in HFpAMI is a current research

focus. Previous studies have confirmed that a reduction in

lymphocytes is a common phenomenon in the acute phase of

AMI, especially the decrease in CD4T cell count closely

associated with AMI (33). Additionally, the reduction in

lymphocytes and specific CD4 counts is correlated with a low

ejection fraction, high degree of myocardial necrosis, and

mortality rate in AMI patients (34). In this study, we verified

through clinical samples that HFpAMI patients exhibited a

significant decrease in CD4T cell concentration compared to the

non-heart failure patients, accompanied by an increase in

neutrophils counts. These findings suggested that the influence of

HFpAMI on peripheral immune cells may be more substantial

than previously assumed, necessitating further research to

elucidate the potential role of these immune cells in HFpAMI.

Macrophages play a critical role in myocardial tissue injury and

repair processes, being involved in the complete process of

ventricular remodeling after AMI, exerting significant regulatory

control from the initial phase of inflammation to the fibrotic

remodeling stage (35). Macrophages initially exhibit a pro-

inflammatory M1 phenotype, succeeded by an anti-inflammatory

M2 phenotype, with these phenotypes demonstrating a time-

dependent pattern and exerting distinct or even contradictory

roles in various post-AMI stages. During the fibrotic repair phase

and stable proliferation phase following AMI, prevailing anti-

inflammatory M2 macrophages counteract M1 macrophages,

releasing anti-inflammatory, pro-angiogenic, and reparative

factors. They actively engage in generating myocardial fibrosis

and facilitating tissue repair (36). For instance, in IL-13-knockout

myocardial infarction mice, a reduction in M2 macrophages

resulted in increased myocardial fibrosis and worsened heart

function (37). Regrettably, within our dataset and clinical cohort,

we did not identify any distinct differences in M1 and M2

macrophages between HFpAMI and non-HF PBMC samples. As

we further explored the relationship between three potential

diagnostic biomarkers and immune cells, our investigations

revealed a significant negative correlation between CLU, FOS,

CXCL8 in PBMC samples from HFpAMI patients and the

concentration of M2 macrophages, along with a significant

positive correlation with neutrophil count. Consequently, we

suggested that CLU, FOS, CXCL8 might contribute to the onset

and progression of HFpAMI by modulating various immune

cells. However, these hypotheses required further research to

unravel the intricate interplay between genes and immune cells.

This study has several limitations. Firstly, the limited number of

samples in the validation cohort and the absence of follow-up

information might introduce bias in the results and limit the

diagnostic ability of gene detection for prognosis. Secondly,

although certain immune cell dysfunctions were identified in line

with previous studies, the specific roles of these immune cells and

the underlying molecular events during the progression of

HFpAMI remain insufficiently characterized. Future studies will

aim to elucidate the dynamics of immune cell populations, such as

macrophages, by integrating spatial transcriptomics or cardiac

tissue-specific analyses. Thirdly, CIBERSORT deconvolution relies

on the LM22 reference matrix, which may not fully resolve rare

PBMC subsets (e.g., plasmacytoid dendritic cells) or account for

activation state heterogeneity; this could affect immune infiltration

precision despite our stringent quality control. Fourthly, although

we linked CLU/FOS/CXCL8 to neutrophil infiltration and M2

macrophage reduction, their precise mechanistic roles in HFpAMI

progression, such as whether CLU/FOS/CXCL8 directly drives
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neutrophil recruitment or indirectly modulates inflammation,

remain unresolved. Finally, the PBMCs-related DEGs were solely

confirmed in clinical samples without demonstration of their

potential functions in cellular or animal models of HFpAMI.

These limitations highlight the need for multicenter cohorts,

mechanistic experiments, and head-to-head comparisons with

existing biomarkers to establish clinical superiority.

5 Conclusions

In this study, we have successfully identified three PBMCs-

related feature genes (CLU, FOS, CXCL8) using comprehensive

bioinformatics analysis and machine learning algorithms. These

genes have shown a potential to serve as diagnostic biomarkers

for HFpAMI patients. Furthermore, we noticed that naive CD4T

cells, and neutrophil may be correlated with the occurrence and

progression of HFpAMI, while a significant correlation between

CLU, FOS, CXCL8 and M2 macrophages, neutrophil count.

Overall, our findings may provide new insights into the

pathogenesis and diagnosis of HFpAMI. Further in vitro and in

vivo studies are imperative to elucidate the potential mechanisms

of these pivotal genes in HFpAMI.
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