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Background: There is a lack of tools to identify the risk of poor prognosis in elderly 

patients with chronic heart failure (CHF). This study aimed to develop a random 

survival forest (RSF) model to predict the prognosis of elderly CHF patients.

Methods: The primary endpoint of this was all-cause mortality. The secondary 

endpoint was the combined outcome of unplanned readmissions and all-cause 

mortality. Patients were divided into a training set and a test set at a ratio of 7:3. 

We established and compared the performance of the RSF model with that of 

the New York Heart Association (NYHA) functional classes, left ventricular 

ejection fraction (LVEF) and B-type natriuretic peptide (BNP) level in evaluating 

the prognosis of elderly CHF patients. Harrell’s C-index, decision curve analysis 

(DCA) and calibration curves were the main evaluation metrics for the model.

Results: A total of 525 patients were enrolled. At a median follow-up of 60.1 (46.2, 

63.5) months, 168 (32.0%) patients reached the primary endpoint and 219 (41.7%) 

patients reached the secondary endpoint. The C-index of the RSF model for 

predicting the primary endpoint was 0.747 in the training set and 0.714 in the test 

set. For the secondary endpoint, the C-index of the RSF model was 0.707 in the 

training set and 0.641 in the test set. DCA and calibration curves demonstrated 

that the RSF model showed good clinical usefulness and calibration.

Conclusions: The RSF model showed good discrimination, clinical usefulness 

and calibration in predicting the prognosis of elderly CHF patients.
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1 Introduction

Chronic heart failure (CHF) is a significant public health challenge, particularly 

among the elderly population (1). As the global demographic population continues to 

shift toward an aging society, the incidence and prevalence of CHF have increased 

alarmingly, leading to increased morbidity, healthcare costs, and mortality rates (2, 3). 

China has become one of the countries with the largest burden of heart failure 

worldwide. The post-discharge all-cause mortality of patients with heart failure was 

13.7% at 1 year and 28.2% at 3 years (4). For patients aged 80 years and older, these 

rates are even higher, at 21.6% (1 year) and 43.2% (3 years), respectively (4).
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Prognostic factors for elderly patients with heart failure 

encompass a range of clinical and demographic variables, 

including age, B-type natriuretic peptide (BNP) and N-terminal 

brain natriuretic peptide precursor (NT-proBNP) levels, 

New York Heart Association (NYHA) functional classes and left 

ventricular ejection fraction (LVEF) (5–9). Moreover, aging is 

often accompanied by a complex interplay of comorbidities and 

physiological changes, making the management and prognosis 

of heart failure in older adults particularly challenging (10). 

Given these complexities, effective predictive modeling is 

essential for guiding clinical decision-making and tailoring 

individualized treatment strategies.

Recent advancements in machine learning techniques have 

opened new avenues for developing predictive models that 

enhance our understanding of disease trajectories and outcomes 

in CHF patients (11). Among these techniques, the random 

survival forest (RSF) model has emerged as a powerful tool for 

analyzing time-to-event data in the presence of censoring (12). 

Unlike traditional survival analysis methods, RSF leverages the 

strengths of ensemble learning, allowing for the handling of high- 

dimensional data and nonlinear relationships without the need for 

parametric assumptions (13). RSF is currently the most widely 

used machine learning method for survival outcome prediction 

and has demonstrated strong performance in numerous clinical 

studies (14, 15). Its @exibility makes it particularly suitable for 

analyzing the complex clinical profiles of elderly CHF patients. 

However, to our knowledge, there have been no prognostic 

studies utilizing RSF in the context of elderly CHF patients.

Therefore, the purpose of this study was to establish an RSF 

model specifically designed to predict the prognosis of elderly 

CHF patients. Additionally, we compared the performance of 

the RSF model with that of traditional measures such as the 

NYHA class, LVEF and BNP levels in evaluating the prognosis 

of elderly patients with CHF.

2 Materials and methods

2.1 Study population

This retrospective study included elderly patients (aged ≥60 

years) with CHF who visited Sichuan Provincial People’s 

Hospital between January 2018 and January 2020. CHF was 

diagnosed according to the 2021 European Society of 

Cardiology (ESC) Guidelines for the Diagnosis and Treatment 

of Acute and Chronic Heart Failure, as well as the Chinese 

Guidelines for the Diagnosis and Treatment of Heart Failure 

(16, 17). Missing follow-up, in-hospital death, or serious data 

missing (defined as missing data ≥30%), and patients with 

tumors were excluded.

