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Construction of a predictive
model for in-hospital mortality in
patients with acute myocardial
iInfarction complicated with
cardiogenic shock

Degiang Yuan', Jun Qian', Hao Lin, Jiapeng Chu, Guogi Zhu,
Fei Chen* and Xuebo Liu*

Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China

Background and objective: Acute myocardial infarction (AMI) complicated by
cardiogenic shock (CS) carries a substantial risk of morbidity and mortality.
However, a validated clinical prediction model for in-hospital mortality in
these patients is still lacking. This study seeks to develop and validate a
mortality risk prediction tool to assist clinicians in early identification of high-
risk patients and guide personalized therapeutic interventions.

Methods: We conducted a retrospective analysis of clinical data from 1,419
patients diagnosed with AMI. Of these, 150 patients with AMI complicated by
CS were enrolled. Participants were randomly assigned to a training group
(70%) or a testing group (30%). Following logistic regression analysis, variables
were selected using LASSO regression. Seven candidate predictors were
selected for inclusion in the final nomogram model. Model performance was
assessed through the area under the receiver operating characteristic curve
(AUC), decision curve analysis (DCA), and calibration curves.

Results: A total of 150 patients with AMI complicated by CS were included in the
study. In-hospital mortality occurred in 41 patients (27.33%). Eleven variables,
including age, smokers, and left ventricular ejection fraction (LVEF), were
identified as potential predictors of in-hospital mortality. The final nomogram
incorporated the following independent predictors: age, LVEF, creatine
kinase-MB (CK-MB), high-sensitivity C-reactive protein (Hs-CRP), B-blocker
use, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker
(ACEI/ARB) use, and statin use. During internal validation, the nomogram
demonstrated AUC values of 0.941 in the training sets and 0.981 in the
testing sets. Both calibration curves and DCA showed excellent agreement
between predicted probabilities and observed outcomes.

Conclusion: This study developed and internally validated a clinically applicable
prediction model and nomogram for assessing the risk of in-hospital mortality
among patients with AMI complicated by CS. The results offer readily applicable
insights to guide clinical practitioners in implementing timely, personalized
patient management strategies.
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Introduction

Acute infarction (AMI)

cardiogenic shock (CS) presents a major clinical challenge,

myocardial complicated by
characterized by high morbidity and mortality rates (1, 2).
Accurate prediction of in-hospital mortality in these patients is
critical for implementing timely and appropriate management
strategies. Although existing studies have identified several risk
factors for AMI patients with CS, there remains a lack of readily
applicable predictive models for clinical use (3-5). A thorough
understanding of mortality-associated risk factors in this
population is essential to establish a foundation for informed
clinical decision-making (6, 7).

In recent years, researchers have increasingly focused on
predictive modeling to identify patients at increased risk of
mortality (8-10). These models integrate diverse patient-specific
variables to generate accurate and timely prognostic estimates.
healthcare
interventions, resource allocation, and patient care strategies

Consequently, practitioners ~ can  optimize
(11). Recent advances in predictive modeling have created new
opportunities for risk stratification and mortality prediction
While several validated
prognostic scores exist for cardiogenic shock [e.g., IABP-
SHOCK 1II (6, 12, 13), CardShock (14)], these tools often

incorporate variables requiring invasive procedures (e.g., arterial

across various medical conditions.

lactate, cardiac power index) or specialized laboratory tests not
universally available initial
their

etiologies of CS, with only subsets specifically focused on AMI-

during emergency assessment.

Furthermore, development cohorts included mixed
CS. There remains a need for a practical tool leveraging
routinely available early data to facilitate rapid risk stratification
specifically in AMI-CS patients at the point of care. To address
this gap, we developed a practical and comprehensive model
specifically designed to predict in-hospital mortality in this
patient population.

The primary objective of this study was to aid healthcare
providers in the early identification of high-risk patients to
support informed decision-making regarding treatment selection
and resource allocation. By developing and validating a clinically
applicable model for predicting in-hospital mortality among
patients with AMI complicated by CS, we aimed to provide

clinicians with a practical prognostic tool to guide individualized

Abbreviations

AMI, acute myocardial infarction; CS, cardiogenic shock; CCU, cardiac
intensive care unit; ROC, receiver operating characteristic; AUC, under the
receiver operating characteristic curve, DCA, decision curve analysis; LVEF,
left ventricular ejection fraction; CK-MB, creatine kinase myocardial band;
Cr, creatinine; Hs-CRP, high-sensitivity C-reactive protein; NT-pro-BNP, N-
fragment brain natriuretic peptides; ACEI/ARB, angiotensin
converting enzyme inhibitors and angiotensin 2 receptor blockers; DM,
diabetes mellitus; PCI, percutaneous coronary intervention; BUN, blood urea
nitrogen; eGFR, estimated glomerular filtration rate; HbAlc, hemoglobin
Alc; LASSO, least absolute shrinkage and selection operator; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; Hb, hemoglobin;
BMI, body mass index; OR, odds ratio; aOR, adjusted odds ratio; CI,
confidence interval; TIMI, thrombolysis in myocardial infarction; IABP,
intra-aortic balloon pump; VT, ventricular tachycardia.
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Our established
statistical methodologies to construct a model for predicting in-

patient management. approach leveraged

hospital mortality in this high-risk cohort.

