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Background: There is a lack of tools to identify the risk of poor prognosis in elderly
patients with chronic heart failure (CHF). This study aimed to develop a random
survival forest (RSF) model to predict the prognosis of elderly CHF patients.
Methods: The primary endpoint of this was all-cause mortality. The secondary
endpoint was the combined outcome of unplanned readmissions and all-cause
mortality. Patients were divided into a training set and a test set at a ratio of 7:3.
We established and compared the performance of the RSF model with that of
the New York Heart Association (NYHA) functional classes, left ventricular
ejection fraction (LVEF) and B-type natriuretic peptide (BNP) level in evaluating
the prognosis of elderly CHF patients. Harrell's C-index, decision curve analysis
(DCA) and calibration curves were the main evaluation metrics for the model.
Results: A total of 525 patients were enrolled. At a median follow-up of 60.1 (46.2,
63.5) months, 168 (32.0%) patients reached the primary endpoint and 219 (41.7%)
patients reached the secondary endpoint. The C-index of the RSF model for
predicting the primary endpoint was 0.747 in the training set and 0.714 in the test
set. For the secondary endpoint, the C-index of the RSF model was 0.707 in the
training set and 0.641 in the test set. DCA and calibration curves demonstrated
that the RSF model showed good clinical usefulness and calibration.
Conclusions: The RSF model showed good discrimination, clinical usefulness
and calibration in predicting the prognosis of elderly CHF patients.
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1 Introduction

Chronic heart failure (CHF) is a significant public health challenge, particularly
among the elderly population (1). As the global demographic population continues to
shift toward an aging society, the incidence and prevalence of CHF have increased
alarmingly, leading to increased morbidity, healthcare costs, and mortality rates (2, 3).
China has become one of the countries with the largest burden of heart failure
worldwide. The post-discharge all-cause mortality of patients with heart failure was
13.7% at 1 year and 28.2% at 3 years (4). For patients aged 80 years and older, these
rates are even higher, at 21.6% (1 year) and 43.2% (3 years), respectively (4).
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Prognostic factors for elderly patients with heart failure
encompass a range of clinical and demographic variables,
including age, B-type natriuretic peptide (BNP) and N-terminal
peptide precursor (NT-proBNP) levels,
New York Heart Association (NYHA) functional classes and left
ventricular ejection fraction (LVEF) (5-9). Moreover, aging is

brain natriuretic

often accompanied by a complex interplay of comorbidities and
physiological changes, making the management and prognosis
of heart failure in older adults particularly challenging (10).
Given these complexities, effective predictive modeling is
essential for guiding clinical decision-making and tailoring
individualized treatment strategies.

Recent advancements in machine learning techniques have
opened new avenues for developing predictive models that
enhance our understanding of disease trajectories and outcomes
in CHF patients (11). Among these techniques, the random
survival forest (RSF) model has emerged as a powerful tool for
analyzing time-to-event data in the presence of censoring (12).
Unlike traditional survival analysis methods, RSF leverages the
strengths of ensemble learning, allowing for the handling of high-
dimensional data and nonlinear relationships without the need for
parametric assumptions (13). RSF is currently the most widely
used machine learning method for survival outcome prediction
and has demonstrated strong performance in numerous clinical
studies (14, 15). Its flexibility makes it particularly suitable for
analyzing the complex clinical profiles of elderly CHF patients.
However, to our knowledge, there have been no prognostic
studies utilizing RSF in the context of elderly CHF patients.

Therefore, the purpose of this study was to establish an RSF
model specifically designed to predict the prognosis of elderly
CHF patients. Additionally, we compared the performance of
the RSF model with that of traditional measures such as the
NYHA class, LVEF and BNP levels in evaluating the prognosis
of elderly patients with CHF.

2 Materials and methods
2.1 Study population

This retrospective study included elderly patients (aged >60
years) with CHF who visited Sichuan Provincial People’s
Hospital between January 2018 and January 2020. CHF was
the 2021
Cardiology (ESC) Guidelines for the Diagnosis and Treatment

diagnosed according to European Society of
of Acute and Chronic Heart Failure, as well as the Chinese
Guidelines for the Diagnosis and Treatment of Heart Failure
(16, 17). Missing follow-up, in-hospital death, or serious data
missing (defined as missing data >30%), and patients with
tumors were excluded.

