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Background: Wearable electrocardiogram (ECG) monitoring devices that utilize 

single-lead ECG technology have become valuable tools for identifying 

paroxysmal atrial fibrillation (AF). This study aimed to develop a machine 

learning (ML) algorithm to predict new-onset AF by training it on single-lead 

data extracted from 12-lead ECG recordings.

Methods and results: Patients who underwent 12-lead ECG between January 

2010 and December 2021 were classified into two groups based on a review 

of their medical records and diagnostic codes: the AF group and the normal 

group. An ML model was created using single-lead ECG data, excluding three 

augmented leads, and incorporating 60 calculated statistical variables for 

each of the remaining single leads. The model’s performance was assessed 

using several metrics, including the area under the receiver operating 

characteristic curve (AUROC), sensitivity, specificity, accuracy, and F1 score. 

We trained the ML model on 248,612 ECGs collected from 106,606 patients, 

of whom 11,810 had definite AF. Among the single-lead machine learning 

models developed from each of the nine individual leads, lead 

I demonstrated the best performance. The AUROC of the single-lead ECG ML 

model using lead I was 0.801, while the AUROC of the 12-lead ECG ML 

model was 0.816.

Conclusion: The single-lead ECG ML model has shown promise in predicting 

new-onset atrial fibrillation (AF), particularly with lead I. Its performance is 

comparable to that of the 12-lead model.
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Introduction

Atrial fibrillation (AF) is a common arrhythmia that increases the risks of stroke and 

heart failure and imposes a substantial healthcare burden (1–3). Although AF is 

traditionally diagnosed with 12-lead electrocardiograms (ECGs) or Holter monitoring, 

its paroxysmal nature means many cases remain undetected until complications occur. 
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Predicting AF before clinical manifestation could enable earlier 

intervention and reduce adverse outcomes (4).

Recent advancements in healthcare technology have 

introduced single-lead electrocardiogram (ECG) monitoring 

devices, which are transforming the detection and management 

of arrhythmias (5, 6). These devices allow for continuous or 

event-triggered recordings, making them particularly effective in 

diagnosing paroxysmal episodes of AF, which are often difficult 

to detect (7). Nevertheless, current diagnostic strategies remain 

imperfect, leaving a subset of patients at risk of missed 

diagnoses and unclear follow-up pathways (8). Contemporary 

guidelines therefore recommend prolonged, non-invasive ECG- 

based screening in selected populations (9).

Concurrently, Artificial intelligence–enabled electrocardiography 

(AI-ECG) has emerged as a transformative approach for early 

detection and prediction of atrial fibrillation (AF), particularly 

within outpatient and remote-monitoring pathways (10, 11). By 

learning subtle signatures of atrial remodeling from routine 

ECGs—including single-lead tracings—AI can identify 

individuals at risk before AF is documented, enabling scalable 

screening and risk-stratified follow-up (12).

In this context, we investigate prediction from single-lead 

ECGs derived from standard 12-lead recordings. Specifically, we 

(i) evaluate how AF-prediction performance varies when each 

individual lead is trained separately, and (ii) compare single-lead 

models with our previously developed 12-lead AI model (13).

Methods

Collection of ECG data

All standard 12-lead ECGs obtained from patients aged 18 

years and older at Samsung Medical Center between January 

2010 and December 2021 were selected for this study. The 

ECGs were conducted using Philips ECG instruments 

(PageWriter TC70, TC50, TC30, and Trim III) at a sampling 

rate of 500 Hz. Each recording lasted 10 s and had a resolution 

of 5 µV. The raw data were stored in XML (Extensible Markup 

Language) format. Out of the 12 leads, only 9 were used in the 

analysis, excluding the augmented leads (aVR, aVL, and aVF), 

which are derived from other limb leads.

A database of ECGs was created from all collected records, 

which were labeled based on readings from trained physicians 

and cardiologists. The research protocol was approved by the 

Samsung Medical Center Institutional Review Board, which also 

granted a waiver for informed consent in accordance with our 

institutional ethics policy.

For external validation, 12-lead ECG data from Wonju 

Severance Hospital, recorded using a General Electric ECG 

machine, were utilized. In the ECG data from Wonju Severance 

Hospital, lead III data was unusable. Therefore, a total of eight 

leads, excluding the three augmented leads and lead III, 

were utilized.