Methods
Patients

Ethical approval for this retrospective study was obtained, with
a waiver of informed consent requirement granted. We
clinical ~database from the

retrospectively reviewed the

Department of Cardiology at Shanghai Tongji Hospital,
including data for 1,419 patients diagnosed with AMI between
June 2016 and September 2021. Inclusion criteria were: (1)
diagnosis of AMI complicated by CS; (2) admission to the
cardiac intensive care unit (CCU). CS was defined as a sustained
systolic blood pressure <90 mmHg for >30 min (15). Exclusion
criteria were: (1) age <18 years; (2) incomplete medical records;
(3) death before CCU admission. Ultimately, 150 patients with
AMI complicated by CS were included. The patient selection

flowchart is presented in Figure 1.

Variable selection and model construction

Clinical data were collected anonymously from electronic

medical records within 24h of admission. Data included
demographic  characteristics, =~ comorbidities,  presenting
symptoms, admission  vital signs, laboratory results

(hematological, biochemical, inflammatory, and coagulation
details. Use of p-blockers,
angiotensin-converting enzyme inhibitors and angiotensin 2
receptor blockers (ACEI/ARB), and statins was defined as
documented administration at any point during the index

markers), and medication

hospitalization prior to the outcome event (in-hospital death) or
discharge. All laboratory values used in model development,
including CK-MB and hs-CRP, were the first measurements
obtained upon hospital admission (i.e., within 2 h of emergency
department arrival or direct admission). Peak values during
hospitalization were not utilized for model building, ensuring
the model’s applicability for early prognostication at the time of
initial patient assessment. Patients were followed until hospital
discharge, with in-hospital mortality as the primary endpoint.
The cohort of 150 AMI-CS patients was randomly divided into
a training set (70%, n=105) for model development and a
testing set (30%, n=45) for internal validation. Stratified
random sampling based on in-hospital mortality status was
performed using R software version 4.0.2 (R Foundation for
Statistical Computing) with the “createDataPartition()” function
(“caret” package v6.0-94). A fixed random seed (1,234) ensured
reproducibility. Mortality rates were comparable across sets:
training set (29 deaths, 27.6%), testing set (12 deaths, 26.7%),
and overall cohort (27.3%). This allocation balanced model
stability needs with independent validation requirements.
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FIGURE 1
Study workflow.

Statistical analysis

Statistical analyses were performed using R software. Normally
distributed continuous variables are presented as mean * standard
deviation and were compared using independent t-test (two
groups), with post-hoc least significant difference (LSD) testing.
Non-normally distributed continuous variables are expressed as
median (interquartile range) and compared using the Mann-
Whitney U test. Categorical variables are reported as frequency
(percentage) and compared using y* tests. Variables with <10%
missing values were imputed using the mice package in R.
the stratified
previously, the training set was used for model development via

Following random sampling described
logistic regression analysis. LASSO regression was implemented
via “glmnet” package in R with: (a) 4 determination: 10-fold
cross-validation minimizing binomial deviance; (b) Threshold
criterion: Variables retained at A=Amin (minimum deviance
criterion); (c) Standardization: Continuous variables scaled to
unit variance; (d) Convergence: 10~ tolerance threshold over
1,000 iterations. The 10-fold cross-validation method was
applied to verify the stability and reliability of the LASSO
regression results. A nomogram was constructed to visualize the
final prediction model. Model performance was assessed in both
(a) the the

characteristic curve (AUC) for discrimination; (b) calibration

sets  using: area under receiver operating
curves for goodness-of-fit; and (c) decision curve analysis

(DCA) for clinical utility.

