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Background and objective: Acute myocardial infarction (AMI) complicated by 

cardiogenic shock (CS) carries a substantial risk of morbidity and mortality. 

However, a validated clinical prediction model for in-hospital mortality in 

these patients is still lacking. This study seeks to develop and validate a 

mortality risk prediction tool to assist clinicians in early identification of high- 

risk patients and guide personalized therapeutic interventions.

Methods: We conducted a retrospective analysis of clinical data from 1,419 

patients diagnosed with AMI. Of these, 150 patients with AMI complicated by 

CS were enrolled. Participants were randomly assigned to a training group 

(70%) or a testing group (30%). Following logistic regression analysis, variables 

were selected using LASSO regression. Seven candidate predictors were 

selected for inclusion in the final nomogram model. Model performance was 

assessed through the area under the receiver operating characteristic curve 

(AUC), decision curve analysis (DCA), and calibration curves.

Results: A total of 150 patients with AMI complicated by CS were included in the 

study. In-hospital mortality occurred in 41 patients (27.33%). Eleven variables, 

including age, smokers, and left ventricular ejection fraction (LVEF), were 

identified as potential predictors of in-hospital mortality. The final nomogram 

incorporated the following independent predictors: age, LVEF, creatine 

kinase-MB (CK-MB), high-sensitivity C-reactive protein (Hs-CRP), β-blocker 

use, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker 

(ACEI/ARB) use, and statin use. During internal validation, the nomogram 

demonstrated AUC values of 0.941 in the training sets and 0.981 in the 

testing sets. Both calibration curves and DCA showed excellent agreement 

between predicted probabilities and observed outcomes.

Conclusion: This study developed and internally validated a clinically applicable 

prediction model and nomogram for assessing the risk of in-hospital mortality 

among patients with AMI complicated by CS. The results offer readily applicable 

insights to guide clinical practitioners in implementing timely, personalized 

patient management strategies.
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Introduction

Acute myocardial infarction (AMI) complicated by 

cardiogenic shock (CS) presents a major clinical challenge, 

characterized by high morbidity and mortality rates (1, 2). 

Accurate prediction of in-hospital mortality in these patients is 

critical for implementing timely and appropriate management 

strategies. Although existing studies have identified several risk 

factors for AMI patients with CS, there remains a lack of readily 

applicable predictive models for clinical use (3–5). A thorough 

understanding of mortality-associated risk factors in this 

population is essential to establish a foundation for informed 

clinical decision-making (6, 7).

In recent years, researchers have increasingly focused on 

predictive modeling to identify patients at increased risk of 

mortality (8–10). These models integrate diverse patient-specific 

variables to generate accurate and timely prognostic estimates. 

Consequently, healthcare practitioners can optimize 

interventions, resource allocation, and patient care strategies 

(11). Recent advances in predictive modeling have created new 

opportunities for risk stratification and mortality prediction 

across various medical conditions. While several validated 

prognostic scores exist for cardiogenic shock [e.g., IABP- 

SHOCK II (6, 12, 13), CardShock (14)], these tools often 

incorporate variables requiring invasive procedures (e.g., arterial 

lactate, cardiac power index) or specialized laboratory tests not 

universally available during initial emergency assessment. 

Furthermore, their development cohorts included mixed 

etiologies of CS, with only subsets specifically focused on AMI- 

CS. There remains a need for a practical tool leveraging 

routinely available early data to facilitate rapid risk stratification 

specifically in AMI-CS patients at the point of care. To address 

this gap, we developed a practical and comprehensive model 

specifically designed to predict in-hospital mortality in this 

patient population.

The primary objective of this study was to aid healthcare 

providers in the early identification of high-risk patients to 

support informed decision-making regarding treatment selection 

and resource allocation. By developing and validating a clinically 

applicable model for predicting in-hospital mortality among 

patients with AMI complicated by CS, we aimed to provide 

clinicians with a practical prognostic tool to guide individualized 

patient management. Our approach leveraged established 

statistical methodologies to construct a model for predicting in- 

hospital mortality in this high-risk cohort.

Methods

Patients

Ethical approval for this retrospective study was obtained, with 

a waiver of informed consent requirement granted. We 

retrospectively reviewed the clinical database from the 

Department of Cardiology at Shanghai Tongji Hospital, 

including data for 1,419 patients diagnosed with AMI between 

June 2016 and September 2021. Inclusion criteria were: (1) 

diagnosis of AMI complicated by CS; (2) admission to the 

cardiac intensive care unit (CCU). CS was defined as a sustained 

systolic blood pressure ≤90 mmHg for ≥30 min (15). Exclusion 

criteria were: (1) age <18 years; (2) incomplete medical records; 

(3) death before CCU admission. Ultimately, 150 patients with 

AMI complicated by CS were included. The patient selection 

Dowchart is presented in Figure 1.

