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The escalating recognition of perivascular adipose tissue (PVAT) as a molecular

nexus in cardiovascular disease (CVD) pathogenesis necessitates a

comprehensive synthesis of its spatiotemporal dynamics and therapeutic

potential. This review synthesizes PVAT’s roles in vascular inflammation,

metabolic dysregulation, and emerging diagnostic strategies, emphasizing

molecular cross-talk and spatial heterogeneity. We explore PVAT’s molecular

interactions in obesity, diabetes, and hypertension, elucidating its contribution

to inflammation, oxidative stress, and endothelial dysfunction. Advanced

imaging techniques, notably the perivascular fat attenuation index (FAI) and

circulating biomarkers, are highlighted for early CVD detection. Novel

therapeutic strategies, including lifestyle modifications, pharmacological

interventions, and gut microbiota modulation, are discussed. Finally, we

emphasize multi-omics approaches and propose a roadmap bridging basic

and clinical research to advance PVAT-based CVD management.
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1 Introduction

Perivascular adipose tissue (PVAT) is of paramount

importance as it closely surrounds blood vessels and releases a

variety of active substances through paracrine and autocrine

mechanisms (1, 2). PVAT is essential in the complex process of

regulating vascular tension, which is vital for the proper

functioning of the cardiovascular system. By maintaining the

elasticity of blood vessels, PVAT ensures that they can efficiently

accommodate the flow of blood, adapting to changes in pressure

and volume (3). Furthermore, PVAT is involved in the intricate

processes of lipid and energy metabolism, highlighting its

importance in the body’s overall metabolic functions (4). In

addition to these roles, PVAT also plays a significant part in

regulating inflammation and immune responses, demonstrating

its multifaceted contributions to both vascular health and

systemic metabolism (5).

Conversely, under pathological conditions such as obesity

and diabetes, PVAT function becomes impaired. The secretion

of active substances becomes unbalanced, leading to excessive

release of inflammatory factors and disordered immune

regulation (6, 7). This dysfunction contributes to impaired

vascular endothelial function, accelerated atherosclerosis, and a

series of vascular pathologies, thereby becoming a significant

driving factor in the onset and progression of cardiovascular

diseases (CVDs), which profoundly impacts overall health and

disease processes (8–10). The recently discovered role of

PVAT as a modulator of circadian rhythms—via

Bmal1-dependent secretion of heme-binding protein—links

nocturnal blood pressure dipping to adipose redox cycles (11),

thereby offering mechanistic insights into cardiovascular

events related to morning surges.

Although the significance of PVAT in both cardiovascular

physiological and pathological processes has gained increasing

recognition; however, current research in this area continues

to encounter several limitations. This review challenges three

prevailing assumptions: (1) Homogeneity Fallacy: PVAT is not

a monolithic entity; rather, it represents a mosaic of adipocyte

subtypes and immune niches characterized by distinct spatial

metabolic programming. (2) Paracrine-Centric View:

Mechanotransduction through the extracellular matrix-integrin

signaling of PVAT may be as significant as soluble factors in

contributing to vascular stiffening. (3) Therapeutic Neutrality:

The PVAT-specific effects of current anti-diabetic drugs

remain unquantified, which poses a risk of off-target

consequences. By integrating single-cell omics, advanced

imaging techniques, and data from interventional trials, we

propose a novel framework for PVAT-centric cardiovascular

therapeutics—one that emphasizes depot-specific targeting,

optimization of circadian rhythms, and modulation of the

microbiome-adipose axis.

2 Paracrine effects and bi-directional
cross-talk of PVAT in cardiovascular
function

2.1 Anatomical location and cellular
composition

Anatomically, PVAT surrounds most large blood vessels,

excluding the pulmonary and brain vasculature and the

microcirculation (12, 13). PVAT is specifically designated as

adipose tissue that resides within a radial distance equivalent

to the vessel’s own width, measured from the outer wall of a

blood vessel. When dealing with vessels exceeding a diameter

of 2 cm, notably the aorta, PVAT can expand up to a

maximum of 2 cm away from the vessel wall (1). This tissue is

intimately associated with blood vessels, forming a distinct

layer encircling the adventitia. Its distribution patterns vary

considerably, contingent upon the vessel’s location and size.

Notably, in larger arteries like the aorta, PVAT can constitute

a substantial depot, whereas in smaller vessels, it may manifest

as a thinner, more delicate layer. In rodents, the PVAT

surrounding the thoracic aorta consists of brown adipose

tissue (BAT), whereas the PVAT around the abdominal aorta

is made up of a combination of white adipose tissue (WAT)

and a portion of BAT (14, 15). In humans, the phenotype of

thoracic aortic PVAT is characterized as brown. In the case of

neonates and during the early developmental stages, human

epicardial adipose tissue (EAT) exhibits both morphological

and functional characteristics that closely resemble those of

BAT. This similarity is particularly significant in the context

of early life. However, under typical physiological conditions,

the brown fat-like attributes of EAT diminish considerably as

a person ages, transitioning from childhood into adulthood.

This decline highlights the dynamic nature of PVAT and its

changing roles throughout the life course (16, 17).