Results
Clinical characteristics
The final cohort comprised 150 patients with a mean age of

68.76 years and 80% male representation. Among these, 109
individuals survived with mean age of 66.14 years and 81.65%
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being male, while 41 individuals did not survive with mean age
of 7244 vyears and 75.61% being male;
significantly younger than non-survivors (p=0.002). Baseline

survivors were
characteristics differed significantly between groups in: age,
smokers, and left ventricular ejection fraction (LVEF), high-
sensitivity cardiac troponin I (Hs-cTnl),
myocardial band (CK-MB), creatinine (Cr), high-sensitivity
C-reactive protein (Hs-CRP), N-terminal fragment brain
natriuretic peptides (NT-pro-BNP), B-blocker use, ACEI/ARB
use, and statin use (p < 0.05). The percentage of smokers among

creatine kinase

survivors was markedly greater than that among non-survivors
(66.06% vs. 24.39%, p<0.001), as was the utilization of
B-blockers (61.47% vs. 9.76%, p <0.001), ACEI/ARBs (65.14%
vs. 12.20%, p <0.001), and statins (95.41% vs. 29.27%, p < 0.001).
Survivors exhibited a notably higher LVEF than non-survivors
(53.06% vs. 48.71%, p=0.021). Conversely, survivors had
significantly lower levels of Hs-cTnI (0.11 vs. 3.47, p=0.003),
CK-MB (590 vs. 2420, p=0.001), Cr (101.10 vs. 132.29,
p =0.006), Hs-CRP (30.71 vs. 47.86, p =0.041), and NT-pro-BNP
(1,314.00 vs. 3,830.50 pg/ml, p=0.016)
survivors. Parameters such as sex, hypertension, diabetes mellitus

compared to non-

(DM), stroke history, prior myocardial infarction (MI), history of
percutaneous coronary intervention (PCI), and certain laboratory
parameters such as blood urea nitrogen (BUN), estimated
glomerular filtration rate (eGFR), D-dimer, fasting glucose,
hemoglobin Alc (HbAlc), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), hemoglobin (Hb), and body
mass index (BMI) did not exhibit significant differences between
the two groups (all p>0.05). Detailed patient characteristics for
survivors and non-survivors are presented in Table 1.

Predictors of in-hospital mortality

In-hospital mortality occurred in 41 patients (27.33%).
Univariate logistic regression analyses applied to the 150
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TABLE 1 Patient demographics and clinical features.

10.3389/fcvm.2025.1614183

Variables Total (n =150) Survival

Yes (n =109)
Demographic characteristics
Age, y 67.86 + 11.39 66.14 + 10.69 72.44 +12.03 0.002
Male, 1 (%) 120 (80.00%) 89 (81.65%) 31 (75.61%) 0.410
Comorbidities
Hypertension, n (%) 88 (58.67%) 65 (59.63%) 23 (56.10%) 0.695
DM, 1 (%) 52 (34.67%) 40 (36.70%) 12 (29.27%) 0.394
Smokers, 1 (%) 82 (54.67%) 72 (66.06%) 10 (24.39%) <0.001
Stroke, 1 (%) 30 (20.00%) 20 (18.35%) 10 (24.39%) 0.410
Prior ML, n (%) 3 (2.00%) 1 (0.92%) 2 (4.88%) 0.181
PCI History, n (%) 8 (5.33%) 4 (3.67%) 4 (9.76%) 0.215
Laboratory examinations
LVEF, % 51.8+10.32 53.06+11.38 48.71 +5.70 0.021
Hs-cTnl (ng/ml) 0.26 (0.03-7.50) 0.11 (0.02-3.91) 3.47 (1.07-14.10) 0.003
CK-MB (ng/ml) 9.90 (2.32-34.40) 5.90 (2.10-34.40) 24.20 (5.50-84.60) 0.001
BUN (mmol/L) 7.00 (5.60-10.35) 7.00 (5.40-10.40) 6.90 (5.90-9.90) 0.542
Cr (umol/L) 109.63 + 62.48 101.10 +57.23 132.29 +70.54 0.006
eGFR (ml/min/1.73 m?) 79.75 + 63.31 83.89 + 69.64 68.73 + 40.78 0.192
D-dimer (ug/ml) 0.98 (0.34-2.19) 0.68 (0.32-2.19) 1.70 (0.81-2.91) 0.115
Fasting Glucose (mmol/L) 9.67 +4.46 9.29 +4.63 10.68 £ 3.85 0.090
HbAIlc (%) 7.11+1.63 7.12+1.86 7.10+0.74 0.935
TC (mmol/L) 4.61+1.13 470+ 1.22 439 +0.80 0.129
LDL-C (mmol/L) 3.13+0.83 3.20+0.90 2.93+0.58 0.080
Hs-CRP (mg/L) 18.80 (5.99-36.22) 30.71 +43.09 47.86 +51.02 0.041
NT-pro-BNP (pg/ml) 2,134.00 (565.57-3,830.50) 1,314.00 (454.90-3,830.50) 3,830.50 (3,830.50-5,397.00) 0.016
Hb (g/L) 138.69 + 18.76 139.60 + 18.26 136.27 + 20.05 0.335
BMI 23.66 +2.63 23.70 +2.81 23.55+2.12 0.750
B-blocker use, 1 (%) 71 (47.33%) 67 (61.47%) 4 (9.76%) <0.001
ACEI/ARB use, 1 (%) 76 (50.67%) 71 (65.14%) 5 (12.20%) <0.001
Statin use, 1 (%) 116 (77.33%) 104 (95.41%) 12 (29.27%) <0.001