2.2 Follow-up and endpoints

Follow-up began on January 1, 2018, and the last follow-up
was completed on June 1, 2024. The primary endpoint of the

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2025.1613975

study was all-cause mortality. The secondary endpoint was
defined as the combined outcome of unplanned readmissions
and all-cause mortality during the entire follow-up period.
Unplanned readmission was defined as any unscheduled
hospitalization caused by heart failure exacerbation or related
(e.g., arrhythmias,
confirmed by physician assessment. This excluded scheduled

complications renal deterioration), as
elective surgeries, routine follow-ups or treatments (such as
infusion of Levosimendan). And for patients with multiple

readmissions, the first hospitalization record was analyzed.

2.3 Data collection and preprocessing

Patient data, including demographics, medical comorbidities,

vital signs at discharge, laboratory tests, and discharge
medications, were extracted from the hospital information
system. Discharge medications were recorded as the number of
medications (NOM) taken by the patient. All patients were
classified according to NYHA classes I-IV. LVEF was measured
via transthoracic echocardiography, cardiac magnetic resonance
imaging, or computed tomography. Additionally, the left
ventricular end-diastolic diameter (LV), left atrial diameter (LA),
right ventricular end diastolic diameter (RV) and right atrial
diameter (RA) were measured.

In this study, we excluded variables with missing values
>30%, then used random forest to impute missing values for
the remaining variables. This method allows retention of most
clinically relevant variables while excluding those with
excessive missing data that could distort results. Variable
selection was performed via Boruta, an advanced method that
can effectively identify and select the most relevant variables
from large datasets, enhancing model performance and
interpretability (18). One of the key features of Boruta is its
ability to manage multicollinearity among the variables, which
is crucial when dealing with real-world data where predictors
may be correlated. In this study, the important variables
were used in RSF

selected by Boruta subsequently

model development.

2.4 Development of prediction models

All patients were randomly divided into a training set and a
test set at a 7:3 ratio. The training set was used to construct the
RSF model, and the test set was used to evaluate the predictive
performance. To compare the predictive performance of the
RSF model with that of commonly used cardiac function
indicators (NYHA class, LVEF and BNP level) in evaluating
the prognosis of elderly CHF patients, we constructed 3 Cox
proportional-hazards regression (Cox) models: Model 1 based
on the NYHA class; Model 2 based on the NYHA class and
LVEF; and Model 3 based on the NYHA class, LVEF and
BNP level.

Model
discrimination, calibration, and clinical usefulness. Harrell’s

performance was evaluated in terms of
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C-index was the primary evaluation metric. Decision curve
analysis (DCA) was used to evaluate the clinical usefulness.
Moreover, we analyzed the ability of different models to
predict 3-year and 5-year outcomes in elderly patients with
CHF. The time-dependent receiver operating characteristic
(ROC) curve with the area under the curve (AUC) was the
main evaluation metric. Calibration curves were used to
evaluate the calibration performance of the RSF model.
Patients were divided into low-risk and high-risk groups based
on the median score of RSF predictions. Kaplan-Meier
survival curves combined with log rank tests were used to
illustrate the prognostic differences between these risk groups.

2.5 Statistical analysis

Normally distributed continuous variables were presented as
the means and standard deviations (SD) and were compared
using Student’s f-test. Non-normally distributed continuous
variables were presented as medians and interquartile ranges
and were com-pared using Mann-Whitney U-test. Categorical
variables were presented as counts and percentages. Statistical
analysis was performed using the chi-square test or Fisher’s
exact test. A two-sided P value of <0.05 was considered
statistically significant. All statistical analysis were performed
4.4.0 (http://www.r-project.org/). The
randomForestSRC package was used to construct the RSF

using R version
model, while R packages including survival, survivalROC,
timeROC, dcurves, rmda, and pec were employed for model
performance evaluation.

3 Results
3.1 Baseline characteristics of patients

A total of 525 patients were enrolled in our study, comprising
232 (44.2%) males and 293 (55.8%) females. The median follow-
up time was 60.1 (46.2, 63.5) months. During the follow-up
period, 168 (32.0%) patients reached the primary endpoint and
219 (41.7%) patients reached the secondary endpoint. The
median age of the participants was 76 (69-82) years, and the
median length of stay was 8 (6-11) days. Patients with NYHA
functional class III or IV symptoms at discharge accounted for
59.2%. The baseline characteristics of the patients are shown
in Table 1.