Variable selection and model construction

Clinical data were collected anonymously from electronic 

medical records within 24 h of admission. Data included 

demographic characteristics, comorbidities, presenting 

symptoms, admission vital signs, laboratory results 

(hematological, biochemical, inDammatory, and coagulation 

markers), and medication details. Use of β-blockers, 

angiotensin-converting enzyme inhibitors and angiotensin 2 

receptor blockers (ACEI/ARB), and statins was defined as 

documented administration at any point during the index 

hospitalization prior to the outcome event (in-hospital death) or 

discharge. All laboratory values used in model development, 

including CK-MB and hs-CRP, were the first measurements 

obtained upon hospital admission (i.e., within 2 h of emergency 

department arrival or direct admission). Peak values during 

hospitalization were not utilized for model building, ensuring 

the model’s applicability for early prognostication at the time of 

initial patient assessment. Patients were followed until hospital 

discharge, with in-hospital mortality as the primary endpoint. 

The cohort of 150 AMI-CS patients was randomly divided into 

a training set (70%, n = 105) for model development and a 

testing set (30%, n = 45) for internal validation. Stratified 

random sampling based on in-hospital mortality status was 

performed using R software version 4.0.2 (R Foundation for 

Statistical Computing) with the “createDataPartition()” function 

(“caret” package v6.0-94). A fixed random seed (1,234) ensured 

reproducibility. Mortality rates were comparable across sets: 

training set (29 deaths, 27.6%), testing set (12 deaths, 26.7%), 

and overall cohort (27.3%). This allocation balanced model 

stability needs with independent validation requirements.

Abbreviations  

AMI, acute myocardial infarction; CS, cardiogenic shock; CCU, cardiac 
intensive care unit; ROC, receiver operating characteristic; AUC, under the 
receiver operating characteristic curve, DCA, decision curve analysis; LVEF, 
left ventricular ejection fraction; CK-MB, creatine kinase myocardial band; 
Cr, creatinine; Hs-CRP, high-sensitivity C-reactive protein; NT-pro-BNP, N- 
terminal fragment brain natriuretic peptides; ACEI/ARB, angiotensin 
converting enzyme inhibitors and angiotensin 2 receptor blockers; DM, 
diabetes mellitus; PCI, percutaneous coronary intervention; BUN, blood urea 
nitrogen; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin 
A1c; LASSO, least absolute shrinkage and selection operator; TC, total 
cholesterol; LDL-C, low-density lipoprotein cholesterol; Hb, hemoglobin; 
BMI, body mass index; OR, odds ratio; aOR, adjusted odds ratio; CI, 
confidence interval; TIMI, thrombolysis in myocardial infarction; IABP, 
intra-aortic balloon pump; VT, ventricular tachycardia.
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Statistical analysis

Statistical analyses were performed using R software. Normally 

distributed continuous variables are presented as mean ± standard 

deviation and were compared using independent t-test (two 

groups), with post-hoc least significant difference (LSD) testing. 

Non-normally distributed continuous variables are expressed as 

median (interquartile range) and compared using the Mann– 

Whitney U test. Categorical variables are reported as frequency 

(percentage) and compared using χ2 tests. Variables with <10% 

missing values were imputed using the mice package in R.

Following the stratified random sampling described 

previously, the training set was used for model development via 

logistic regression analysis. LASSO regression was implemented 

via “glmnet” package in R with: (a) λ determination: 10-fold 

cross-validation minimizing binomial deviance; (b) Threshold 

criterion: Variables retained at λ = λmin (minimum deviance 

criterion); (c) Standardization: Continuous variables scaled to 

unit variance; (d) Convergence: 10−4 tolerance threshold over 

1,000 iterations. The 10-fold cross-validation method was 

applied to verify the stability and reliability of the LASSO 

regression results. A nomogram was constructed to visualize the 

final prediction model. Model performance was assessed in both 

sets using: (a) the area under the receiver operating 

characteristic curve (AUC) for discrimination; (b) calibration 

curves for goodness-of-fit; and (c) decision curve analysis 

(DCA) for clinical utility.

Results

Clinical characteristics

The final cohort comprised 150 patients with a mean age of 

68.76 years and 80% male representation. Among these, 109 

individuals survived with mean age of 66.14 years and 81.65% 

being male, while 41 individuals did not survive with mean age 

of 72.44 years and 75.61% being male; survivors were 

significantly younger than non-survivors (p = 0.002). Baseline 

characteristics differed significantly between groups in: age, 

smokers, and left ventricular ejection fraction (LVEF), high- 

sensitivity cardiac troponin I (Hs-cTnI), creatine kinase 

myocardial band (CK-MB), creatinine (Cr), high-sensitivity 

C-reactive protein (Hs-CRP), N-terminal fragment brain 

natriuretic peptides (NT-pro-BNP), β-blocker use, ACEI/ARB 

use, and statin use (p < 0.05). The percentage of smokers among 

survivors was markedly greater than that among non-survivors 

(66.06% vs. 24.39%, p < 0.001), as was the utilization of 

β-blockers (61.47% vs. 9.76%, p < 0.001), ACEI/ARBs (65.14% 

vs. 12.20%, p < 0.001), and statins (95.41% vs. 29.27%, p < 0.001). 