Cellularly, PVAT harbors adipocytes, macrophages,

neutrophils, dendritic cells, mast cells, eosinophils, T cells,

B cells, and various other cell types. These cells interact to

maintain the functionality and microenvironmental homeostasis

of PVAT (18) (Figure 1A). The adipocytes can be white, brown,

or beige, each with unique characteristics and functions, BAT

and beige fat function differently than WAT (Table 1). While

WAT mainly acts as an energy reservoir, accumulating surplus

chemical energy in the form of triacylglycerol (TAG), both BAT

Abbreviations

PVAT, perivascular adipose tissue; CVDs, cardiovascular diseases; BAT, brown

adipose tissue; WAT, white adipose tissue; EAT, epicardial adipose tissue;

TAG, triacylglycerol; snRNA-seq, single-nucleus RNA sequencing; UCP1,

uncoupling protein 1; ROS, reactive oxygen species; AMPK, adenosine

monophosphate-activated protein kinase; 4-HNE, 4-hydroxynonenal; PPAR,

peroxisome proliferator-activated receptor; T2DM, type 2 diabetes mellitus;

IL-6, interleukin-6; TNF-α, tumor necrosis factor-alpha; EVs, extracellular

vesicles; ESCRT, endosomal sorting complex required for transport; MVBs,

multivesicular bodies; Nrg4, neuregulin-4; RAAS, renin-angiotensin-

aldosterone system; IFN-γ, interferon-gamma; IL-17, interleukin-17; CT,

computed tomography; FAI, fat attenuation index; CCTA, coronary computed

tomography angiography; AI, artificial intelligence; MRI, magnetic resonance

imaging; PET, positron emission tomography; VAT, visceral adipose tissue;

GLP-1, glucagon-like peptide-1; SGLT2-i, sodium-glucose cotransporter 2
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and beige fat are noted for their elevated metabolic activity,

employing chemical energy for the generation of heat (24). The

thermogenic capacity of BAT and beige fat plays an essential role

in sustaining body temperature regulation, achieving energy

equilibrium, and managing body weight (25). PVAT’s role

transcends its anatomical proximity to vasculature, functioning as

a dynamic signaling interface with depot-specific

molecular signatures.

Recent single-nucleus RNA sequencing (snRNA-seq) analyses

reveal three distinct adipocyte subpopulations in human thoracic

PVAT: uncoupling protein 1(UCP1) thermogenic, ADIPOQ

endocrine, and fibro-inflammatory adipocytes—each exhibiting

unique vascular crosstalk patterns (24, 26–30). Notably, In

murine models, periaortic PVAT demonstrates higher

mitochondrial density compared to mesenteric depots, correlating

with enhanced fatty acid oxidation and reactive oxygen species

(ROS) buffering capacity (31). This spatial metabolic

specialization challenges the traditional dichotomy between white

and brown adipocytes, suggesting that PVAT exists as a

continuum of plastic phenotypes. Furthermore, it contests the

conventional viewpoint of the “Homogeneity Fallacy”

regarding PVAT.

2.2 PVAT in normal vascular physiology:
paracrine and endocrine effects

PVAT releases a variety of bioactive molecules, including

adipokines (32), cytokines (33), and growth factors (34). Studies

conducted in animal models have demonstrated that these

molecules can influence vascular function through endocrine or

paracrine mechanisms. Under normal physiological

circumstances, PVAT has a net effect of vasodilation,

antioxidation, and anti-inflammation on the blood vessels. The

vasodilatory function is influenced by the secretion of various

factors from adipocytes, which are specialized cells in adipose

tissue. Among these factors are adiponectin (35), apelin (36),

leptin (37), and omentin (38), each playing a significant role in

the regulation of vascular tone. These bioactive compounds

contribute to vasodilation through two primary mechanisms.

Secondly, they may indirectly promote the production of

endothelium-derived vasodilators, including nitric oxide (NO)

and the endothelium-derived hyperpolarizing factor. This results

in enhanced blood circulation and improved vascular

performance. Animal experiments have confirmed this effect

(39). Interestingly, differences have been observed among various

FIGURE 1

(A) The cellular composition of perivascular adipose tissue (PVAT) includes adipocytes, macrophages(M2), neutrophils, dendritic cells, mast cells,

eosinophils, T cells, B cells, and various other cell types. (B) Balance of anti-inflammatory and pro-inflammatory adipokines. (C) Leptin, resistin,

RBP4, TNF-αand IL-6 can activate the JNK, NF-κB, and JAK-STAT pathways, leading to insulin resistance. (D) Pro-inflammatory factors contribute

to endothelial cell dysfunction, as well as the migration of vascular smooth muscle cells and monocytes, ultimately leading to atherosclerosis. (E)

The reduction of adiponectin, Ometin, and H2S, alongside the increase in TNF-α, IL-6, and resistin, contributes to increased arterial stiffness and

vascular tone. This biochemical imbalance promotes the secretion of renin and activates the RAS system, ultimately resulting in hypertension.
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ethnic groups (40). This intricate interplay underscores the

importance of adipocyte-derived factors in maintaining vascular

health and regulating blood pressure. The paracrine functions of

adipocytokines released from PVAT exhibit significant

antioxidant and anti-inflammatory properties. These effects may

be mediated by activating the 5′adenosine monophosphate-

activated protein kinase (AMPK) and NO signaling pathways in

nearby blood vessels. In mouse experiments, the downregulation

of AMPK inhibits the synthesis of NO, which lead to a reduction

in the anti-contraction activity PVAT and a decrease in the BAT

phenotype (31). This interaction suggests that the release of

adipokines from PVAT not only influences the local vascular

environment but also plays a crucial role in modulating vascular

health. By engaging these signaling mechanisms, adipokines

contribute to the maintenance of vascular homeostasis,

potentially offering protective benefits against inflammatory

processes and oxidative stress in the surrounding tissues (41).