Identifying study groups

All cases underwent a thorough review of medical records and 

diagnostic codes. A diagnosis of definite AF was assigned only to 

those patients who had a documented AF ECG, whether from a 

12-lead ECG or Holter monitoring, along with a confirmed AF 

diagnosis in medical records or diagnostic codes. All patients in 

this study were classified into either an AF group or a normal 

group based on the established criteria for definite AF. The 

index date for AF was defined as the earliest date on which AF 

was diagnosed, based on the available ECG records and 

medical documentation.

The exclusion criteria for this study were as follows: (1) 

patients who had a diagnosis of AF documented in their 

medical records or recorded with a diagnostic code for AF prior 

to the index AF ECG, (2) patients who did not have a normal 

sinus rhythm (NSR) ECG before the index AF ECG, (3) patients 

who had only one NSR ECG, (4) patients with a medical record 

or diagnostic code indicating AF but without an AF ECG, (5) 

patients with insufficient medical records to assess their medical 

status, and (6) patients with abnormal ECGs (defined as any 

ECG not labeled as NSR or within the normal range). The 

ECGs of all patients who were not excluded were included in 

this study.

Machine learning model development

The analysis of ECGs began with the identification of the onset 

of the P wave, which is the first wave of the cardiac cycle. The ECG 

signals were then processed using a band-pass filter (0.5–45 Hz) to 

eliminate unwanted artifacts, such as baseline wandering and 

power line interference. Next, all components of the P-QRS-T 

waves—specifically the peaks, intervals, and segments—were 

detected and located using Neurokit2, an open-source Python 

package designed for neurophysiological signal processing. From 

the extracted P-QRS-T components, we calculated descriptive 

statistics that served as input features for our models. In 

particular, we focused on the mean, minimum, maximum, and 

standard deviation of the peaks, intervals, segments, and 

durations. To better capture the shape of the P wave in our 

model, we isolated the P wave from the P-off to the P-on point 

and calculated its skewness and kurtosis. This allowed us to 

quantify how skewed and peaked the P wave was. Additionally, 

we computed the changes between successive peaks, intervals, 

and durations to capture the variability of the ECG waves. 

Incorporating further details, we added correlation statistics, 

which comprised the average of the beat-wise Pearson 

correlation coefficients between a template beat and other beats, 

as well as f-wave indices to include information related to AF. 

Descriptive statistics of heart rate variability were also included 

to provide more context from the ECG data. All features were 

extracted from all 12 leads of the ECG. For both single-lead and 

12-leads ECG models, we employed a light gradient boosting 

machine (LGBM) algorithm. This machine learning (ML) 
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algorithm is based on gradient boosting decision trees. LightGBM 

hyperparameters were optimized via Bayesian optimization using 

the bayes_opt Python library under patient-level cross-validation, 

targeting PR-AUC with early stopping. The optimized 

configuration with the highest mean CV PR-AUC was retained; 

a baseline untuned LightGBM was trained under identical 

folds for comparison. No external data were used for model 

selection (Figure 1).

To preclude information leakage, we performed patient-level 

splitting so that no recordings from the same individual 

appeared across development and evaluation folds. All 

preprocessing (e.g., scaling/filters) was fit on the training fold 

only and applied unchanged to validation/test data. 

Hyperparameter tuning and threshold selection were confined to 

the validation fold within a nested cross-validation scheme; 

probability calibration (Platt/isotonic) was fitted on training/ 

validation only and not on the test set.

Statistical analysis

All statistical analyses were performed using R statistical software 

(version 4.2.1) and Python (version 3.8). Continuous variables are 

presented as mean values with standard deviations (SDs), while 

categorical variables are shown as numbers of patients with 

corresponding percentages. To compare the means of two 

continuous variables, we employed Student’s t-test, and for 

categorical variables, we used Pearson’s Chi-square test. Additionally, 

receiver operating characteristic (ROC) analysis was conducted to 

assess the performance of the developed ML models. Statistical 

significance was determined using a two-tailed p-value of less than 0.05.

Results

A total of 2,162,637 ECGs were identified from 894,356 adult 

patients. Out of these, 1,914,025 ECGs from 787,750 patients were 

excluded based on the study criteria (Figure 2). Ultimately, the 

machine learning model was trained on 248,612 ECGs from 

106,606 patients, of which 11,810 were identified as definite AF 

cases. The mean age of patients in the normal group was 

56.1 ± 13.7 years, while the mean age in the AF group was 

65.4 ± 12.8 years (Table 1). Additionally, the proportion of males 

was significantly higher in the AF group compared to the 

normal group, with 50.2% of males in the AF group vs. 47.4% 

in the normal group (p < 0.001).