Survivors exhibited a notably higher LVEF than non-survivors 

(53.06% vs. 48.71%, p = 0.021). Conversely, survivors had 

significantly lower levels of Hs-cTnI (0.11 vs. 3.47, p = 0.003), 

CK-MB (5.90 vs. 24.20, p = 0.001), Cr (101.10 vs. 132.29, 

p = 0.006), Hs-CRP (30.71 vs. 47.86, p = 0.041), and NT-pro-BNP 

(1,314.00 vs. 3,830.50 pg/ml, p = 0.016) compared to non- 

survivors. Parameters such as sex, hypertension, diabetes mellitus 

(DM), stroke history, prior myocardial infarction (MI), history of 

percutaneous coronary intervention (PCI), and certain laboratory 

parameters such as blood urea nitrogen (BUN), estimated 

glomerular filtration rate (eGFR), D-dimer, fasting glucose, 

hemoglobin A1c (HbA1c), total cholesterol (TC), low-density 

lipoprotein cholesterol (LDL-C), hemoglobin (Hb), and body 

mass index (BMI) did not exhibit significant differences between 

the two groups (all p > 0.05). Detailed patient characteristics for 

survivors and non-survivors are presented in Table 1.

Predictors of in-hospital mortality

In-hospital mortality occurred in 41 patients (27.33%). 

Univariate logistic regression analyses applied to the 150 

FIGURE 1 

Study workflow.
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patients’ cohort reduced 26 initial baseline variables to 11 

candidate predictors. These potential predictors included age, 

smokers, LVEF, Hs-cTnI, CK-MB, Cr, Hs-CRP, NT-pro-BNP, β- 

blocker use, ACEI/ARB use, and statin use. The results of the 

univariate logistic regression analyses for these predictors are 

presented in Table 2. Age [odds ratio (OR) = 1.05; 95% 

confidence interval (CI), 1.02–1.09; p = 0.0033], smokers 

(OR = 0.17; 95% CI, 0.07–0.37; p < 0.001), LVEF (OR = 0.96; 95% 

CI, 0.92–0.99; p = 0.0246), Hs-cTnI (OR = 1.03; 95% CI, 1.01– 

1.04; p = 0.0091), CK-MB (OR = 1.01; 95% CI, 1.00–1.01; 

p = 0.0042), Cr (OR = 1.01; 95% CI, 1.00–1.01; p = 0.0154), Hs- 

CRP (OR = 1.01; 95% CI, 1.00–1.01; p = 0.0499), NT-pro-BNP 

(OR = 1.01; 95% CI, 1.00–1.01; p = 0.0248), β-blocker use 

(OR = 0.07; 95% CI, 0.02–0.20; p < 0.001), ACEI/ARB use 

(OR = 0.07; 95% CI, 0.03–0.21; p < 0.001), and statin use 

(OR = 0.02; 95% CI, 0.01–0.06; p < 0.001) emerged as significant 

predictors of in-hospital mortality. On multivariate logistic 

analysis, ACEI/ARB use (aOR = 0.17; 95% CI, 0.04–0.84; 

p = 0.029) and statin use (aOR = 0.03; 95% CI, 0.01–0.18; 

p < 0.001) remained independently associated with reduced 

mortality risk after adjustment.

Development of the predictive nomogram

Based on univariate logistic regression analysis, 11 candidate 

predictors were initially identified. Subsequently, LASSO regression 

with 10-fold cross-validation (λ.min criterion) was applied 

exclusively to these pre-screened variables to mitigate 

multicollinearity and optimize predictive efficiency. Final predictors 

for the nomogram were selected through dual criteria: retention of 

non-zero coefficients in LASSO regression and established clinical 

relevance per current guidelines. The seven predictors incorporated 

into the nomogram were: ACEI/ARB use, statin use, age, LVEF, CK- 

MB, hs-CRP, and β-blocker use. These variables demonstrated both 

statistical significance and clinical utility in the prediction model. 

Four variables were excluded: creatinine, NT-proBNP, smoking 

status, and hs-cTnI. This exclusion resulted from LASSO coefficient 

shrinkage to zero and considerations of clinical interpretability. The 

10-fold cross-validation method verified the stability and reliability 

of the LASSO regression results, with narrow confidence bands 

indicating robust model stability (Supplementary Figures S1A,B).

The resulting nomogram is shown in Figure 2. In this 

nomogram, a higher total score assigned to each predictor 

TABLE 1 Patient demographics and clinical features.