PVAT is crucial in the intricate two-way communication with

the vascular wall (Table 2). Through this interaction, PVAT can

react to paracrine signals released by the vascular cells, resulting

in phenotypic alterations in the adipocytes located within the

PVAT. As a result of these alterations, the composition of the

secretory products released by PVAT is modified. These secretory

products subsequently exert paracrine effects on the vascular wall

itself, influencing its function and behavior (18, 60). It plays a

crucial role in maintaining vascular health by secreting a variety

of vasoactive factors. These factors encompass a diverse range of

substances, including (61–63). Through the release of these

biologically active molecules, PVAT contributes to the

modulation of vascular functions, which can influence processes

such as blood flow and vascular tone (18, 64). Under conditions

of heightened oxidative stress in the vascular system, substances

resulting from lipid peroxidation, such as 4-hydroxynonenal

(4-HNE), are emitted by the walls of blood vessels (65). The

substances infiltrate the adjacent PVAT, subsequently activating

signaling pathways associated with peroxisome proliferator-

activated receptor (PPAR)-γ in the perivascular adipocytes. This

activation leads to elevated levels of adiponectin expression and

release from PVAT, an essential factor for diminishing oxidative

stress in blood vessels, acting as a protective mechanism against

oxidative damage in the vascular environment (66, 67).

The balance between adipokines may be crucial in determining

the overall impact of PVAT on cardiovascular health (Figure 1B).

Understanding the complex interactions among these factors

could yield new insights into the pathophysiology of obesity-

related CVD and inform the development of novel treatment

strategies. Adiponectin, a vasodilatory adipokine primarily

secreted by adipocytes, plays an important role in the anti-

contractile function of PVAT and is significant for regulating

insulin sensitivity and glucose metabolism (68). In instances of

obesity, the levels of plasma adiponectin decrease, which aids in

the progression of hypertension (69), atherosclerosis (70), and

diabetes (71). Leptin is another prominent adipokine that plays a

crucial role in regulating appetite and body weight (72). In

instances of obesity, there is an increase in leptin secretion;

nonetheless, it is common for individuals to develop resistance to

leptin (73). Leptin is capable of promoting vasodilation via

mechanisms that rely on the endothelium as well as those that

do not. In contrast, consistently elevated leptin levels may

contribute to vasoconstriction (74, 75). Additionally, high levels

of leptin have been associated with obesity-related conditions,

including myocardial infarction (76, 77) and stroke (78). Apelin

expression increases in obesity and interacts with the abnormal

function of PVAT during the onset and progression of CVD,

such as hypertension (79) and atherosclerosis (80). Visfatin is

highly secreted by VAT and PVAT, and it appears to play a role

in atherosclerosis while being associated with a vasopressor effect

(81). Omentin is an adipokine that possesses both anti-

contractile and anti-inflammatory characteristics. It enhances the

bioavailability of NO, exhibits antioxidant properties, and

provides protective effects against ischemic stroke by improving

atherosclerosis (82, 83).

In addition to adipokines, PVAT also secretes various other

factors, including cytokines, growth factors, and gaseous

messengers. These factors can influence vascular function and

play a role in the pathophysiology of CVDs. For instance,

TABLE 1 Distribution and functionality of white, beige, and brown adipocytes.

Comparison
items

White adipocytes Beige adipocytes Brown adipocytes

Morphological

features

Contain a large lipid droplet occupying most of

the cell volume, with a flattened nucleus in a

“half-moon” shape (19)

Have some small lipid droplets, more

mitochondria, and the nucleus is in the center of

the cell (19)

Have multiple small lipid droplets, abundant

and large mitochondria, and a round nucleus in

the center of the cell (19)

Distribution location Widely distributed in subcutaneous tissue and

around internal organs

Mainly in subcutaneous WAT and a small

amount in other parts

Mainly in neck, shoulders, clavicle, around

spine, between scapulae, adrenal glands, etc.

Main function Store energy Have both energy storage and thermogenic

functions, and can be activated for

thermogenesis under specific conditions

Generate heat by oxidizing fatty acids and other

substances to maintain body temperature

balance and consume energy

Thermogenic-related

proteins

Basically do not express UCP1 (20) Contain UCP1 but usually with low expression

and can be highly expressed under specific

stimuli (21)

Highly express UCP1 (21)

Impact on health Excessive amount can lead to obesity and

related chronic diseases (22)

Activation can help improve obesity and related

metabolic disorders

Beneficial to health, can stabilize blood sugar

and enhance insulin sensitivity, etc. (23)

Content in human

body

Most abundant. Between white adipocytes and brown adipocytes Less
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interleukin-6 (IL-6) (84) and tumor necrosis factor-alpha (TNF-α)

(85) are pro-inflammatory cytokines released from PVAT in

conditions such as obesity. Vascular inflammation, oxidative

stress, and dysfunction of the endothelium can be initiated by

these cytokines, which, in turn, play a role in the progression of

CVDs (86). Additionally, hydrogen sulfide (H₂S), a gaseous

messenger released from PVAT, exhibits antioxidant and

vasodilatory effects under physiological conditions (87). However,

in obesity and other pathological states, the production of H₂S

may be altered, resulting in modifications to vascular function

(88, 89). NO is a well-recognized vasodilator that plays a

significant role in mediating the anti-contractile effect in PVAT

(90). Initially, obesity may induce an adaptive increase in NO

levels; however, chronic obesity ultimately results in diminished

NO bioavailability (91). NO-dependent endothelial dysfunction is

a critical initial step in the development of CVDs, particularly in

the pathogenesis of atherosclerosis and hypertension (92).