DM, diabetes mellitus; MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; Hs-cTnl, high-sensitivity cardiac troponin I; CK-MB,
creatine kinase-MB; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated glomerular filtration rate; HbAlc, Hemoglobin Alc; TC, total cholesterol; LDL-C, low-density lipoprotein
cholesterol; Hs-CRP, hypersensitive C-reactive protein; NT-pro-BNP, N-terminal pro-B-type natriuretic peptide; Hb, hemoglobin; BMI, body mass index; ACEI/ARB, angiotensin converting

enzyme inhibitors and angiotensin 2 receptor blockers.
Bold values indicate statistical significance at p < 0.05.

patients’ cohort reduced 26 initial baseline variables to 11
candidate predictors. These potential predictors included age,
smokers, LVEF, Hs-cTnl, CK-MB, Cr, Hs-CRP, NT-pro-BNP, f3-
blocker use, ACEI/ARB use, and statin use. The results of the
univariate logistic regression analyses for these predictors are
presented in Table 2. Age [odds ratio (OR)=1.05 95%
confidence interval (CI), 1.02-1.09; p=0.0033], smokers
(OR=0.17; 95% CI, 0.07-0.37; p < 0.001), LVEF (OR = 0.96; 95%
CL, 0.92-0.99; p=0.0246), Hs-cTnl (OR=1.03; 95% CI, 1.01-
1.04; p=0.0091), CK-MB (OR=1.01; 95% CI, 1.00-1.01;
p=0.0042), Cr (OR=1.01; 95% CI, 1.00-1.01; p=0.0154), Hs-
CRP (OR=1.01; 95% CI, 1.00-1.01; p=0.0499), NT-pro-BNP
(OR=1.01; 95% CI, 1.00-1.01; p=0.0248), B-blocker use
(OR=0.07; 95% CI, 0.02-0.20; p<0.001), ACEI/ARB use
(OR=0.07; 95% CI, 0.03-0.21; p<0.001), and statin use
(OR=0.02; 95% CI, 0.01-0.06; p <0.001) emerged as significant
predictors of in-hospital mortality. On multivariate logistic
analysis, ACEI/ARB use (aOR=0.17; 95% CI, 0.04-0.84;
p=0.029) and statin use (aOR=0.03; 95% CI, 0.01-0.18;
p<0.001) remained independently associated with reduced
mortality risk after adjustment.
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Development of the predictive nomogram

Based on univariate logistic regression analysis, 11 candidate
predictors were initially identified. Subsequently, LASSO regression
with 10-fold cross-validation (A.min criterion) was applied
exclusively to these pre-screened variables to mitigate
multicollinearity and optimize predictive efficiency. Final predictors
for the nomogram were selected through dual criteria: retention of
non-zero coefficients in LASSO regression and established clinical
relevance per current guidelines. The seven predictors incorporated
into the nomogram were: ACEI/ARB use, statin use, age, LVEF, CK-
MB, hs-CRP, and B-blocker use. These variables demonstrated both
statistical significance and clinical utility in the prediction model.
Four variables were excluded: creatinine, NT-proBNP, smoking
status, and hs-cTnl. This exclusion resulted from LASSO coefficient
shrinkage to zero and considerations of clinical interpretability. The
10-fold cross-validation method verified the stability and reliability
of the LASSO regression results, with narrow confidence bands
indicating robust model stability (Supplementary Figures SIA,B).

The resulting nomogram is shown in Figure 2. In this
nomogram, a higher total score assigned to each predictor
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indicates an increased risk of mortality during hospitalization.
Each point on the nomogram represents a specific scoring
standard or scale. A perpendicular line was drawn for each
independent variable to determine the corresponding score
based on its value. For instance, an age of 70 equated to 25.1
points, while a lack of statin use equated to 75 points. The
cumulative points for all independent variables were calculated
for each patient, and their corresponding risk levels for in-
hospital mortality in AMI with CS patients were estimated
based on the location on the perpendicular line.

Validation of the predictive nomogram

The nomogram’s performance was internally validated using
the training and testing cohorts. In the training cohort, the
nomogram model achieved an AUC of 0.941 (95% CI, 0.839-

TABLE 2 Univariate and multivariate variables associated with in-hospital
mortality using the logistic models.