Variables Total (n = 150) Survival P value

Yes (n = 109) No (n = 41)

Demographic characteristics

Age, y 67.86 ± 11.39 66.14 ± 10.69 72.44 ± 12.03 0.002

Male, n (%) 120 (80.00%) 89 (81.65%) 31 (75.61%) 0.410

Comorbidities

Hypertension, n (%) 88 (58.67%) 65 (59.63%) 23 (56.10%) 0.695

DM, n (%) 52 (34.67%) 40 (36.70%) 12 (29.27%) 0.394

Smokers, n (%) 82 (54.67%) 72 (66.06%) 10 (24.39%) <0.001

Stroke, n (%) 30 (20.00%) 20 (18.35%) 10 (24.39%) 0.410

Prior MI, n (%) 3 (2.00%) 1 (0.92%) 2 (4.88%) 0.181

PCI History, n (%) 8 (5.33%) 4 (3.67%) 4 (9.76%) 0.215

Laboratory examinations

LVEF, % 51.8 ± 10.32 53.06 ± 11.38 48.71 ± 5.70 0.021

Hs-cTnI (ng/ml) 0.26 (0.03–7.50) 0.11 (0.02–3.91) 3.47 (1.07–14.10) 0.003

CK-MB (ng/ml) 9.90 (2.32–34.40) 5.90 (2.10–34.40) 24.20 (5.50–84.60) 0.001

BUN (mmol/L) 7.00 (5.60–10.35) 7.00 (5.40–10.40) 6.90 (5.90–9.90) 0.542

Cr (μmol/L) 109.63 ± 62.48 101.10 ± 57.23 132.29 ± 70.54 0.006

eGFR (ml/min/1.73 m2) 79.75 ± 63.31 83.89 ± 69.64 68.73 ± 40.78 0.192

D-dimer (μg/ml) 0.98 (0.34–2.19) 0.68 (0.32–2.19) 1.70 (0.81–2.91) 0.115

Fasting Glucose (mmol/L) 9.67 ± 4.46 9.29 ± 4.63 10.68 ± 3.85 0.090

HbA1c (%) 7.11 ± 1.63 7.12 ± 1.86 7.10 ± 0.74 0.935

TC (mmol/L) 4.61 ± 1.13 4.70 ± 1.22 4.39 ± 0.80 0.129

LDL-C (mmol/L) 3.13 ± 0.83 3.20 ± 0.90 2.93 ± 0.58 0.080

Hs-CRP (mg/L) 18.80 (5.99–36.22) 30.71 ± 43.09 47.86 ± 51.02 0.041

NT-pro-BNP (pg/ml) 2,134.00 (565.57–3,830.50) 1,314.00 (454.90–3,830.50) 3,830.50 (3,830.50–5,397.00) 0.016

Hb (g/L) 138.69 ± 18.76 139.60 ± 18.26 136.27 ± 20.05 0.335

BMI 23.66 ± 2.63 23.70 ± 2.81 23.55 ± 2.12 0.750

β-blocker use, n (%) 71 (47.33%) 67 (61.47%) 4 (9.76%) <0.001

ACEI/ARB use, n (%) 76 (50.67%) 71 (65.14%) 5 (12.20%) <0.001

Statin use, n (%) 116 (77.33%) 104 (95.41%) 12 (29.27%) <0.001

DM, diabetes mellitus; MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; Hs-cTnI, high-sensitivity cardiac troponin I; CK-MB, 

creatine kinase-MB; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated glomerular filtration rate; HbA1c, Hemoglobin A1c; TC, total cholesterol; LDL-C, low-density lipoprotein 

cholesterol; Hs-CRP, hypersensitive C-reactive protein; NT-pro-BNP, N-terminal pro-B-type natriuretic peptide; Hb, hemoglobin; BMI, body mass index; ACEI/ARB, angiotensin converting 

enzyme inhibitors and angiotensin 2 receptor blockers.

Bold values indicate statistical significance at p < 0.05.
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indicates an increased risk of mortality during hospitalization. 

Each point on the nomogram represents a specific scoring 

standard or scale. A perpendicular line was drawn for each 

independent variable to determine the corresponding score 

based on its value. For instance, an age of 70 equated to 25.1 

points, while a lack of statin use equated to 75 points. The 

cumulative points for all independent variables were calculated 

for each patient, and their corresponding risk levels for in- 

hospital mortality in AMI with CS patients were estimated 

based on the location on the perpendicular line.

Validation of the predictive nomogram

The nomogram’s performance was internally validated using 

the training and testing cohorts. In the training cohort, the 

nomogram model achieved an AUC of 0.941 (95% CI, 0.839– 

0.959) as shown in Figure 3A. In the testing cohort, the AUC 

was 0.981 (95% CI, 0.917–1.000) (Figure 3B), indicating strong 

predictive ability for in-hospital mortality in AMI-CS patients. 

These internal validation results confirmed the model’s robust 

predictive accuracy.