Furthermore, NO dysfunction also impacts myocardial

remodeling (93). The above conclusions are mainly based on the

results of a large number of animal experiments.

Recent studies reveal that PVAT transfers functional

mitochondria to endothelial cells via extracellular vesicles (EVs),

primarily exosomes, thereby enhancing vascular bioenergetics

and redox balance (94–96). This intercellular mitochondrial

transfer is mediated through exosomal packaging mechanisms

regulated by the Endosomal Sorting Complex Required for

Transport (ESCRT) and Rab GTPase proteins, which facilitate

the formation of multivesicular bodies (MVBs) and subsequent

vesicle docking to recipient cells (97). Exosomes selectively

encapsulate mitochondria via “mitochondrial sorting” signals

involving syntaxin-17 and HSP90, ensuring functional organelle

delivery (98). However, the depot-specific efficiency, with

thoracic PVAT exhibiting greater efficacy than abdominal PVAT,

may arise from higher exosomal yield and enhanced

mitochondrial quality control (e.g., PINK1/Parkin-mediated

mitophagy) in thoracic depots (31). Notably, obesity disrupts this

process by inducing mitochondrial dysfunction (e.g., reduced

oxidative phosphorylation and mtDNA mutations) in transferred

organelles, while concurrently suppressing protective adipokines

such as Neuregulin-4 (Nrg4) (99). Nrg4, secreted by adipocytes,

attenuates metabolic inflammation by repressing pro-

inflammatory macrophage polarization and restoring T cell

function, thereby preserving PVAT homeostasis and exosomal

mitochondrial integrity (100). These findings challenge the

“Paracrine-Centric View” associated with PVAT and highlight

Nrg4 agonism as a potential strategy to counteract obesity-

induced mitochondrial transfer deficits.

2.3 Immune and inflammatory changes of
PVAT in pathological states

2.3.1 Obesity-induced PVAT remodeling and

immune dysregulation
Obesity profoundly alters the phenotype of PVAT,

characterized by white adipocyte hypertrophy and hyperplasia

within this depot (101–103). Excess body weight may also

promote the conversion of aortic BAT into a WAT-like

TABLE 2 Main bioactive components in PVAT: biological functions in the vascular bed.

Main bioactive
components

Specific
substances

Function Physiological role Pathological association

Adipokines Adiponectin Anti—inflammatory, enhance insulin

sensitivity, anti—athero (42)

Regulate metabolism, reduce inflammation,

maintain vascular health (43)

Linked to obesity, type 2 diabetes mellitus

(T2DM), CVD; low in obese (44)

SFRP5 Anti—inflammatory, regulate fat tissue

inflammation

Inhibit inflammation pathways in fat Related to obesity—related issues, useful

in anti—inflammation (45)

Omentin Anti—inflammatory, improve insulin

sensitivity.

Regulate inflammation, glucose uptake, and

metabolism

Changed in obesity/diabetes, a biomarker

and target (46)

Apelin Regulate cardio, angiogen, water—salt,

partly anti—inflammatory

Affect heart, blood vessels, fluid balance Linked to cardio diseases, obesity,

metabolic syndrome (47)

Leptin Regulate appetite/energy, anti—

inflammatory

Control weight, balance fat/energy,

reproductive/immune role

Obese have leptin resistance, related to

obesity/eating (48)

Chemerin Regulate fat cell, immune cell,

inflammation

Guide immune cells, affect fat cells in

immunity/metabolism

Linked to obesity, inflammation; levels up

in obese (49)

Visfatin Insulin—like, regulate blood sugar,

inflammation

Promote glucose uptake, regulate

inflammation

Related to obesity, insulin resistance,

diabetes (50, 51)

Resistin Maybe involved in insulin resistance,

pro—inflammatory

Affect insulin, blood sugar, and

inflammation

Linked to obesity and T2DM risk (52)

Wnt5a In fat cell metabolism/differentiation,

may regulate inflammation

Affect fat cell features, communication, and

signaling

Linked to fat metabolism issues like

obesity (53)

RBP4 Transport retinol, related to insulin

resistance, pro—inflammatory

Affect fat/liver metabolism, insulin signaling Linked to obesity, T2DM, metabolic

syndrome; risk factor (54)

Cytokines IL-6 (adipose) Pro—inflammatory Mediate adipose tissue response Elevated in obesity, related to CVD (55)

TNF-α (adipose) Pro—inflammatory Induce adipose inflammation Linked to insulin resistance, CVD (56)