TABLE 1 Baseline patient characteristics.

Characteristics N =525

Age, years 76 (69, 82)
Sex, n (%)
Male 232 (44.2)
Female 293 (55.8)
Number of medications 7 (5, 9)
(Continued)
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TABLE 1 Continued

Characteristics N =525

Follow-up time, months 60.1 (46.2, 63.5)

Length of stay, days 8 (6, 11)
Body mass index, kg/m2 23.8 (22.3, 25.2)
Heart rate, b.p.m 80 (70, 91)
Systolic blood pressure, mmHg 133 (118, 147)
Diastolic blood pressure, mmHg 74 (66, 85)
Left atrial diameter, mm 36 (34, 41)
Left ventricular end-diastolic diameter, mm 46 (42, 52)
Right atrium diameter, mm 45 (43, 48)
Right ventricular end diastolic diameter, mm 20 (19, 22)
LVEE, % 61 (49, 68)
Smoking status, n (%)

No 330 (62.9)

Yes 195 (37.1)
Alcohol intake, n (%)

No 391 (74.5)

Yes 134 (25.5)
NYHA Class, n (%)

Torll 214 (40.8)

III or IV 311 (59.2)
COPD, n (%)

No 455 (86.7)

Yes 70 (13.3)
Hypertension, n (%)

No 192 (36.6)

Yes 333 (63.4)
Diabetes, n (%)

No 366 (69.7)

Yes 159 (30.3)

Total triiodothyronine, nmol/L 1.20 (1.08, 1.35)

D-dimer, mg/L 0.61 (0.33, 1.19)
HDLC, mmol/L 1.20 (1.00, 1.41)
LDLC, mmol/L 2.16 (1.54, 2.82)
Albumin/globulin 1.3 (1.2, 1.6)
AST/ALT 1.3 (1.0, 1.9)
Alkaline phosphatase, U/L 81 (66, 95)
y-glutamyl transpeptidase, U/L 34 (21, 63)
Cholinesterase, KU/L 6.6 (5.4, 7.9)

Total bilirubin, umol/L
eGFR, ml/min

hsCRP, mg/L

BNP, pg/ml

White blood cell, 10°/L
Basophil, 10°/L

Red blood cell, 10'%/L
Hemoglobin, g/L

13.8 (9.7, 19.2)
75.5 (55.0, 89.3)
3.3 (1.0, 11.9)
309.7 (112.2, 620.5)
6.73 (5.46, 8.58)
0.03 (0.02, 0.04)
4.19 (3.78, 4.63)
128 (114, 142)

Hematocrit 0.37 (0.22, 0.41)
RDW-SD, fL 45.1 (43.5, 47.3)
Primary endpoint, n (%)
No 357 (68.0)
Yes 168 (32.0)
Secondary endpoint, n (%)
No 306 (58.3)
Yes 219 (41.7)

LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; COPD,
chronic obstructive pulmonary disease; HDLC, high density lipoprotein cholesterol;
LDLC, low density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; eGFR, estimated glomerular filtration rate; hsCRP, hypersensitive
C-reactive protein; BNP, brain natriuretic pep-tide; RDW-SD, red blood cell distribution
width-standard deviation.
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3.2 Variable selection

A total of 65 variables were analyzed using the Boruta
method. Thirteen variables were considered important in
relation to all-cause mortality in elderly CHF patients,
including age, BNP, cholinesterase, total triiodothyronine,
LVEF, total bilirubin, albumin/globulin, estimated glomerular
(eGFR),
hypersensitive

filtration rate hemoglobin, alkaline phosphatase,
C-reactive protein (hsCRP)

D-dimer (Figure la). For the secondary endpoint, 10 important

basophil, and
variables were age, cholinesterase, BNP, alkaline phosphatase,
RV, eGFR, total total
triiodothyronine and LVEF (Figure 1b). These variables were
used to establish the RSF model.

albumin/globulin, bilirubin,

10.3389/fcvm.2025.1613975

3.3 Construction of the RSF model

An RSF model was constructed with 13 variables to predict all-
cause mortality in elderly CHF patients. During the process of
survival trees, the prediction error rate tended to be low and
stable when the number of trees reached 200 (Figure 2a). When
the number of survival trees reached 500, we analyzed the
importance of each variable in predicting the outcome. As
shown in Figure 2b, the 5 important variables for all-cause
mortality in elderly CHF patients were age, albumin/globulin
ratio, basophil count, cholinesterase level and LVEF.