Assessment of the predictive nomogram

Calibration curves demonstrated good agreement between 

predicted and observed mortality rates in both the training 

group (Figure 4A) and the testing group (Figure 4B). 

Furthermore, the decision curve analysis confirmed the model’s 

clinical utility for practical application, showing a positive net 

benefit across a wide range of threshold probabilities, as 

depicted in Figure 5.

Discussion

This study developed and internally validated a clinical 

prediction nomogram incorporating key clinical and laboratory 

predictors to estimate individualized in-hospital mortality risk 

for patients with AMI complicated by CS. The model 

demonstrated excellent discrimination, with AUC values of 

0.941 in the training cohort and 0.981 in the testing cohort. 

Calibration and decision curve analyses further confirmed its 

clinical applicability. This practical tool addresses a critical 

unmet need in AMI-CS management by enabling early 

identification of high-risk patients to guide personalized 

treatment decisions.

CS represents the predominant cause of in-hospital mortality 

in AMI, contributing to high fatality rates and complex 

management challenges (15, 16). Our cohort reDected this 

burden, with 27.3% in-hospital mortality. This high-risk context 

requires urgent optimization of risk stratification. To address 

FIGURE 2 

The nomogram to predict in-hospital mortality was created based on 7 significant predictors. *(Branch: 1 means the presence of branch type MB; 0 

means the absence of branch type MB).

TABLE 2 Univariate and multivariate variables associated with in-hospital 
mortality using the logistic models.

Variables Univariate analysis Multivariable analysis

OR (95% CI) P value OR (95% CI) P value

Age 1.05 (1.02, 1.09) 0.0033 1.02 (0.97, 1.08) 0.444

Smokers 0.17 (0.07, 0.37) <0.001 1.28 (0.30–5.42) 0.739

LVEF 0.96 (0.92, 0.99) 0.0246 0.94 (0.88–1.00) 0.059

Hs-cTnI 1.03 (1.01, 1.04) 0.0091 0.99 (0.96–1.03) 0.719

CK-MB 1.01 (1.00, 1.01) 0.0042 1.01 (1.00–1.02) 0.125

Cr 1.01 (1.00, 1.01) 0.0154 1.00 (0.99–1.01) 0.986

Hs-CRP 1.01 (1.00, 1.01) 0.0499 1.01 (1.00–1.02) 0.076

NT-pro-BNP 1.00 (1.00, 1.00) 0.0248 1.00 (1.00–1.00) 0.513

β-blocker use 0.07 (0.02, 0.20) <0.001 0.39 (0.08–1.78) 0.223

ACEI/ARB use 0.07 (0.03, 0.21) <0.001 0.17 (0.04–0.84) 0.029

Statin use 0.02 (0.01, 0.06) <0.001 0.03 (0.01–0.18) <0.001

LVEF, left ventricular ejection fraction; Hs-cTnI, high-sensitivity cardiac troponin I; CK- 

MB, creatine kinase-MB; Cr, creatinine; Hs-CRP, hypersensitive C-reactive protein; NT- 

pro-BNP, N-terminal pro-B-type natriuretic peptide; ACEI, angiotensin-converting 

enzyme inhibitors; ARB, angiotensin II receptor blockers.
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FIGURE 3 

The time-dependent receiver operating characteristic (ROC) curve and area under the ROC curve (AUC). (A) The ROC in training set; (B) The ROC in 

testing set.

FIGURE 4 

The calibration curves for evaluating the accuracy of the nomogram. (A) The calibration curve in training set; (B) The calibration curve in testing set.

FIGURE 5 

Decision curve analysis for the nomogram and the model with predictors. (A) The decision curve in training set; (B) The decision curve in testing set. 

The y-axis measures the net benefit. The red line represents the nomogram. The red gray line represents the assumption that all patients have in- 

hospital mortality. The black line represents the assumption that no patients have in-hospital mortality.
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this need, we developed and validated a clinically applicable 

prediction model using robust statistical methods. Key strengths 

include its excellent discriminatory accuracy (AUC 0.981 in 

testing) and immediate clinical implementability, as all 

incorporated variables are routinely collected during initial 

assessment without specialized testing. In-hospital mortality in 

AMI complicated by CS has been extensively studied, with 

research focusing on identifying prognostic predictors. For 

instance, a study of 1,333 AMI-CS patients undergoing primary 

PCI identified post-PCI thrombolysis in myocardial infarction 

(TIMI) < 3 Dow, advanced age, three-vessel disease, and 

prolonged symptom-to-PCI time as independent predictors of 

mortality (17). While valuable, this PCI-centric approach did 

not incorporate readily available admission parameters such as 

laboratory biomarkers, medication use, or comorbidities that 

may enhance early risk assessment. Another investigation of 

1,102 AMI patients (including 196 CS cases) reported 17.8% 

overall CS mortality, with 39.3% mortality specifically in the CS 

subgroup (18). In this cohort, NSTEMI presentation and 

reduced LVEF were independent mortality predictors—findings 

consistent with our results regarding age and cardiac function. 