Variables

Univariate analysis

Multivariable analysis

OR (95% CI) | P value | OR (95% CI) P value

Age 1.05 (1.02, 1.09) | 0.0033 1.02 (0.97, 1.08) 0.444
Smokers 0.17 (0.07, 0.37) | <0.001 1.28 (0.30-5.42) 0.739
LVEF 0.96 (0.92,0.99) | 0.0246 | 0.94 (0.88-1.00) 0.059
Hs-cTnl 1.03 (1.01, 1.04) | 0.0091 | 0.99 (0.96-1.03) 0.719
CK-MB 1.01 (1.00, 1.01) | 0.0042 | 1.01 (1.00-1.02) 0.125
Cr 1.01 (1.00, 1.01) | 0.0154 | 1.00 (0.99-1.01) 0.986
Hs-CRP 1.01 (1.00, 1.01) | 0.0499 | 1.01 (1.00-1.02) 0.076
NT-pro-BNP | 1.00 (1.00,1.00) | 0.0248 | 1.00 (1.00-1.00) 0.513
B-blocker use | 0.07 (0.02,0.20) | <0.001 | 0.39 (0.08-1.78) 0.223
ACEI/ARB use | 0.07 (0.03,0.21) | <0.001 | 0.17 (0.04-0.84) 0.029
Statin use 0.02 (0.01,0.06) | <0.001 | 0.03(0.01-0.18) | <0.001

LVEF, left ventricular ejection fraction; Hs-cTnl, high-sensitivity cardiac troponin I; CK-
MB, creatine kinase-MB; Cr, creatinine; Hs-CRP, hypersensitive C-reactive protein; NT-
pro-BNP, N-terminal pro-B-type natriuretic peptide; ACEI, angiotensin-converting
enzyme inhibitors; ARB, angiotensin II receptor blockers.

10.3389/fcvm.2025.1614183

0.959) as shown in Figure 3A. In the testing cohort, the AUC
was 0.981 (95% CI, 0.917-1.000) (Figure 3B), indicating strong
predictive ability for in-hospital mortality in AMI-CS patients.
These internal validation results confirmed the model’s robust
predictive accuracy.

Assessment of the predictive nomogram

Calibration curves demonstrated good agreement between
predicted and observed mortality rates in both the training
group (Figure 4A) and the testing group (Figure 4B).
Furthermore, the decision curve analysis confirmed the model’s
clinical utility for practical application, showing a positive net
benefit across a wide range of threshold probabilities, as
depicted in Figure 5.

Discussion

This study developed and internally validated a clinical
prediction nomogram incorporating key clinical and laboratory
predictors to estimate individualized in-hospital mortality risk
for patients with AMI complicated by CS. The model
demonstrated excellent discrimination, with AUC values of
0.941 in the training cohort and 0.981 in the testing cohort.
Calibration and decision curve analyses further confirmed its
clinical applicability. This practical tool addresses a critical
unmet need in AMI-CS management by enabling early
identification of high-risk patients to guide personalized
treatment decisions.

CS represents the predominant cause of in-hospital mortality
in AMI, contributing to high fatality rates and complex
management challenges (15, 16). Our cohort reflected this
burden, with 27.3% in-hospital mortality. This high-risk context
requires urgent optimization of risk stratification. To address
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Age r T T T T T T T |
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80 75 70 65 60 55 50 45 40 35 30 25 20 15
CK-MB T T T T T T ]

0 50 100 150 200 250 300
Hs-CRP T T T T

T T T T T
0 20 40 60 80 100

B-blocker use ——No

T T T 1
140 180 220 260

Mortality risk

FIGURE 2

means the absence of branch type MB).
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ACEI/ARB use " 1 No
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r T
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The nomogram to predict in-hospital mortality was created based on 7 significant predictors. *(Branch: 1 means the presence of branch type MB; 0
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this need, we developed and validated a clinically applicable
prediction model using robust statistical methods. Key strengths
include its excellent discriminatory accuracy (AUC 0.981 in
testing) and immediate clinical implementability, as all
incorporated variables are routinely collected during initial
assessment without specialized testing. In-hospital mortality in
AMI complicated by CS has been extensively studied, with
research focusing on identifying prognostic predictors. For
instance, a study of 1,333 AMI-CS patients undergoing primary
PCI identified post-PCI thrombolysis in myocardial infarction
(TIMI) <3 flow,
prolonged symptom-to-PCI time as independent predictors of
mortality (17). While valuable, this PCI-centric approach did

not incorporate readily available admission parameters such as

advanced age, three-vessel disease, and

laboratory biomarkers, medication use, or comorbidities that
may enhance early risk assessment. Another investigation of
1,102 AMI patients (including 196 CS cases) reported 17.8%
overall CS mortality, with 39.3% mortality specifically in the CS
subgroup (18). In this cohort, NSTEMI presentation and
reduced LVEF were independent mortality predictors—findings
consistent with our results regarding age and cardiac function.
Our
prognostic significance of guideline-directed medications (B-
blockers, ACEI/ARBs, statins) and inflammatory biomarkers (hs-
CRP) in a comprehensive prediction model.