Gas Messengers NO Relax vessels, regulate tone, immune Relax PVAT—related vessels Decrease in PVAT issues leads to

problems (57)

H₂S Relax vessels, anti—oxidant, anti—

inflammatory (58)

Protect PVAT, regulate tension Abnormal levels cause PVAT dysfunction

(59)
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phenotype (104). These adipocyte changes are metabolically

significant, as hypertrophy is linked to increased inflammation

and insulin resistance (105). Critically, obesity drives remarkable

shifts in the immune cell landscape of PVAT. Populations of

macrophages, neutrophils, dendritic cells, eosinophils, natural

killer cells, B cells, and T cells exhibit altered abundance and

function (2). Macrophages, the most extensively studied immune

component, increase in number and activation state

(polarization) during obesity, with a distinct shift towards pro-

inflammatory M1 over anti-inflammatory M2 polarization (106).

This M1 dominance is associated with insulin resistance and

hypertension (103). Additional immune cells also play a role in

the inflammatory response within PVAT, though they do so via

different mechanisms. For example, Neutrophils contribute to

early macrophage polarization through the release of CCL2 and

TNF in response to high-fat diets (107). Dendritic cells are found

in minimal quantities within the lean phenotype but are elevated

in specific adipose regions when exposed to a high-fat diet (107,

108). Additionally, mast cells in adipose tissue demonstrate an

increase during obesity, although not as prominently as

macrophages (109, 110). In contrast, eosinophils show a decline in

obesity, and their emerging function as potential key regulators of

metabolic stability is significant (111, 112). The combined

populations of B (113, 114) and T cells (115, 116) make up the

second largest group of immune cells located in adipose tissue,

following the macrophages found within this tissue. In the context

of obesity, there is a greater overall presence of T cells, with their

expression varying by depot (117). This dysfunctional state of

PVAT contributes to increased vascular tone, vessel stiffness,

activation of the renin-angiotensin-aldosterone system (RAAS),

and diminished anti-contractile effects, promoting peripheral

resistance and hypertension (118, 119).

2.3.2 Reciprocal interactions between diabetes
and PVAT

A complex bidirectional relationship exists between diabetes

and PVAT dysfunction. Hyperglycemia induces systemic

oxidative stress and the overproduction of ROS (120, 121), which

activate inflammatory pathways such as NF-κB. This activation

triggers the infiltration of inflammatory cells into PVAT and the

release of cytokines, including IL-6 and TNF-α (121, 122),

establishing a chronic inflammatory state. Concurrently,

dysfunction in PVAT adipocytes manifests as increased lipolysis

and the release of free fatty acids, which induce lipotoxicity

(123). While also reducing the secretion of the beneficial

adipokine adiponectin. This deficiency in adiponectin impairs

vascular function by decreasing NO bioavailability and increasing

endothelin-1, thereby disrupting the balance of vascular tone

(124). Conversely, dysfunctional PVAT actively contributes to the

pathogenesis of diabetes. Disrupted adipokine secretion (e.g.,

decreased adiponectin and elevated levels of leptin, resistin,

retinol binding protein 4, TNF-α, and IL-6) impairs insulin

sensitivity in peripheral tissues. Inflammatory factors such as

TNF-α and IL-6 interfere with insulin signaling by activating

serine kinases (e.g., via JNK, NF-κB, and JAK-STAT pathways)

(Figure 1C), leading to the phosphorylation of insulin receptor

substrates and the blockade of signal transduction (125–127).

Furthermore, vascular lesions driven by PVAT can compromise

tissue perfusion, hindering the systemic delivery of insulin

and glucose.

2.3.3 The role of PVAT in atherosclerosis

development
PVAT has a pivotal role in the development of atherosclerosis,

a condition characterized by the thickening and hardening of

arterial walls. This tissue functions by secreting various

adipokines and inflammatory mediators, including IL-6 and

TNF-α. These substances activate inflammatory signaling

pathways within both vascular endothelial cells and vascular

smooth muscle cells (128). For instance, upon stimulation by

tumor necrosis factor-α, endothelial cells activate the nuclear

factor-κB signaling pathway, leading to increased expression of

intercellular adhesion molecule-1 and vascular cell adhesion

molecule-1. This enhances the adhesion of inflammatory cells to

the endothelial surface of blood vessels (129). Concurrently,

inflammatory mediators induce vascular endothelial cells to

secrete chemokines, including monocyte chemoattractant protein-

1. Guided by the gradient of these chemokines, monocytes and

other inflammatory cells traverse the gaps between endothelial

cells and migrate into the subintima (130, 131). Additionally,

PVAT serves as a significant source of ROS. The substantial

production of ROS can oxidatively modify low-density

lipoprotein, resulting in the formation of oxidized low-density

lipoprotein, which impairs the relaxation function of endothelial

cells (132). Ultimately resulting in thickening of the blood vessel

wall and narrowing of the lumen, thereby effectively promoting

the development of atherosclerosis (Figure 1D).

2.3.4 Relationship between hypertension and

PVAT function
Hypertension exerts significant structural and functional

impacts on PVAT. Chronically elevated pressure stimulates the

differentiation of precursor cells into adipocytes and promotes

lipid accumulation in existing adipocytes (133). Additionally,

hypertension remodels the PVAT extracellular matrix by

increasing collagen and fibronectin deposition, which disrupts

local substance exchange and signaling. Additionally,

hypertension alters the extracellular matrix components of

PVAT, leading to increased deposition of collagen and

fibronectin. These structural modifications disrupt the exchange

of substances and signal transduction within PVAT, thereby

impairing its normal physiological function (134, 135).