Our study extends this evidence by demonstrating the 

prognostic significance of guideline-directed medications (β- 

blockers, ACEI/ARBs, statins) and inDammatory biomarkers (hs- 

CRP) in a comprehensive prediction model.

A study of 319 ST-elevation myocardial infarction (STEMI) 

patients with and CS undergoing PCI reported 61.3% in-hospital 

mortality (19). Multivariable analysis identified chronic renal 

insufficiency, post-PCI TIMI score ≤2, hyperglycemia, 

hyperlactatemia, elevated blood urea nitrogen, reduced Tricuspid 

Annular Plane Systolic Excursion (TAPSE), and decreased 

ejection fraction as independent predictors of in-hospital 

mortality. Unlike these models relying on post-intervention 

parameters, our approach integrated statistical learning methods 

for variable selection to develop a prediction model based on 

admission data. Similarly, a study of 274 STEMI-CS patients 

(65.3% in-hospital mortality) used multivariable logistic 

regression to construct a nomogram incorporating sex, 

admission glucose, intra-aortic balloon pump (IABP) use, no- 

reDow phenomenon, and post-PCI ejection fraction (20). While 

providing valuable insights, their predictors primarily required 

procedural data, limiting early risk assessment capability. 

Conversely, our model utilizes routinely available admission 

variables—laboratory biomarkers and medication profiles— 

enabling immediate risk stratification without specialized 

interventions. This enhances practical utility across diverse 

healthcare settings. Nomograms offer visual quantification of 

predicted mortality risk; our instrument prioritizes clinically 

accessible variables to maximize adoption potential. Validation 

confirmed the model’s robust performance, allowing physicians 

to calculate personalized mortality risk, stratify patients into risk 

categories, identify high-risk cases, and tailor early interventions 

accordingly. Non-survivors, on average, 6 years older than 

survivors in our study. This finding aligns with Damluji et al. 

(21), who reported increasing age as an independent predictor 

of in-hospital mortality in STEMI-CS patients. The observed 

association likely reDects age-related declines in physiological 

reserve and elevated vulnerability to various complications in 

the elderly. Notably, although smoking is an established 

cardiovascular risk factor (22), our study found a significantly 

higher percentage of survivors were smokers in comparison to 

those hospitalized patients who died. This apparent paradox 

may be explained by the significantly younger age and 

potentially preserved functional status in smoking patients— 

factors independently associated with improved outcomes in 

critical illness. Future multi-center studies with larger cohorts 

should validate this counterintuitive association.

IABP-SHOCK II and CardShock are also important tools for 

predicting the mortality of CS. Our model demonstrated 

significantly higher discriminative accuracy (AUC 0.94) 

compared to the IABP-SHOCK II (AUC 0.77) (12) and 

CardShock (AUC 0.79) (14) scores within our cohort. We 

attribute this difference primarily to two factors: (1) Temporal 

alignment of predictors: Our model incorporates key variables 

reDecting the severity of the acute ischemic insult (CK-MB) and 

systemic inDammation (hs-CRP), along with early treatment 

decisions, which may more directly capture the pathophysiology 

driving mortality in AMI-CS. In contrast, scores like 

IABP-SHOCK II rely heavily on variables like lactate and 

creatinine, which reDect downstream organ hypoperfusion but 

may exhibit greater variability in timing and measurement; (2) 

Cohort specificity: While IABP-SHOCK II and CardShock are 

valuable general CS scores, our model was specifically developed 

and tuned for AMI-CS. The inclusion of AMI-specific markers 

(CK-MB) and treatments likely enhances its performance in this 

subset. However, we acknowledge that our higher AUC must be 

interpreted cautiously, as it stems from internal validation and 

reDects performance within the same cohort used for 

development. External validation is essential to confirm whether 

this performance gap persists. The choice of prognostic tool 

should consider the clinical context. The IABP-SHOCK II and 

CardShock scores remain valuable, particularly for initial triage 

in undifferentiated shock or settings lacking immediate AMI- 

specific biomarkers. Our nomogram offers an alternative 

optimized for AMI-CS patients once key initial results (LVEF, 

CK-MB, hs-CRP) are available, potentially aiding decisions 

regarding escalation of mechanical circulatory support or 

palliative care consultation later in the ICU course. Therefore, 

our tool complements rather than replaces established scores, 

especially in resource-rich settings.

Beyond traditional clinical scores, machine learning and 

artificial intelligence techniques are increasingly applied to 

predict outcomes in AMI and CS (23). Recent studies have 

leveraged complex algorithms and high-dimensional data to 

achieve high predictive accuracy. Recent advances in machine 

learning have demonstrated the potential to improve prognostic 

accuracy, as seen in models by Hu et al. (24) and Zhang et al. 