A study of 319 ST-elevation myocardial infarction (STEMI)
patients with and CS undergoing PCI reported 61.3% in-hospital

study extends this evidence by demonstrating the

mortality (19). Multivariable analysis identified chronic renal
post-PCI  TIMI
hyperlactatemia, elevated blood urea nitrogen, reduced Tricuspid

insufficiency, score <2, hyperglycemia,
Annular Plane Systolic Excursion (TAPSE), and decreased
ejection fraction as independent predictors of in-hospital
mortality. Unlike these models relying on post-intervention
parameters, our approach integrated statistical learning methods
for variable selection to develop a prediction model based on
admission data. Similarly, a study of 274 STEMI-CS patients
(65.3%

regression  to

in-hospital mortality) used multivariable logistic

construct a nomogram incorporating  sex,
admission glucose, intra-aortic balloon pump (IABP) use, no-
reflow phenomenon, and post-PCI ejection fraction (20). While
providing valuable insights, their predictors primarily required
procedural data, limiting early risk assessment capability.
Conversely, our model utilizes routinely available admission
variables—laboratory biomarkers and medication profiles—

enabling immediate risk stratification without specialized
interventions. This enhances practical utility across diverse
healthcare settings. Nomograms offer visual quantification of
predicted mortality risk; our instrument prioritizes clinically
accessible variables to maximize adoption potential. Validation
confirmed the model’s robust performance, allowing physicians
to calculate personalized mortality risk, stratify patients into risk
categories, identify high-risk cases, and tailor early interventions
accordingly. Non-survivors, on average, 6 years older than
survivors in our study. This finding aligns with Damluji et al.
(21), who reported increasing age as an independent predictor

of in-hospital mortality in STEMI-CS patients. The observed
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association likely reflects age-related declines in physiological
reserve and elevated vulnerability to various complications in
the elderly. Notably, although smoking is an established
cardiovascular risk factor (22), our study found a significantly
higher percentage of survivors were smokers in comparison to
those hospitalized patients who died. This apparent paradox
may be explained by the significantly younger age and
potentially preserved functional status in smoking patients—
factors independently associated with improved outcomes in
critical illness. Future multi-center studies with larger cohorts
should validate this counterintuitive association.

TIABP-SHOCK 1II and CardShock are also important tools for
predicting the mortality of CS. Our model demonstrated
significantly  higher discriminative accuracy (AUC 0.94)
compared to the IABP-SHOCK II (AUC 0.77) (12) and
CardShock (AUC 0.79) (14) scores within our cohort. We
attribute this difference primarily to two factors: (1) Temporal
alignment of predictors: Our model incorporates key variables
reflecting the severity of the acute ischemic insult (CK-MB) and
systemic inflammation (hs-CRP), along with early treatment
decisions, which may more directly capture the pathophysiology
driving mortality in AMI-CS. In contrast, scores like
IABP-SHOCK II rely heavily on variables like lactate and
creatinine, which reflect downstream organ hypoperfusion but
may exhibit greater variability in timing and measurement; (2)
Cohort specificity: While IABP-SHOCK II and CardShock are
valuable general CS scores, our model was specifically developed
and tuned for AMI-CS. The inclusion of AMI-specific markers
(CK-MB) and treatments likely enhances its performance in this
subset. However, we acknowledge that our higher AUC must be
interpreted cautiously, as it stems from internal validation and
reflects performance within the same cohort used for
development. External validation is essential to confirm whether
this performance gap persists. The choice of prognostic tool
should consider the clinical context. The IABP-SHOCK II and
CardShock scores remain valuable, particularly for initial triage
in undifferentiated shock or settings lacking immediate AMI-
specific biomarkers. Our nomogram offers an alternative
optimized for AMI-CS patients once key initial results (LVEF,
CK-MB, hs-CRP) are available, potentially aiding decisions
regarding escalation of mechanical circulatory support or
palliative care consultation later in the ICU course. Therefore,
our tool complements rather than replaces established scores,
especially in resource-rich settings.