2.2 Follow-up and endpoints

Follow-up began on January 1, 2018, and the last follow-up 

was completed on June 1, 2024. The primary endpoint of the 

study was all-cause mortality. The secondary endpoint was 

defined as the combined outcome of unplanned readmissions 

and all-cause mortality during the entire follow-up period. 

Unplanned readmission was defined as any unscheduled 

hospitalization caused by heart failure exacerbation or related 

complications (e.g., arrhythmias, renal deterioration), as 

confirmed by physician assessment. This excluded scheduled 

elective surgeries, routine follow-ups or treatments (such as 

infusion of Levosimendan). And for patients with multiple 

readmissions, the first hospitalization record was analyzed.

2.3 Data collection and preprocessing

Patient data, including demographics, medical comorbidities, 

vital signs at discharge, laboratory tests, and discharge 

medications, were extracted from the hospital information 

system. Discharge medications were recorded as the number of 

medications (NOM) taken by the patient. All patients were 

classified according to NYHA classes I–IV. LVEF was measured 

via transthoracic echocardiography, cardiac magnetic resonance 

imaging, or computed tomography. Additionally, the left 

ventricular end-diastolic diameter (LV), left atrial diameter (LA), 

right ventricular end diastolic diameter (RV) and right atrial 

diameter (RA) were measured.

In this study, we excluded variables with missing values 

>30%, then used random forest to impute missing values for 

the remaining variables. This method allows retention of most 

clinically relevant variables while excluding those with 

excessive missing data that could distort results. Variable 

selection was performed via Boruta, an advanced method that 

can effectively identify and select the most relevant variables 

from large datasets, enhancing model performance and 

interpretability (18). One of the key features of Boruta is its 

ability to manage multicollinearity among the variables, which 

is crucial when dealing with real-world data where predictors 

may be correlated. In this study, the important variables 

selected by Boruta were subsequently used in RSF 

model development.

2.4 Development of prediction models

All patients were randomly divided into a training set and a 

test set at a 7:3 ratio. The training set was used to construct the 

RSF model, and the test set was used to evaluate the predictive 

performance. To compare the predictive performance of the 

RSF model with that of commonly used cardiac function 

indicators (NYHA class, LVEF and BNP level) in evaluating 

the prognosis of elderly CHF patients, we constructed 3 Cox 

proportional-hazards regression (Cox) models: Model 1 based 

on the NYHA class; Model 2 based on the NYHA class and 

LVEF; and Model 3 based on the NYHA class, LVEF and 

BNP level.

Model performance was evaluated in terms of 

discrimination, calibration, and clinical usefulness. Harrell’s 
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C-index was the primary evaluation metric. Decision curve 

analysis (DCA) was used to evaluate the clinical usefulness. 

Moreover, we analyzed the ability of different models to 

predict 3-year and 5-year outcomes in elderly patients with 

CHF. The time-dependent receiver operating characteristic 

(ROC) curve with the area under the curve (AUC) was the 

main evaluation metric. Calibration curves were used to 

evaluate the calibration performance of the RSF model. 

Patients were divided into low-risk and high-risk groups based 

on the median score of RSF predictions. Kaplan–Meier 

survival curves combined with log rank tests were used to 

illustrate the prognostic differences between these risk groups.

2.5 Statistical analysis

Normally distributed continuous variables were presented as 

the means and standard deviations (SD) and were compared 

using Student’s t-test. Non-normally distributed continuous 

variables were presented as medians and interquartile ranges 

and were com-pared using Mann–Whitney U-test. Categorical 

variables were presented as counts and percentages. Statistical 

analysis was performed using the chi-square test or Fisher’s 

exact test. A two-sided P value of <0.05 was considered 

statistically significant. All statistical analysis were performed 

using R version 4.4.0 (http://www.r-project.org/). The 

randomForestSRC package was used to construct the RSF 

model, while R packages including survival, survivalROC, 

timeROC, dcurves, rmda, and pec were employed for model 

performance evaluation.

3 Results

3.1 Baseline characteristics of patients

A total of 525 patients were enrolled in our study, comprising 

232 (44.2%) males and 293 (55.8%) females. The median follow- 

up time was 60.1 (46.2, 63.5) months. During the follow-up 

period, 168 (32.0%) patients reached the primary endpoint and 

219 (41.7%) patients reached the secondary endpoint. The 

median age of the participants was 76 (69–82) years, and the 

median length of stay was 8 (6–11) days. Patients with NYHA 

functional class III or IV symptoms at discharge accounted for 

59.2%. The baseline characteristics of the patients are shown 

in Table 1.