Functionally, the hemodynamic alterations and heightened

oxidative stress induced by hypertension contribute to PVAT

dysfunction. Oxidative stress generates substantial amounts of

ROS, which can damage cellular components in PVAT.

Furthermore, hypertension disrupts the balance of vasoactive

substances and inflammatory factors secreted by PVAT,

transitioning it from a normal physiological regulatory state to a

pathological state that promotes vasoconstriction and

inflammation, further aggravating hypertension (136, 137).

Reciprocally, PVAT critically influences blood pressure regulation
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and becomes a key site for immune cell infiltration in hypertension

(138). Infiltrating immune cells, such as T cells, release effector

cytokines—including interferon-gamma (IFN-γ), interleukin-17

(IL-17), TNF-α, and IL-6 which initiate biological cascades that

contribute to vascular dysfunction, heightened oxidative stress, and

increased vascular stiffness. These PVAT-driven inflammatory and

vascular responses significantly contribute to the pathogenesis of

hypertension and its complications (139, 140) (Figure 1E).

3 PVAT as a source of biomarkers

3.1 Advancements in imaging techniques
for assessing PVAT inflammation

Computed Tomography (CT) imaging has established itself as

the benchmark for effectively visualizing and characterizing PVAT

(141). This is largely attributed to its exceptional spatial resolution,

which allows for detailed imaging of structures within the body.

Moreover, the distinct attenuation signals generated by adipose

tissue enhance the accuracy and clarity of the images obtained.

As a result, CT Imaging proves to be an invaluable tool in the

study and analysis of PVAT, facilitating better understanding and

insights into its role in various physiological and pathological

conditions (142). The fat attenuation index (FAI) serves as a

measure aimed at quantifying the three-dimensional attenuation

gradients identified in coronary computed tomography

angiography (CCTA) imaging of PVAT (141). FAI has received

both biological and clinical validation, and it is now

acknowledged as the main imaging biomarker for coronary

inflammation sourced from CCTA. Standardized FAI evaluations

are capable of accounting for side branches, thus yielding a more

precise evaluation of PVAT inflammation (143, 144). In addition,

the artificial intelligence (AI)-driven imaging biomarker (FRP)

significantly improves the prediction of cardiac risk (143).

However, various imaging modalities, including magnetic

resonance imaging (MRI) (145), positron emission tomography

(PET), and ultrasound, offer promising applications for

evaluating PVAT. MRI allows for the assessment of PVAT

volume around major arteries, including the aorta, and has

demonstrated an independent association with markers of

subclinical atherosclerosis (146). PET provides functional insights

into the metabolic activity of adipose tissue; however, its low

spatial resolution limits its effectiveness in evaluating PVAT

around coronary arteries (142). Although ultrasound may yield

some surrogate measurements of EAT (147–149), its limited

ability to distinguish adipose tissue from other structures,

combined with its operator-dependent nature, reduces its utility

in assessing PVAT in the coronary region.

3.2 Circulating biomarkers in evaluating
PVAT function

In addition to imaging biomarkers, circulating biomarkers,

including adipokines and cytokines, have potential applications

in evaluating PVAT function and predicting CVDs (150). For

instance, plasma adiponectin levels are diminished in individuals

with obesity and diabetes, and lower adiponectin levels have been

linked to an elevated risk of CVDs (151). Similarly, plasma levels

of IL-6 and TNF-α are increased in obesity and other

pathological conditions, with high levels of these cytokines

associated with a greater risk of CVDs (152). However, it is

important to note that circulating biomarkers are not specific to

PVAT function and may be influenced by other factors, such as

systemic inflammation and tissue damage.

4 PVAT as a therapeutic target

4.1 Lifestyle modifications for enhancing
PVAT function and reducing cardiovascular
risk

Lifestyle modifications, including diet and exercise, hold

significant promise for enhancing PVAT function and mitigating

the risk of CVDs (153–155). In humans, exercise-induced weight

loss is more effective than dieting alone in improving circulating

adipokine profiles and insulin resistance (156, 157). High-

intensity interval training has been particularly effective in

reducing total adipose tissue and visceral adipose tissue (VAT)

mass in adults (158, 159), as well as enhancing cardiorespiratory

fitness in obese children (158, 160).

4.2 The role of novel pharmacological
strategies in restoring PVAT function in CVD

PVAT has a well-established significance in the development

and progression of vascular diseases, making it a promising

target for innovative therapeutic strategies in cardiovascular

medicine. Research has demonstrated that current anti-diabetic

medications can partly mediate their positive cardiovascular

effects through their interactions with adipose tissues, including

PVAT (161). For example, glucagon-like peptide-1 (GLP-1)