Beyond traditional clinical scores, machine learning and
artificial intelligence techniques are increasingly applied to
predict outcomes in AMI and CS (23). Recent studies have
leveraged complex algorithms and high-dimensional data to
achieve high predictive accuracy. Recent advances in machine
learning have demonstrated the potential to improve prognostic
accuracy, as seen in models by Hu et al. (24) and Zhang et al.
(25) achieving AUCs >0.80. Our proposed model builds upon
these foundations by incorporating novel biomarkers and
dynamic data integration, aiming to further enhance predictive
performance. While demonstrating impressive performance,
these models often function as “black boxes”, require extensive
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computational resources, and depend on data not routinely
available at initial presentation. Our study aims to bridge this
gap by developing a transparent, interpretable nomogram based
on readily available early clinical and laboratory parameters,
offering a practical tool for immediate bedside use.

Our study further identified LVEF, CK-MB, and Hs-CRP as
of in-hospital mortality in AMI-CS
patients. Physiologically, LVEF quantifies left ventricular systolic
function, typically falls within the normal range of 50%-70%,
with values <50% indicating cardiac dysfunction. This aligns

significant predictors

with established evidence linking reduced LVEF to increased
mortality risk, including post-ablation ventricular tachycardia
cohorts (26). Similarly, CK-MB—a cardiac-specific enzyme—
correlates with myocardial injury extent. Elevated CK-MB levels
portend heightened in-hospital death risk, as demonstrated in
pulmonary embolism studies (27). Notably, Hs-CRP provides
high-sensitivity quantification of systemic inflammation. Its
cardiovascular risk and

elevation independently predicts

mortality (28), with our results extending this association to

AMI-CS.  Collectively, these findings reinforce  the
pathophysiological and prognostic roles of ventricular
dysfunction (LVEF), myocardial necrosis (CK-MB), and
systemic inflammation (hs-CRP) in AMI-CS mortality.

A notable finding was the inclusion of B-blocker, ACEI/ARB,
and statin use as independent predictors of in-hospital mortality
in AMI-CS patients. Current evidence underscores immediate
revascularization of infarct-related coronary arteries as the
standard of care for CS secondary to AMI, as substantiated by
randomized clinical trials (15, 29). Findings from the predictive
model indicated that the utilization of B-blockers, ACEI/ARBs,
and statins was linked to a reduced risk of in-hospital mortality,
conveying significant implications for clinical management
practices. This underscores the critical importance of guideline-
directed medical therapy initiation post-revascularization.
Notably, B-blockers are contraindicated in acute CS due to
negative inotropic effects (16). Nonetheless, the predictive model
suggests that as AMI progresses and hemodynamic stability is
achieved, B-blocker therapy may enhance prognosis and mitigate
The

outcomes attributed to [-blockers, including antagonism of

in-hospital mortality in AMI-CS patients. beneficial
catecholamine adrenergic neurotransmitters, antihypertensive
peculiarity, anti-ischemic role, and antiarrhythmic benefits, may
underpin the observed prognostic improvements (30). Similarly,
ACEI/ARBs mitigate ventricular remodeling, while statins exert
pleiotropic cardioprotective effects via lipid-lowering, anti-
inflammatory, and plaque-stabilizing properties (31, 32). Future
studies should elucidate optimal timing and mechanisms of
statins, B-blockers, and ACEI/ARBs therapy in AMI-CS.

While the calibration curve analysis demonstrated strong
overall concordance between predicted and observed outcomes
in both training and testing sets as showed in Figure 4, we note
a modest decrease in calibration performance following model
adjustment. This phenomenon primarily stems from two
interrelated factors inherent to clinical prediction modeling: (1)
Our LASSO
regularization approach, while effectively reducing overfitting by

The bias-variance tradeoff in regularization:
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shrinking coefficients of less important predictors, inherently
introduces a small amount of bias. This regularization effect is
most pronounced in predictors with weaker associations, where
coefficient shrinkage creates a conservative estimation bias. This
represents an intentional compromise where we accept modest
calibration degradation in exchange for improved model
generalizability and stability; (2) Finite-sample effects in
validation: Our validation cohort (n=45) represents a modest
sample size relative to model complexity. When applying the
training-derived model parameters to this finite independent
sample, we observe the expected phenomenon described by Van
Calster et al. (2016) (33): validation calibration curves typically
exhibit slightly greater deviation from perfect alignment than
training curves due to sampling variability. This effect is
particularly noticeable in the extreme probability ranges (<20%
and >80%) where event counts are sparse. Importantly, despite
this modest adjustment effect, the model maintains excellent
clinical utility as evidenced by: persistent high discrimination
(AUC 0.981 in testing), favorable decision curve analysis across
thresholds, and with the ideal
calibration line. Ongoing calibration refinement is valuable, the

clinical close alignment
published nomogram should be periodically recalibrated during
implementation as recommended by the TRIPOD guidelines
(34), particularly when applied to populations with different
case-mix characteristics.