TABLE 1 Baseline patient characteristics.

Characteristics N = 525

Age, years 76 (69, 82)

Sex, n (%)

Male 232 (44.2)

Female 293 (55.8)

Number of medications 7 (5, 9)

(Continued) 

TABLE 1 Continued  

Characteristics N = 525

Follow-up time, months 60.1 (46.2, 63.5)

Length of stay, days 8 (6, 11)

Body mass index, kg/m2 23.8 (22.3, 25.2)

Heart rate, b.p.m 80 (70, 91)

Systolic blood pressure, mmHg 133 (118, 147)

Diastolic blood pressure, mmHg 74 (66, 85)

Left atrial diameter, mm 36 (34, 41)

Left ventricular end-diastolic diameter, mm 46 (42, 52)

Right atrium diameter, mm 45 (43, 48)

Right ventricular end diastolic diameter, mm 20 (19, 22)

LVEF, % 61 (49, 68)

Smoking status, n (%)

No 330 (62.9)

Yes 195 (37.1)

Alcohol intake, n (%)

No 391 (74.5)

Yes 134 (25.5)

NYHA Class, n (%)

I or II 214 (40.8)

III or IV 311 (59.2)

COPD, n (%)

No 455 (86.7)

Yes 70 (13.3)

Hypertension, n (%)

No 192 (36.6)

Yes 333 (63.4)

Diabetes, n (%)

No 366 (69.7)

Yes 159 (30.3)

Total triiodothyronine, nmol/L 1.20 (1.08, 1.35)

D-dimer, mg/L 0.61 (0.33, 1.19)

HDLC, mmol/L 1.20 (1.00, 1.41)

LDLC, mmol/L 2.16 (1.54, 2.82)

Albumin/globulin 1.3 (1.2, 1.6)

AST/ALT 1.3 (1.0, 1.9)

Alkaline phosphatase, U/L 81 (66, 95)

γ-glutamyl transpeptidase, U/L 34 (21, 63)

Cholinesterase, KU/L 6.6 (5.4, 7.9)

Total bilirubin, µmol/L 13.8 (9.7, 19.2)

eGFR, ml/min 75.5 (55.0, 89.3)

hsCRP, mg/L 3.3 (1.0, 11.9)

BNP, pg/ml 309.7 (112.2, 620.5)

White blood cell, 109/L 6.73 (5.46, 8.58)

Basophil, 109/L 0.03 (0.02, 0.04)

Red blood cell, 1012/L 4.19 (3.78, 4.63)

Hemoglobin, g/L 128 (114, 142)

Hematocrit 0.37 (0.22, 0.41)

RDW-SD, fL 45.1 (43.5, 47.3)

Primary endpoint, n (%)

No 357 (68.0)

Yes 168 (32.0)

Secondary endpoint, n (%)

No 306 (58.3)

Yes 219 (41.7)

LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; COPD, 

chronic obstructive pulmonary disease; HDLC, high density lipoprotein cholesterol; 

LDLC, low density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; eGFR, estimated glomerular filtration rate; hsCRP, hypersensitive 

C-reactive protein; BNP, brain natriuretic pep-tide; RDW-SD, red blood cell distribution 

width-standard deviation.
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3.2 Variable selection

A total of 65 variables were analyzed using the Boruta 

method. Thirteen variables were considered important in 

relation to all-cause mortality in elderly CHF patients, 

including age, BNP, cholinesterase, total triiodothyronine, 

LVEF, total bilirubin, albumin/globulin, estimated glomerular 

filtration rate (eGFR), hemoglobin, alkaline phosphatase, 

basophil, hypersensitive C-reactive protein (hsCRP) and 

D-dimer (Figure 1a). For the secondary endpoint, 10 important 

variables were age, cholinesterase, BNP, alkaline phosphatase, 

RV, eGFR, albumin/globulin, total bilirubin, total 

triiodothyronine and LVEF (Figure 1b). These variables were 

used to establish the RSF model.

3.3 Construction of the RSF model

An RSF model was constructed with 13 variables to predict all- 

cause mortality in elderly CHF patients. During the process of 

survival trees, the prediction error rate tended to be low and 

stable when the number of trees reached 200 (Figure 2a). When 

the number of survival trees reached 500, we analyzed the 

importance of each variable in predicting the outcome. As 

shown in Figure 2b, the 5 important variables for all-cause 

mortality in elderly CHF patients were age, albumin/globulin 

ratio, basophil count, cholinesterase level and LVEF.