receptor agonists facilitate adipocyte differentiation and enhance

overall adipocyte health (162, 163). GLP-1 and its agonists exert

various direct effects on PVAT biology, including the reduction

of lipid accumulation (164) and the promotion of lipogenesis

(165). Furthermore, GLP-1 receptor agonists upregulate the

expression of adipokines (166) and promote M2 macrophage

polarization (167), clinical studies have demonstrated that

administering the GLP-1 analogue liraglutide to individuals with

obesity results in favorable modifications in plasma lipid profiles

and a reduction in apolipoprotein B levels, which could

significantly lower the risk of CVDs (168–171). Additionally,

sodium-glucose cotransporter 2 inhibitors (SGLT2-i) have been

found to exert beneficial effects on human PVAT, improving

mitochondrial efficiency, reducing oxidative stress and

inflammation, and enhancing tissue function (172). The SGLT2

inhibitor empagliflozin is notable for its ability to enhance the

browning of WAT and activate resident M2 macrophages, which
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helps decrease inflammation and insulin resistance linked to

obesity, as demonstrated in animal research (173, 174). In

human subjects, treatment with empagliflozin is linked to a

decrease in the volume of EAT, which is critically associated with

cardiometabolic risks (175, 176). Moreover, statins are known to

decrease vascular inflammation, and their administration

correlates with significant changes in the phenotype of PVAT

following instances of acute coronary syndrome (ACS) and the

commencement of statin treatment (177, 178). Other potential

methods for restoring the health of PVAT include the use of

PPAR-γ agonists such as rosiglitazone (179, 180). It is essential

to acknowledge the recognized negative impacts on individuals

suffering from congestive heart failure. Furthermore, agonists of

the cannabinoid CB1 receptor might facilitate the release of H2S

from PVAT (181, 182). Mineralocorticoid receptor blockers have

been shown to reduce adipose tissue inflammation and increase

adiponectin levels (183, 184). However, the specific effects of

current drugs on the PVAT remain unquantified, which poses a

risk of off-target consequences. Therefore, it is essential to

examine this issue from a more neutral perspective and to

conduct further research.

4.3 Effect of surgical intervention on PVAT
function

In patients with type 2 diabetes and obesity, undergoing

metabolic surgery (defined as procedures that influence

metabolism by inducing weight loss and altering gastrointestinal

physiology) has been associated with a significantly reduced risk

of major adverse cardiovascular events (MACE) compared to

traditional nonsurgical management approaches (185). This

finding highlights the potential of metabolic surgical

interventions to enhance cardiovascular outcomes for this patient

population, underscoring the necessity for a shift in treatment

strategies. The deterioration of the anticontractile properties of

PVAT observed in obesity is partly attributable to a reduction in

adiponectin levels within the PVAT. This hormone is crucial for

maintaining vascular health. Importantly, the weight loss

achieved through bariatric surgery has the potential to restore

adiponectin levels, which may lead to improvements in PVAT

function and, consequently, cardiovascular health (186). In

contrast, procedures such as abdominal liposuction have not

shown significant benefits in correcting the metabolic

abnormalities associated with obesity, thereby highlighting the

limitations of these methods in addressing the complex nature of

obesity-related health issues (187).

4.4 Targeting gut microbiota as a
therapeutic approach to enhance PVAT
function and vascular health

The gut microbiota plays a substantial role in influencing

PVAT through various mechanisms, particularly by producing

metabolites and regulating immune responses (188). Among

these metabolites, short-chain fatty acids produced by gut

microbiota have been found to enhance the metabolic activity of

adipocytes within the PVAT, which can lead to a reduction in

inflammation levels. On the other hand, the presence of

trimethylamine-N-oxide can trigger oxidative stress and

inflammation in PVAT, negatively affecting its function.

Additionally, emerging research in the field of cancer therapy

shows that gut microbiota can regulate immune responses and

produce metabolites that impact cancer development and

treatment responses, suggesting its role in PVAT may have

implications for broader health aspects related to cancer and

vascular health (189, 190). Maintaining a healthy balance of gut

microbiota is crucial, as it regulates immune cells that are

essential for preserving PVAT homeostasis. When dysbiosis

occurs, this balance is disrupted, potentially compromising both

the structure and the functional integrity of PVAT. This finding

highlights the promising potential of targeting gut microbiota as

a therapeutic approach to enhance PVAT function and overall

vascular health (191).

4.5 Other potential therapeutic targets

The activation of β3-adrenergic receptors (β3-AR) by

mirabegron presents another fascinating avenue for bolstering

vascular health. Research has indicated that this pharmacological

agent can prevent serious vascular conditions such as aortic

dissection and aneurysm by promoting lymphangiogenesis within

PVAT (192). Furthermore, colchicine has shown promise in

inhibiting inflammatory responses in PVAT, as well as curbing

abnormal cellular behaviors such as proliferation and migration

that can lead to vascular complications (193–195). The role of

perivascular relaxing factors, including methyl palmitate, is

equally critical in managing PVAT and enhancing vascular

functionality. These factors facilitate several important processes,

including the relaxation of vascular smooth muscle, reduction of

vascular resistance, and improvement of blood perfusion.

Additionally, they work to inhibit inflammatory responses and

decrease both inflammatory cell infiltration and mediator

production (196, 197). Collectively, these multifaceted effects play

a vital role in addressing CVDs associated with PVAT

dysfunction. Despite the promising implications of these

interventions, it is essential to conduct further research to

ascertain their specific effects and ensure their safety for

clinical applications.