Another RSF model was constructed using 10 variables to
predict the combined out-come of unplanned readmissions and
all-cause mortality in elderly CHF patients. When the number
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The results of boruta analysis. (a) Primary endpoint. (b) Secondary endpoint. BNP, brain natriuretic peptide; TT3, total triiodothyronine; LVEF, left
ventricular ejection fraction; eGFR, estimated glomerular filtration rate; ALP, alkaline phosphatase; NYHA, New York Heart Association; BMI, body
mass index; LOS, length of stay; CKD, chronic kidney disease; RBC, red blood cell; RDW-SD, red blood cell distribution width-standard deviation;
RV, right ventricular end diastolic diameter; PT-INR, prothrombin time-international normalized ratio; HDLC, high density lipoprotein cholesterol;
CK, creatine kinase; HR, heart rate; NOM, number of medications; COPD, chronic obstructive pulmonary disease; TT4, total thyroxine; LDLC, low
density lipoprotein cholesterol; RA, right atrial diameter; DM, diabetes mellitus; DBP, diastolic blood pressure; WBC, white blood cell; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; PVD, peripheral vascular disease; LA, left atrial diameter; VHD, valvular heart disease;
LV, left ventricular end-diastolic diameter; CG, chronic gastritis; SBP, systolic blood pressure; LDH, lactate dehydrogenase; GGT, y-glutamyl
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of survival trees reached 100, the prediction error rate tended to be
low and stable (Figure 2c). When the number of survival trees
reached 500, the 5
cholinesterase level, alkaline phosphatase and albumin/globulin
ratio (Figure 2d). The hyperparameter of the RSF model was
shown in Supplementary Table S1.

important variables were RV, age,

3.4 The predictive performance of the
models

Model discrimination was assessed using the Harrell's C-index.
In the training set, the C-index values of the RSF model, Model 1,

10.3389/fcvm.2025.1613975

Model 2 and Model 3 in predicting the primary endpoint were
0.747, 0.630, 0.651 and 0.693, respectively. In the test set, the
C-index values of the RSF model, Model 1, Model 2 and Model 3
were 0.714, 0.594, 0.623 and 0.658, respectively. For the secondary
endpoint, the C-index values of the RSF model, Model 1, Model
2 and Model 3 in the training set were 0.707, 0.591, 0.595 and
0.645, respectively. In the test set, the C-index values of the RSF
model, Model 1, Model 2 and Model 3 were 0.641, 0.552, 0.570
and 0.586, respectively.

The DCA revealed that the RSF model provided a better net
benefit than the other 3 models for predicting both primary and
secondary endpoints in elderly CHF patients, in both the
training and test sets (Supplementary Figure S1 and Figure 3).
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FIGURE 2

Construction of the RSF model to predict the prognosis of elderly patients with chronic heart failure in the training set. (a) Prediction error rates for
the primary endpoint. (b) The variable importance plot for the primary endpoint. (c) Prediction error rates for the secondary endpoint. (d) The variable
importance plot for the secondary endpoint. LVEF, left ventricular ejection fraction; eGFR, estimated glomerular filtration rate; BNP, brain natriuretic
peptide; ALP, alkaline phosphatase; hsCRP, hypersensitive C-reactive protein; TT3, total triiodothyronine; RV, right ventricular end diastolic diameter.
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For the 3-year primary endpoint, the AUCs of the RSF model,
Model 1, Model 2 and Model 3 in the training set were 0.934,
0.632, 0.689 and 0.748, respectively (Supplementary Figure S2a).
In the test set, the AUCs of the RSF model, Model 1, Model 2
and Model 3 were 0.781, 0.639, 0.667 and 0.724, respectively
(Figure 4a). For the 5-year primary endpoint, the AUCs of the
RSF model, Model 1, Model 2 and Model 3 in the training set
were 0.912, 0.655, 0.671 and 0.715, respectively (Supplementary
Figure S2b). In the test set, the AUCs of the RSF model, Model
1, Model 2 and Model 3 were 0.740, 0.601, 0.645 and 0.665,
respectively (Figure 4b).