The performance of each single-lead model for AF prediction 

is presented in Table 2. The AUROC (area under the receiver 

operating characteristic curve) for the single-lead model from 

lead I was 0.872, indicating it had the highest performance 

among the nine leads, followed by V6 (0.865) and lead II 

(0.862) (Table 2 and Figure 3). However, there was no 

significant difference in the performance of AF prediction across 

the 9 leads. The results from the external validation were 

comparable to those from the internal validation. The AUROC 

for lead I was the highest at 0.801, followed by leads II (0.793) 

and V4 (0.786) (Table 3).

The AUROC of the single-lead (lead I) model was 0.872, while 

the AUROC of the 12-lead model was 0.905 (single-lead vs. 

12-lead model: sensitivity 0.776 vs. 0.800; specificity 0.800 vs. 0.839; 

positive predictive value 0.448 vs. 0.510; negative predictive value 

0.945 vs. 0.952; F1 score 0.568 vs. 0.623) (Table 4). The external 

validation results were comparable to internal validation (single- 

lead vs. 12-lead model: sensitivity 0.826 vs. 0.752; specificity 0.642 

vs. 0.756; accuracy 0.820 vs. 0.885; F1 score 0.756 vs. 0.754; 

AUROC 0.801 vs. 0.816) (Table 4 and Figure 4). The 12-lead 

model showed a small numerical advantage over the single-lead 

models, but the differences were modest, and overall performance 

was broadly comparable.

Discussion

We developed ML algorithms for predicting atrial fibrillation 

using single-lead data derived from 12-lead ECGs. Among the 

FIGURE 1 

Development of a machine learning model using single-lead ECG.
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FIGURE 2 

Flow diagram for patients and ECGs selection.

TABLE 1 Baseline characteristics.

Variable Overall (n = 106,606) NSR group (n = 94,796) AF group (n = 11,810) P-value

Age, years 57.0 ± 13.9 56.1 ± 13.7 65.4 ± 12.8 <0.001

Male, n (%) 50,902 (47.7) 44,978 (47.4) 5,924 (50.2) <0.001

Number of ECGs per patient 2.3 ± 2.3 2.2 ± 1.9 3.6 ± 4.2 <0.001

NSR, normal sinus rhythm; AF, atrial fibrillation; ECG, electrocardiogram.
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single-lead model developed using each of the nine individual 

leads, excluding augmented leads, lead I showed the best 

performance. However, this difference was not significant, and 

the results were consistent in external validation. Our findings 

indicate that the AUROC for the single-lead model is 0.801, 

which is promising, particularly when compared to the 12-lead 

model that achieved an AUROC of 0.816. Although the 

performance of the single-lead model is slightly lower, its 

clinical significance is noteworthy. Single-lead ECGs, commonly 

available in wearable devices and portable monitors, provide a 

TABLE 2 Performance of AF prediction of each single lead model (internal validation).

Lead AUROC Sensitivity Specificity PPV NPV F1 score

Lead I 0.872 0.776 0.800 0.448 0.945 0.568

Lead II 0.862 0.764 0.797 0.440 0.942 0.559

Lead III 0.844 0.740 0.783 0.417 0.935 0.533

Lead V1 0.849 0.762 0.774 0.414 0.940 0.536

Lead V2 0.855 0.769 0.780 0.422 0.942 0.545

Lead V3 0.855 0.765 0.780 0.420 0.941 0.543

Lead V4 0.855 0.764 0.785 0.427 0.941 0.548

Lead V5 0.860 0.770 0.788 0.431 0.942 0.553

Lead V6 0.865 0.776 0.786 0.432 0.944 0.555

AF, atrial fibrillation; AUROC, Area Under the Receiver Operating Characteristic Curve; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 3 

Comparison of AF prediction performance between each single-lead.

TABLE 3 Performance of AF prediction of each single lead models (external validation).