5 Discussion and outlook

5.1 Discussion

The evolving recognition of PVAT as a pivotal regulator of

vascular homeostasis and a driver of CVD underscores its

potential as a therapeutic target. However, translating

mechanistic insights into clinical applications remains fraught

with challenges, necessitating a critical reevaluation of current
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paradigms and the integration of cutting-edge methodologies.

While recent advancements in single-cell omics, imaging

biomarkers, and therapeutic strategies have illuminated PVAT’s

spatiotemporal complexity, significant gaps still persist in

reconciling its depot-specific heterogeneity with systemic vascular

pathology. Although animal experiments have shown that β3-AR,

methyl palmitate, and cannabinoid CB1 receptor agonists can

alleviate the inflammatory response of PVAT (181, 182, 192), it

is crucial to note that due to differences in PVAT composition

and function across species, the applicability of preclinical

findings (primarily from rodent models) to human

pathophysiology requires rigorous validation. Furthermore,

gender and age profoundly influence PVAT biology and CVD

risk, though mechanistic insights into these effects remain

limited (198, 199). For instance, postmenopausal women

exhibit accelerated PVAT inflammation linked to estrogen loss

(200, 201), and aging-associated PVAT fibrosis exacerbates

endothelial dysfunction (122, 202).

To address these complexities, in this review, we systematically

synthesized the molecular crosstalk, spatial heterogeneity,

and therapeutic potential of PVAT in the pathogenesis of

CVD. Concurrently, we highlighted three limitations of

previous studies: (1) the oversimplified assumption of PVAT

homogeneity, (2) the paracrine-centric view that overshadows

mechanotransduction pathways, and (3) the unquantified depot-

specific effects of existing therapies.

Given this landscape, the emerging role of PVAT in

cardiovascular pathophysiology necessitates a paradigm shift

from observational research to precision therapeutics. While

single-cell omics elucidate its cellular heterogeneity—such as

UCP1 + thermogenic, ADIPOQ + endocrine, and COL1A1 +

fibro-inflammatory adipocytes—and depot-specific metabolic

programming, clinical translation is hindered by insufficient

human models and an overreliance on rodent data. Although

advanced imaging biomarkers, such as fat attenuation index

(FAI), and AI-driven radiomics enhance the detection of

coronary inflammation (141, 142); standardization gaps

combined with systemic confounding factors limit their practical

utility. Consequently, therapeutic innovation should prioritize

PVAT-centric strategies, including macrophage-targeted PPAR-γ

delivery and CRISPR-mediated ADIPOQ activation. Despite the

preclinical promise shown by agents like β3-adrenergic receptor

agonists (192) and colchicine (194), human trials remain limited.

Hence, global consortia are essential to standardize protocols,

address disparities, and ethically integrate AI-driven platforms.

Ultimately, through bridging mechanistic depth with clinical

pragmatism, PVAT research has the potential to redefine

precision cardiology and mitigate residual cardiovascular risk.

5.2 Future research directions

To address the specific gaps and broader translational

challenges, such as species differences, inadequacies in human

models, biomarker standardization, and the necessity for human

trials, we propose a multidisciplinary roadmap that integrates

molecular insights with translational applications. Firstly, single-

cell and spatial multi-omics techniques (e.g., snRNA-seq and

single-cell ATAC sequencing) will elucidate PVAT’s cellular

diversity and epigenetic mechanisms, complemented by dynamic

three-dimensional models to validate mechanosensitive pathways.

Additionally, the development of clinical biomarkers requires

cross-population validation of PVAT-specific signatures, while

also addressing obesity-related fibrotic suppression. Moreover,

therapeutic innovation depends on nanotechnology-enabled

delivery systems [e.g., macrophage-targeted lipid nanoparticles

(203)] and CRISPR activation-mediated ADIPOQ activation

(204), combined with circadian optimization (e.g., timed

melatonin administration). Finally, global consortia must

standardize protocols and utilize AI-driven data harmonization

to accelerate discovery, while adaptive trials address sex and

racial disparities and ensure gene-editing safety (Figure 2).

Moving forward, precision therapies will concentrate on cell-

specific PVAT targets by employing systems biology and network

pharmacology. Personalized lifestyle modifications and surgical

interventions will be refined based on long-term outcome data,

while mechanistic studies of gut microbiota and PVAT will

inform targeted interventions. By emphasizing mechano-

FIGURE 2

Multidisciplinary research roadmap for PVAT.
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metabolic pathways, microbiota interactions, and ethical

considerations, this roadmap seeks to transform PVAT biology

into stratified cardiovascular therapies, thereby reducing residual

risk and enhancing disease management through

molecular precision.

6 Conclusion

PVAT serves as a critical regulator of vascular homeostasis,

with its dysfunction contributing to cardiovascular pathology

through paracrine imbalance, metabolic dysregulation, and

extracellular matrix remodeling. Advances in imaging techniques

and circulating biomarkers now facilitate the early detection of

PVAT abnormalities, while emerging therapies, such as SGLT2

inhibitors and circadian rhythm modulation, show promise in

restoring PVAT function. However, challenges persist in

standardizing diagnostic protocols, optimizing tissue-specific drug

delivery, and evaluating long-term safety. Future research ought

to prioritize translational studies and multidisciplinary

collaboration to integrate PVAT-targeted strategies into precision

cardiovascular medicine, ultimately aiming to reduce residual

disease risks and enhance clinical outcomes.
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