For the 3-year secondary endpoint, the AUCs of the RSF
model, Model 1, Model 2 and Model 3 in the training set were
0.892, 0.585, 0.613 and 0.665, respectively (Supplementary
Figure S2¢). In the test set, the AUCs of the RSF model, Model

10.3389/fcvm.2025.1613975

1, Model 2 and Model 3 were 0.598, 0.574, 0.576 and 0.597,
respectively (Figure 4c). For the 5-year secondary endpoint, the
AUCs of the RSF model, Model 1, Model 2 and Model 3 in the
training set were 0.901, 0.611, 0.611 and 0.673, respectively
(Supplementary Figure S2d). In the test set, the AUCs of the
RSF model, Model 1, Model 2 and Model 3 were 0.717, 0.543,
0.571 and 0.582, respectively (Figure 4d).

Calibration curves demonstrated the good calibration of RSF
model in predicting both the 3-year and 5-year primary and
secondary endpoints in elderly CHF patients, in both the
training and test sets (Supplementary Figure S3 and Figure 5).

Based on the median risk score predicted by the RSF model,
patients were stratified into two risk groups (low-risk group vs.
high-risk group). The Kaplan-Meier survival curves revealed
that patients in the high-risk group had a worse prognosis for
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FIGURE 4
ROC curves in the test set. (a) 3-year primary endpoint. (b) 5-year primary endpoint. (c) 3-year secondary endpoint. (d) 5-year secondary endpoint.
ROC, receiver operating characteristic; AUC, area under the curve; RSF, random survival forest.
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FIGURE 5
Calibration plots of the RSF model in the test set. (a) 3-year primary endpoint. (b) 5-year primary endpoint. (c) 3-year secondary endpoint. (d) 5-year
secondary endpoint. RSF, random survival forest

both the primary and secondary endpoints compared to those in
the low-risk group, in both the training and test sets (both
P <0.001) (Supplementary Figure S4 and Figure 6).

4 Discussion

In this study, we constructed and compared the performance
of the RSF model with 3 other basic models to predict the
prognosis of elderly CHF patients. The results demonstrated that
the RSF model exhibited good discrimination, calibration and
clinical usefulness in predicting all-cause mortality, as well as
consistent outcomes for unplanned readmissions and all-cause
mortality among elderly CHF patients.

In recent years, many models have been developed to assess the
in-hospital mortality rate of heart failure patients, neglecting the
long-term survival outcomes, especially among the elderly (11,
19). The RSF model we established demonstrated good predictive
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performance for 3-year (AUC=0.781) and 5-year (AUC = 0.740)
mortality rates in elderly CHF patients. In China, the rate of
unplanned readmissions is a critical indicator for evaluating
hospital quality, and repeated readmissions further increase the
medical bur-den on patients. Therefore, we aimed to establish a
model to predict long-term unplanned readmissions and all-cause
mortality in elderly heart failure patients. Unfortunately, while
our RSF could distinguish  high-risk  patients
(Supplementary Figure S4b and Figure 6b), it had poor predictive
performance for the secondary endpoint (C-index =0.641). This
may be attributed to the substantial variability among unplanned
readmission patients, making it difficult for the model to

model

accurately assess the long-term unplanned readmission situation
in heart failure patients (20). Nonetheless, our findings are
significant. The composite outcome of all-cause mortality and
unplanned readmission holds significant clinical relevance as it
comprehensively reflects both disease progression and acute
deterioration, providing a more complete evaluation of patient
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FIGURE 6

Kaplan—meier curves of the RSF model in the test set. (a) Primary endpoint. (b) Secondary endpoint. RSF, random survival forest

outcomes than either measure alone. This combined endpoint
better captures the substantial burden on patients, caregivers, and
healthcare systems, particularly since unplanned readmission
often precede mortality in this vulnerable population. Therefore,
this patient-centered outcome serves as a robust indicator for
evaluating management strategies, integrating both survival and
healthcare utilization metrics. Moreover, to our knowledge, this is
the
unplanned readmissions and all-cause mortality in elderly CHF

first predictive model developed to assess long-term
patients. Furthermore, our results suggest that, compared with
commonly used clinical heart function evaluation indicators
(including the NYHA class, LVEF, and BNP level), the RSF
model, which integrates multiple factors, has better predictive
performance for long-term unplanned readmissions and all-cause
mortality in elderly CHF patients.