(25) achieving AUCs >0.80. Our proposed model builds upon 

these foundations by incorporating novel biomarkers and 

dynamic data integration, aiming to further enhance predictive 

performance. While demonstrating impressive performance, 

these models often function as “black boxes”, require extensive 
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computational resources, and depend on data not routinely 

available at initial presentation. Our study aims to bridge this 

gap by developing a transparent, interpretable nomogram based 

on readily available early clinical and laboratory parameters, 

offering a practical tool for immediate bedside use.

Our study further identified LVEF, CK-MB, and Hs-CRP as 

significant predictors of in-hospital mortality in AMI-CS 

patients. Physiologically, LVEF quantifies left ventricular systolic 

function, typically falls within the normal range of 50%–70%, 

with values <50% indicating cardiac dysfunction. This aligns 

with established evidence linking reduced LVEF to increased 

mortality risk, including post-ablation ventricular tachycardia 

cohorts (26). Similarly, CK-MB—a cardiac-specific enzyme— 

correlates with myocardial injury extent. Elevated CK-MB levels 

portend heightened in-hospital death risk, as demonstrated in 

pulmonary embolism studies (27). Notably, Hs-CRP provides 

high-sensitivity quantification of systemic inDammation. Its 

elevation independently predicts cardiovascular risk and 

mortality (28), with our results extending this association to 

AMI-CS. Collectively, these findings reinforce the 

pathophysiological and prognostic roles of ventricular 

dysfunction (LVEF), myocardial necrosis (CK-MB), and 

systemic inDammation (hs-CRP) in AMI-CS mortality. 

A notable finding was the inclusion of β-blocker, ACEI/ARB, 

and statin use as independent predictors of in-hospital mortality 

in AMI-CS patients. Current evidence underscores immediate 

revascularization of infarct-related coronary arteries as the 

standard of care for CS secondary to AMI, as substantiated by 

randomized clinical trials (15, 29). Findings from the predictive 

model indicated that the utilization of β-blockers, ACEI/ARBs, 

and statins was linked to a reduced risk of in-hospital mortality, 

conveying significant implications for clinical management 

practices. This underscores the critical importance of guideline- 

directed medical therapy initiation post-revascularization. 

Notably, β-blockers are contraindicated in acute CS due to 

negative inotropic effects (16). Nonetheless, the predictive model 

suggests that as AMI progresses and hemodynamic stability is 

achieved, β-blocker therapy may enhance prognosis and mitigate 

in-hospital mortality in AMI-CS patients. The beneficial 

outcomes attributed to β-blockers, including antagonism of 

catecholamine adrenergic neurotransmitters, antihypertensive 

peculiarity, anti-ischemic role, and antiarrhythmic benefits, may 

underpin the observed prognostic improvements (30). Similarly, 

ACEI/ARBs mitigate ventricular remodeling, while statins exert 

pleiotropic cardioprotective effects via lipid-lowering, anti- 

inDammatory, and plaque-stabilizing properties (31, 32). Future 

studies should elucidate optimal timing and mechanisms of 

statins, β-blockers, and ACEI/ARBs therapy in AMI-CS.

While the calibration curve analysis demonstrated strong 

overall concordance between predicted and observed outcomes 

in both training and testing sets as showed in Figure 4, we note 

a modest decrease in calibration performance following model 

adjustment. This phenomenon primarily stems from two 

interrelated factors inherent to clinical prediction modeling: (1) 

The bias-variance tradeoff in regularization: Our LASSO 

regularization approach, while effectively reducing overfitting by 

shrinking coefficients of less important predictors, inherently 

introduces a small amount of bias. This regularization effect is 

most pronounced in predictors with weaker associations, where 

coefficient shrinkage creates a conservative estimation bias. This 

represents an intentional compromise where we accept modest 

calibration degradation in exchange for improved model 

generalizability and stability; (2) Finite-sample effects in 

validation: Our validation cohort (n = 45) represents a modest 

sample size relative to model complexity. When applying the 

training-derived model parameters to this finite independent 

sample, we observe the expected phenomenon described by Van 

Calster et al. (2016) (33): validation calibration curves typically 

exhibit slightly greater deviation from perfect alignment than 

training curves due to sampling variability. This effect is 

particularly noticeable in the extreme probability ranges (<20% 

and >80%) where event counts are sparse. Importantly, despite 

this modest adjustment effect, the model maintains excellent 

clinical utility as evidenced by: persistent high discrimination 

(AUC 0.981 in testing), favorable decision curve analysis across 

clinical thresholds, and close alignment with the ideal 

calibration line. Ongoing calibration refinement is valuable, the 

published nomogram should be periodically recalibrated during 

implementation as recommended by the TRIPOD guidelines 

(34), particularly when applied to populations with different 

case-mix characteristics.