This study has several limitations. First, it is important to
acknowledge that this study adopts a retrospective design and is
characterized by a small sample size, which restricts the
scientific robustness of the findings due to potential
unaccounted confounding variables such as economic status and
educational background. Nevertheless, given the inherent
challenges in carrying out randomized controlled trials (RCTSs)
with AMI patients, our study still offers valuable clinical
Although our

performance in internal validation, the overall cohort size

insights. model demonstrated  excellent
(n=150) and, crucially, the number of in-hospital mortality
events (n=41) were relatively small. We acknowledge that the
single-center, retrospective nature of our study and the modest
sample size are significant limitations that raise valid concerns
about potential overfitting and, crucially, the generalizability of
our findings. The high AUC observed in both our optimism-
corrected derivation cohort and temporal internal validation
cohort, while encouraging, must be interpreted with caution. It
is possible that this performance reflects unique characteristics
of our patient population, clinical practices, or data collection
CCU. Without

multi-center

external validation in
with

clinical protocols, and data quality, the true

processes at our

independent, cohorts varying patient

demographics,
generalizability and real-world performance of our nomogram
remain uncertain. This is a critical limitation inherent to our
study design. External validation in larger, multi-center
prospective cohorts is imperative before this nomogram can be
widely adopted in clinical practice. Furthermore, the
retrospective design introduces potential biases (e.g., selection
influence the model’s

bias, information bias) that could

performance estimates. While our internal validation strategies
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help mitigate overfitting, they do not account for these broader

biases or external factors. Second, gender was not an
independent predictor in our model, its potential indirect effects
merit consideration. The selected biomarkers (Hs-CRP) and
treatments (B-blockers) may have gender-dimorphic effects (35,
36). Future should whether

stratification thresholds require gender-specific adjustment. We

studies explicitly test risk
attempted to incorporate gender into the prediction model, The
result indicated that after including gender in the prediction
model, the AUC value decreased instead (AAUC =-0.085),
suggesting that the predictive performance of the model has
declined (Supplementary Figures S2A,B). Third, the gender
imbalance (80% male) in our cohort, while reflective of AMI-CS
epidemiology, limits our ability to fully characterize gender-
specific risk patterns. External validation should prioritize
cohorts with larger female representation to evaluate potential
gender-based calibration differences. Finally, the retrospective
nature limited capture of dynamic parameters like serial lactates
or vasopressor dosing, preventing Society for Cardiovascular
shock
Neurological status documentation was heterogeneous. Future

Angiography and Intervention (SCAI) classification.
models should integrate these standardized elements. Although
formal SCAI staging was unavailable, the strong performance of
LVEF and Hs-CRP in our model aligns with their known roles
in shock pathophysiology. LVEF directly measures cardiac
dysfunction (37), while Hs-CRP integrates ischemic injury and
systemic inflammation (38)-both central to SCAI’s conceptual
framework. This suggests our model captures essential
biological severity.

A key consideration raised regarding our model is the
inclusion of in-hospital medication use (B-blockers, ACEI/ARBs,
statins). While these variables were statistically selected by
LASSO and contributed to the high discriminative ability of the
their

regarding timing and potential immortal time bias. In our CCU,

original model, incorporation introduces complexity

initiation of these therapies often occurred beyond the
their
presence in the model may partly reflect treatment decisions

immediate hyper-acute phase of CS. Consequently,
made after initial stabilization or even after patients have
survived a critical period, rather than purely baseline risk. This
partly limits the model’s applicability for immediate (e.g., first
hour) bedside risk stratification at the moment of CS diagnosis.
Therefore, we performed a sensitivity analysis by rebuilding the
prediction model using LASSO regression excluding the three
(B-blocker, ACEI/ARB,
(Supplementary Figures S3A,B). The simplified model retained
age, LVEF, CK-MB, and hs-CRP as predictors. The AUC of this
simplified model was 0.744 in the training set and 0.793 in the

medication variables statin)

internal validation set (Supplementary Figures 3C-E). Compared
to 0.941 and 0.981 for the original model, after removing these
three medication indicators, the predictive efficacy significantly
decreased. It is indicated that these three medication indicators
are of great significance in the predictive model. In a way, this
simplified model may be more appropriate for the intended
purpose of early risk assessment. The original model including
medications might be more relevant for prognostication later in
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the hospitalization course (e.g., after 24-48 h) when treatment
decisions have been initiated and documented.

In conclusion, this study developed and validated a clinically
applicable nomogram wusing rigorous statistical modeling to
predict in-hospital mortality in patients with AMI complicated
by CS. The model incorporates routinely available clinical
predictors—including laboratory biomarkers and medication use
—enabling frontline clinicians to identify high-risk patients at
admission, tailor early interventions, and optimize resource
allocation. This tool addresses a critical gap in AMI-CS risk
stratification and may improve outcomes through timely,
personalized management.
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