Lead AUROC Sensitivity Specificity PPV NPV F1 score

Lead I 0.801 0.826 0.642 0.698 0.787 0.756

Lead II 0.793 0.702 0.748 0.736 0.715 0.719

Lead V1 0.761 0.754 0.642 0.678 0.723 0.714

Lead V2 0.775 0.632 0.780 0.742 0.679 0.683

Lead V3 0.772 0.748 0.700 0.714 0.735 0.731

Lead V4 0.786 0.732 0.708 0.715 0.725 0.723

Lead V5 0.775 0.776 0.652 0.690 0.744 0.731

Lead V6 0.782 0.736 0.684 0.700 0.722 0.717

AF, atrial fibrillation; AUROC, Area Under the Receiver Operating Characteristic Curve; PPV, positive predictive value; NPV, negative predictive value.
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convenient and accessible method for continuous heart rhythm 

monitoring. This accessibility is especially important in 

outpatient settings and for remote patient monitoring, as it 

allows for real-time assessment and early intervention.

Hygrell et al. demonstrated that a single-lead ECG algorithm, 

created using a handheld device that measures lead I, can serve as 

an effective screening tool for predicting AF, especially in 

population with a wider age distribution (14). Dupulthys et al. 

developed an AI model incorporating six clinical risk factors 

alongside a 10-s single-lead ECG, specifically using lead I (15). 

This single-lead ECG AI algorithm demonstrated performance 

comparable to that of a 12-lead ECG-based AI model in 

identifying subclinical AF. Single-lead, handheld intermittent 

ECG monitoring devices that use lead I are currently widely 

used. Our research suggested that predicting AF using single 

lead ECG monitoring based on lead I is feasible.

Population-based screening for AF in individuals over 65 years 

old, using Holter monitors and single-lead ECGs, has shown a low 

diagnostic yield (16, 17), and evidence supporting its cost- 

effectiveness is limited (18, 19). However, AF prediction with 

the single-lead model can be utilized as a preliminary screening 

tool to identify patients who need further evaluation. Therefore, 

selecting patients who require longer ECG monitoring with the 

single-lead AI model could help reduce healthcare costs while 

also potentially improving cost-effectiveness. The ultimate goal 

of AF screening is to reduce preventable stroke events by 

TABLE 4 Performance of AF prediction of 12-leads ECG model.

Validation cohort AUROC Sensitivity Specificity PPV NPV F1 score

Internal validation 0.905 0.800 0.839 0.510 0.952 0.623

External validation 0.816 0.752 0.756 0.755 0.753 0.754

AF, atrial fibrillation; AUROC, Area Under the Receiver Operating Characteristic Curve; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4 

Comparison of AF prediction performance between single-lead and 12-lead.

Choi et al.                                                                                                                                                               10.3389/fcvm.2025.1612750 

Frontiers in Cardiovascular Medicine 06 frontiersin.org



selecting patients with subclinical or high-risk new-onset AF 

followed by anticoagulation therapy. Recently, several studies 

reported that AF screening using novel ambulatory ECG 

monitoring devices such as Zio Patch, Kardia mobile, and Apple 

watch resulted in a higher rate of AF diagnosis (20–22). 

Notably, a microsimulation decision-analytic model showed that 

AF screening using these wearable devices is cost-effective (23).

The current study has several limitations. First, it excluded 

three augmented leads (aVR, aVL, and aVF), which could 

provide additional insights, limiting the analysis to 9 out of the 

12 standard leads. Second, performance metrics for the external 

validation dataset were lower than those for internal validation, 

indicating potential variations in patient populations or data 

quality. While the machine learning model was trained on a 

large dataset of 248,612 ECGs, there is a risk of overfitting due 

to the model’s complexity. Third, we did not employ synthetic 

oversampling/undersampling. Finally, the study lacks long-term 

patient follow-up, which is necessary to evaluate the real-world 

impact on outcomes like atrial fibrillation-related complications. 

Long-term randomized controlled studies are essential for 

assessing the effectiveness of early AF detection and intervention.

Future research should aim to improve the performance of 

single-lead ECG algorithms to make them more comparable to 

12-lead models. This may involve incorporating additional 

features, such as demographic and clinical variables, to increase 

prediction accuracy. Additionally, long-term large-scale 

randomized controlled studies that evaluate the impact of single- 

lead ECG monitoring on patient outcomes and healthcare 

utilization are crucial for understanding its full potential in 

clinical practice.

Conclusion

A single-lead ECG ML model has shown promise in 

predicting new-onset AF, particularly when using lead I. The 

performance of the single-lead model is comparable to that of 

the 12-lead ML model. Implementing this technology in a 

single-lead ECG patch monitoring device could enhance the 

screening of AF in the general population.
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