Another RSF model was constructed using 10 variables to 

predict the combined out-come of unplanned readmissions and 

all-cause mortality in elderly CHF patients. When the number 

FIGURE 1 

The results of boruta analysis. (a) Primary endpoint. (b) Secondary endpoint. BNP, brain natriuretic peptide; TT3, total triiodothyronine; LVEF, left 

ventricular ejection fraction; eGFR, estimated glomerular filtration rate; ALP, alkaline phosphatase; NYHA, New York Heart Association; BMI, body 

mass index; LOS, length of stay; CKD, chronic kidney disease; RBC, red blood cell; RDW-SD, red blood cell distribution width-standard deviation; 

RV, right ventricular end diastolic diameter; PT-INR, prothrombin time-international normalized ratio; HDLC, high density lipoprotein cholesterol; 

CK, creatine kinase; HR, heart rate; NOM, number of medications; COPD, chronic obstructive pulmonary disease; TT4, total thyroxine; LDLC, low 

density lipoprotein cholesterol; RA, right atrial diameter; DM, diabetes mellitus; DBP, diastolic blood pressure; WBC, white blood cell; AST, 

aspartate aminotransferase; ALT, alanine aminotransferase; PVD, peripheral vascular disease; LA, left atrial diameter; VHD, valvular heart disease; 

LV, left ventricular end-diastolic diameter; CG, chronic gastritis; SBP, systolic blood pressure; LDH, lactate dehydrogenase; GGT, γ-glutamyl 

transpeptidase.
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of survival trees reached 100, the prediction error rate tended to be 

low and stable (Figure 2c). When the number of survival trees 

reached 500, the 5 important variables were RV, age, 

cholinesterase level, alkaline phosphatase and albumin/globulin 

ratio (Figure 2d). The hyperparameter of the RSF model was 

shown in Supplementary Table S1.

3.4 The predictive performance of the 
models

Model discrimination was assessed using the Harrell’s C-index. 

In the training set, the C-index values of the RSF model, Model 1, 

Model 2 and Model 3 in predicting the primary endpoint were 

0.747, 0.630, 0.651 and 0.693, respectively. In the test set, the 

C-index values of the RSF model, Model 1, Model 2 and Model 3 

were 0.714, 0.594, 0.623 and 0.658, respectively. For the secondary 

endpoint, the C-index values of the RSF model, Model 1, Model 

2 and Model 3 in the training set were 0.707, 0.591, 0.595 and 

0.645, respectively. In the test set, the C-index values of the RSF 

model, Model 1, Model 2 and Model 3 were 0.641, 0.552, 0.570 

and 0.586, respectively.

The DCA revealed that the RSF model provided a better net 

benefit than the other 3 models for predicting both primary and 

secondary endpoints in elderly CHF patients, in both the 

training and test sets (Supplementary Figure S1 and Figure 3).

FIGURE 2 

Construction of the RSF model to predict the prognosis of elderly patients with chronic heart failure in the training set. (a) Prediction error rates for 

the primary endpoint. (b) The variable importance plot for the primary endpoint. (c) Prediction error rates for the secondary endpoint. (d) The variable 

importance plot for the secondary endpoint. LVEF, left ventricular ejection fraction; eGFR, estimated glomerular filtration rate; BNP, brain natriuretic 

peptide; ALP, alkaline phosphatase; hsCRP, hypersensitive C-reactive protein; TT3, total triiodothyronine; RV, right ventricular end diastolic diameter.

FIGURE 3 

Decision curve analysis (DCA) in the test set. (a) DCA for the primary endpoint. (b) DCA for the secondary endpoint. RSF, random survival forest.
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For the 3-year primary endpoint, the AUCs of the RSF model, 

Model 1, Model 2 and Model 3 in the training set were 0.934, 

0.632, 0.689 and 0.748, respectively (Supplementary Figure S2a). 

In the test set, the AUCs of the RSF model, Model 1, Model 2 

and Model 3 were 0.781, 0.639, 0.667 and 0.724, respectively 

(Figure 4a). For the 5-year primary endpoint, the AUCs of the 

RSF model, Model 1, Model 2 and Model 3 in the training set 

were 0.912, 0.655, 0.671 and 0.715, respectively (Supplementary 

Figure S2b). In the test set, the AUCs of the RSF model, Model 

1, Model 2 and Model 3 were 0.740, 0.601, 0.645 and 0.665, 

respectively (Figure 4b).