Another key finding of our study is that age, the albumin/
globulin ratio, cholinesterase, and LVEF are important predictive
indicators of all-cause mortality or composite outcomes of
unplanned readmissions and all-cause mortality in elderly CHF
patients. In-creased age and decreased LVEF are associated with
increased mortality in these populations. Serum ALB and GLB
levels are part of routine biochemical tests, and the albumin to
globulin ratio (AGR) serves as a biomarker of malnutrition and
inflammation, reflecting the prognosis of heart failure patients
(21, 22). Previous studies have demonstrated that the AGR is an
independent predictor of mortality in patients with CHF (23), as
well as an in-dependent predictor of cardiac events in women
with heart failure with preserved ejection fraction (HFpEF) and
heart failure-related rehospitalization (24). Our research revealed
that including the albumin/globulin ratio among the risk factors
for elderly CHF patients improved the prognostic value for
clinical outcomes, including the composite result of unplanned
readmissions and all-cause mortality.

Previous research has indicated that biomarkers such as AST,
alanine aminotransferase, and alkaline phosphatase not only
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reflect liver cell damage but also serve as useful prognostic
indicators for heart failure patients (25, 26). Sato Takamasa et al.
(27) found that CHF patients with serum cholinesterase levels
less than 240 U/L had significantly higher rates of cardiovascular
death or readmission due to worsening heart failure. Similarly,
and his that the
cholinesterase level outperformed other liver enzymes in the

Masayuki colleagues reported serum
prediction of acute heart failure clinical outcomes (a composite
of all-cause death and hospitalization for HF) (28). This finding
is consistent with our findings. In elderly CHF patients, serum
cholinesterase is an important predictive factor for both all-cause
mortality and the composite outcomes of unplanned readmission
and all-cause mortality. Interestingly, basophils are significant
predictors of all-cause mortality in elderly heart failure patients,
but are not significant for the composite outcome of un-planned
readmissions and all-cause mortality. Patients experiencing acute
heart failure or poor prognosis (1-year all-cause mortality) tend
to have significantly lower eosinophil counts (29, 30). Our
results suggest that eosinophils may also be potential biomarkers
for all-cause mortality in elderly CHF patients. Additionally, in
our study, the RV was found to be an important predictive
factor for the composite outcome of unplanned readmissions
and all-cause mortality in elderly CHF patients, but it was not
an important predictor of all-cause mortality. The RV can
predict the all-cause mortality rate in HFpEF patients (31), but
research examining its prognostic significance in patients with
reduced ejection fraction heart failure (HFrEF) is lacking.
Another strength of this study is that all predictive factors
included in the RSF model are routine test indicators obtained
during patients’ hospital admission, thereby not re-quiring
additional burdens on the patients. Furthermore, in constructing
the RSF model, we excluded variables that could not be
determined by the Boruta algorithm (indicated as yellow
variables in Figure 1). Although including these variables may
improve the model’s predictive performance, clinicians believe
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that a simpler model with fewer variables can enhance the model’s
clinical practicality and convenience.

However, our study has several limitations. First, it was
conducted at a single center using a retrospective design. The
sample size was relatively small. These factors may limit the
generalizability of our findings. The small sample size also
prevents us from performing detailed subgroup analyses. Second,
our medication data were incomplete as we lacked information
on dosage and patient adherence. This simplification may have
reduced the
validation is necessary. Future studies should involve multiple

model’s predictive accuracy. Third, external
centers and include larger patient cohorts. Such studies would
help confirm our results and improve their clinical applicability.
Fourth, although we assessed all-cause mortality in elderly CHF
patients, we were unable to evaluate mortality specifically due to
cardiovascular diseases or heart failure. Finally, the lack of
external validation may limit the generalization of our findings.
Before clinical application, a multi-center prospective assessment

and validation of the model are needed.

5 Conclusions

In this study, we established and compared the performance of
the RSF model with that of the NYHA class, LVEF and BNP level
in evaluating the prognosis of elderly CHF patients. The results
demonstrated that the RSF model can effectively identify the
elderly CHF patients at a high risk for poor prognosis.
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