This study has several limitations. First, it is important to 

acknowledge that this study adopts a retrospective design and is 

characterized by a small sample size, which restricts the 

scientific robustness of the findings due to potential 

unaccounted confounding variables such as economic status and 

educational background. Nevertheless, given the inherent 

challenges in carrying out randomized controlled trials (RCTs) 

with AMI patients, our study still offers valuable clinical 

insights. Although our model demonstrated excellent 

performance in internal validation, the overall cohort size 

(n = 150) and, crucially, the number of in-hospital mortality 

events (n = 41) were relatively small. We acknowledge that the 

single-center, retrospective nature of our study and the modest 

sample size are significant limitations that raise valid concerns 

about potential overfitting and, crucially, the generalizability of 

our findings. The high AUC observed in both our optimism- 

corrected derivation cohort and temporal internal validation 

cohort, while encouraging, must be interpreted with caution. It 

is possible that this performance reDects unique characteristics 

of our patient population, clinical practices, or data collection 

processes at our CCU. Without external validation in 

independent, multi-center cohorts with varying patient 

demographics, clinical protocols, and data quality, the true 

generalizability and real-world performance of our nomogram 

remain uncertain. This is a critical limitation inherent to our 

study design. External validation in larger, multi-center 

prospective cohorts is imperative before this nomogram can be 

widely adopted in clinical practice. Furthermore, the 

retrospective design introduces potential biases (e.g., selection 

bias, information bias) that could inDuence the model’s 

performance estimates. While our internal validation strategies 
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help mitigate overfitting, they do not account for these broader 

biases or external factors. Second, gender was not an 

independent predictor in our model, its potential indirect effects 

merit consideration. The selected biomarkers (Hs-CRP) and 

treatments (β-blockers) may have gender-dimorphic effects (35, 

36). Future studies should explicitly test whether risk 

stratification thresholds require gender-specific adjustment. We 

attempted to incorporate gender into the prediction model, The 

result indicated that after including gender in the prediction 

model, the AUC value decreased instead (ΔAUC = −0.085), 

suggesting that the predictive performance of the model has 

declined (Supplementary Figures S2A,B). Third, the gender 

imbalance (80% male) in our cohort, while reDective of AMI-CS 

epidemiology, limits our ability to fully characterize gender- 

specific risk patterns. External validation should prioritize 

cohorts with larger female representation to evaluate potential 

gender-based calibration differences. Finally, the retrospective 

nature limited capture of dynamic parameters like serial lactates 

or vasopressor dosing, preventing Society for Cardiovascular 

Angiography and Intervention (SCAI) shock classification. 

Neurological status documentation was heterogeneous. Future 

models should integrate these standardized elements. Although 

formal SCAI staging was unavailable, the strong performance of 

LVEF and Hs-CRP in our model aligns with their known roles 

in shock pathophysiology. LVEF directly measures cardiac 

dysfunction (37), while Hs-CRP integrates ischemic injury and 

systemic inDammation (38)-both central to SCAI’s conceptual 

framework. This suggests our model captures essential 

biological severity.

A key consideration raised regarding our model is the 

inclusion of in-hospital medication use (β-blockers, ACEI/ARBs, 

statins). While these variables were statistically selected by 

LASSO and contributed to the high discriminative ability of the 

original model, their incorporation introduces complexity 

regarding timing and potential immortal time bias. In our CCU, 

initiation of these therapies often occurred beyond the 

immediate hyper-acute phase of CS. Consequently, their 

presence in the model may partly reDect treatment decisions 

made after initial stabilization or even after patients have 

survived a critical period, rather than purely baseline risk. This 

partly limits the model’s applicability for immediate (e.g., first 

hour) bedside risk stratification at the moment of CS diagnosis. 

Therefore, we performed a sensitivity analysis by rebuilding the 

prediction model using LASSO regression excluding the three 

medication variables (β-blocker, ACEI/ARB, statin) 

(Supplementary Figures S3A,B). The simplified model retained 

age, LVEF, CK-MB, and hs-CRP as predictors. The AUC of this 

simplified model was 0.744 in the training set and 0.793 in the 

internal validation set (Supplementary Figures 3C–E). Compared 

to 0.941 and 0.981 for the original model, after removing these 

three medication indicators, the predictive efficacy significantly 

decreased. It is indicated that these three medication indicators 

are of great significance in the predictive model. In a way, this 

simplified model may be more appropriate for the intended 

purpose of early risk assessment. The original model including 

medications might be more relevant for prognostication later in 

the hospitalization course (e.g., after 24–48 h) when treatment 

decisions have been initiated and documented.

In conclusion, this study developed and validated a clinically 

applicable nomogram using rigorous statistical modeling to 

predict in-hospital mortality in patients with AMI complicated 

by CS. The model incorporates routinely available clinical 

predictors—including laboratory biomarkers and medication use 

—enabling frontline clinicians to identify high-risk patients at 

admission, tailor early interventions, and optimize resource 

allocation. This tool addresses a critical gap in AMI-CS risk 

stratification and may improve outcomes through timely, 

personalized management.
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