For the 3-year secondary endpoint, the AUCs of the RSF 

model, Model 1, Model 2 and Model 3 in the training set were 

0.892, 0.585, 0.613 and 0.665, respectively (Supplementary 

Figure S2c). In the test set, the AUCs of the RSF model, Model 

1, Model 2 and Model 3 were 0.598, 0.574, 0.576 and 0.597, 

respectively (Figure 4c). For the 5-year secondary endpoint, the 

AUCs of the RSF model, Model 1, Model 2 and Model 3 in the 

training set were 0.901, 0.611, 0.611 and 0.673, respectively 

(Supplementary Figure S2d). In the test set, the AUCs of the 

RSF model, Model 1, Model 2 and Model 3 were 0.717, 0.543, 

0.571 and 0.582, respectively (Figure 4d).

Calibration curves demonstrated the good calibration of RSF 

model in predicting both the 3-year and 5-year primary and 

secondary endpoints in elderly CHF patients, in both the 

training and test sets (Supplementary Figure S3 and Figure 5).

Based on the median risk score predicted by the RSF model, 

patients were stratified into two risk groups (low-risk group vs. 

high-risk group). The Kaplan–Meier survival curves revealed 

that patients in the high-risk group had a worse prognosis for 

FIGURE 4 

ROC curves in the test set. (a) 3-year primary endpoint. (b) 5-year primary endpoint. (c) 3-year secondary endpoint. (d) 5-year secondary endpoint. 

ROC, receiver operating characteristic; AUC, area under the curve; RSF, random survival forest.
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both the primary and secondary endpoints compared to those in 

the low-risk group, in both the training and test sets (both 

P < 0.001) (Supplementary Figure S4 and Figure 6).

4 Discussion

In this study, we constructed and compared the performance 

of the RSF model with 3 other basic models to predict the 

prognosis of elderly CHF patients. The results demonstrated that 

the RSF model exhibited good discrimination, calibration and 

clinical usefulness in predicting all-cause mortality, as well as 

consistent outcomes for unplanned readmissions and all-cause 

mortality among elderly CHF patients.

In recent years, many models have been developed to assess the 

in-hospital mortality rate of heart failure patients, neglecting the 

long-term survival outcomes, especially among the elderly (11, 

19). The RSF model we established demonstrated good predictive 

performance for 3-year (AUC = 0.781) and 5-year (AUC = 0.740) 

mortality rates in elderly CHF patients. In China, the rate of 

unplanned readmissions is a critical indicator for evaluating 

hospital quality, and repeated readmissions further increase the 

medical bur-den on patients. Therefore, we aimed to establish a 

model to predict long-term unplanned readmissions and all-cause 

mortality in elderly heart failure patients. Unfortunately, while 

our RSF model could distinguish high-risk patients 

(Supplementary Figure S4b and Figure 6b), it had poor predictive 

performance for the secondary endpoint (C-index = 0.641). This 

may be attributed to the substantial variability among unplanned 

readmission patients, making it difficult for the model to 

accurately assess the long-term unplanned readmission situation 

in heart failure patients (20). Nonetheless, our findings are 

significant. The composite outcome of all-cause mortality and 

unplanned readmission holds significant clinical relevance as it 

comprehensively re@ects both disease progression and acute 

deterioration, providing a more complete evaluation of patient 

FIGURE 5 

Calibration plots of the RSF model in the test set. (a) 3-year primary endpoint. (b) 5-year primary endpoint. (c) 3-year secondary endpoint. (d) 5-year 

secondary endpoint. RSF, random survival forest.
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outcomes than either measure alone. This combined endpoint 

better captures the substantial burden on patients, caregivers, and 

healthcare systems, particularly since unplanned readmission 

often precede mortality in this vulnerable population. Therefore, 

this patient-centered outcome serves as a robust indicator for 

evaluating management strategies, integrating both survival and 

healthcare utilization metrics. Moreover, to our knowledge, this is 

the first predictive model developed to assess long-term 

unplanned readmissions and all-cause mortality in elderly CHF 

patients. Furthermore, our results suggest that, compared with 

commonly used clinical heart function evaluation indicators 

(including the NYHA class, LVEF, and BNP level), the RSF 

model, which integrates multiple factors, has better predictive 

performance for long-term unplanned readmissions and all-cause 

mortality in elderly CHF patients.

Another key finding of our study is that age, the albumin/ 

globulin ratio, cholinesterase, and LVEF are important predictive 

indicators of all-cause mortality or composite outcomes of 

unplanned readmissions and all-cause mortality in elderly CHF 

patients. In-creased age and decreased LVEF are associated with 

increased mortality in these populations. Serum ALB and GLB 

levels are part of routine biochemical tests, and the albumin to 

globulin ratio (AGR) serves as a biomarker of malnutrition and 

in@ammation, re@ecting the prognosis of heart failure patients 

(21, 22). Previous studies have demonstrated that the AGR is an 

independent predictor of mortality in patients with CHF (23), as 

well as an in-dependent predictor of cardiac events in women 

with heart failure with preserved ejection fraction (HFpEF) and 

heart failure-related rehospitalization (24). Our research revealed 

that including the albumin/globulin ratio among the risk factors 

for elderly CHF patients improved the prognostic value for 

clinical outcomes, including the composite result of unplanned 

readmissions and all-cause mortality.

Previous research has indicated that biomarkers such as AST, 

alanine aminotransferase, and alkaline phosphatase not only 

re@ect liver cell damage but also serve as useful prognostic 

indicators for heart failure patients (25, 26). Sato Takamasa et al. 

(27) found that CHF patients with serum cholinesterase levels 

less than 240 U/L had significantly higher rates of cardiovascular 

death or readmission due to worsening heart failure. Similarly, 

Masayuki and his colleagues reported that the serum 

cholinesterase level outperformed other liver enzymes in the 

prediction of acute heart failure clinical outcomes (a composite 

of all-cause death and hospitalization for HF) (28). This finding 

is consistent with our findings. In elderly CHF patients, serum 

cholinesterase is an important predictive factor for both all-cause 

mortality and the composite outcomes of unplanned readmission 

and all-cause mortality. Interestingly, basophils are significant 

predictors of all-cause mortality in elderly heart failure patients, 

but are not significant for the composite outcome of un-planned 

readmissions and all-cause mortality. Patients experiencing acute 

heart failure or poor prognosis (1-year all-cause mortality) tend 

to have significantly lower eosinophil counts (29, 30). Our 

results suggest that eosinophils may also be potential biomarkers 

for all-cause mortality in elderly CHF patients. Additionally, in 

our study, the RV was found to be an important predictive 

factor for the composite outcome of unplanned readmissions 

and all-cause mortality in elderly CHF patients, but it was not 

an important predictor of all-cause mortality. The RV can 

predict the all-cause mortality rate in HFpEF patients (31), but 

research examining its prognostic significance in patients with 

reduced ejection fraction heart failure (HFrEF) is lacking.

Another strength of this study is that all predictive factors 

included in the RSF model are routine test indicators obtained 

during patients’ hospital admission, thereby not re-quiring 

additional burdens on the patients. Furthermore, in constructing 

the RSF model, we excluded variables that could not be 

determined by the Boruta algorithm (indicated as yellow 

variables in Figure 1). Although including these variables may 

improve the model’s predictive performance, clinicians believe 

FIGURE 6 

Kaplan–meier curves of the RSF model in the test set. (a) Primary endpoint. (b) Secondary endpoint. RSF, random survival forest.
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that a simpler model with fewer variables can enhance the model’s 

clinical practicality and convenience.

However, our study has several limitations. First, it was 

conducted at a single center using a retrospective design. The 

sample size was relatively small. These factors may limit the 

generalizability of our findings. The small sample size also 

prevents us from performing detailed subgroup analyses. Second, 

our medication data were incomplete as we lacked information 

on dosage and patient adherence. This simplification may have 

reduced the model’s predictive accuracy. Third, external 

validation is necessary. Future studies should involve multiple 

centers and include larger patient cohorts. Such studies would 

help confirm our results and improve their clinical applicability. 

Fourth, although we assessed all-cause mortality in elderly CHF 

patients, we were unable to evaluate mortality specifically due to 

cardiovascular diseases or heart failure. Finally, the lack of 

external validation may limit the generalization of our findings. 

Before clinical application, a multi-center prospective assessment 

and validation of the model are needed.

5 Conclusions

In this study, we established and compared the performance of 

the RSF model with that of the NYHA class, LVEF and BNP level 

in evaluating the prognosis of elderly CHF patients. The results 

demonstrated that the RSF model can effectively identify the 

elderly CHF patients at a high risk for poor prognosis.
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