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Background: Atrial structural and electrical remodeling are the pathophysiological

mechanisms underlying atrial fibrillation (AF). Although previous studies have

offered insights into these changes, the cellular interactions involved in atrial

structural remodeling and the ion channel marker genes associated with

electrical remodeling in AF remain insufficiently elucidated.

Methods: We used single-cell RNA sequencing (scRNA-seq) to investigate the

structural remodeling in AF at the cellular level. Raw data from atrial fibroblasts of

AF patients and controls were pre-processed using Seurat (R package), with

stringent quality control to filter out low-quality cells. Differential gene expression

and clustering were performed, followed by principal component analysis (PCA)

to identify significant cell types. Cell trajectory analysis was carried out to explore

the differentiation patterns of these fibroblasts using Monocle. Additionally, a cell-

cell interaction analysis was performed using the CellChat package, and biological

function and pathway enrichment analyses were done using GO, KEGG and GSEA

pathways. Ion channel-related genes were extracted from microarray datasets

and analyzed for differential expression and functional relevance to AF pathology.

Machine learning algorithms (LASSO and SVM) were used to identify signature

genes from ion channels in AF, followed by drug-enrichment analysis to explore

potential therapeutic options.

Results: In the structural remodeling investigation, single-cell analysis was employed

to identify five distinct cell subtypes, including embryonic fibroblasts (EF), actively

proliferating fibroblasts (APF), smooth muscle cells (SMC), endothelial cells (EC), and

leukocytes (LBCs). These subtypes exhibited significantly different distributions

between AF and SR. In the AF group, the proportions of EF, APF, and LBCs were

increased, whereas the proportion of EC was decreased; by contrast, the SR group

displayed a higher proportion of EC. Trajectory analysis suggested that EF cells in AF

may differentiate into both APF and SMC subtypes. Cell–cell communication

analysis revealed extensive signaling pathways (e.g., LAMININ and COLLAGEN)

activated in EF cells under AF conditions, in addition to the specific activation of MK

signaling in AF. It also uncovered a loss of certain EC signals (e.g., GRN–SORT1 and

AGRN–DAG1) in AF and a marked reduction in NPPA–NPR1 signaling from SMC to

EC. These findings indicate that such alterations may be crucial to the onset and

maintenance of AF. In the electrical remodeling investigation, ion channel gene sets

and gene expression data were utilized alongside LASSO and SVMmachine-learning

algorithms combined with ROC curve analysis. This approach ultimately identified

ANO1 and GRIK2 as the characteristic ion channel genes for AF. Both genes

demonstrated strong discriminative power in distinguishing AF from SR. Finally,

drug-targeting analyses suggested that phenytoin sodium—a known antiarrhythmic
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agent—mayexert therapeutic effects by targeting critical EF subtypes in AF.Moreover,

ionomycin andDIDSwere found to be strongly associatedwithANO1, whereasGRIK2

was linked to citalopram and topiramate.

Conclusion: This study underscores the critical roles of cell distribution, cell

developmental trajectories, and intercellular interactions in the structural remodeling

of AF, as well as the key ion channel biomarkers involved in AF-related electrical

remodeling. In terms of structural remodeling, the proportions of EF, APF, and LBCs

are elevated in AF, with EF cells potentially differentiating into APF or SMC.

Moreover, active EF cell signaling and the loss of EC signals in AF may be crucial for

the onset and maintenance of this arrhythmia. Regarding electrical remodeling,

ANO1 and GRIK2 have been identified as potential biomarker genes for AF. Notably,

phenytoin sodiummay exert therapeutic effects against AF by targeting EF subtypes.

In addition, ionomycin, citalopram, and topiramate exhibit modulatory effects on ion

channels, providing new potential treatment avenues. Such drug repurposing

represents a rapid and efficient strategy for the discovery of novel AF therapies.

KEYWORDS

atrial fibrillation, structural remodeling, electrical remodeling, single-Cell analysis,

machine learning

GRAPHICAL ABSTRACT

Introduction

Atrial fibrillation (AF) is the most common arrhythmia,

affecting an estimated 33.5 million patients worldwide. It is

characterized by rapid and irregular atrial activation that impairs

atrial function and predisposes individuals to a range of serious

complications, including stroke, thromboembolism, heart failure,

and cognitive dysfunction (1). These complications impose a

substantial burden on both society and families. Reported risk

factors for AF include age, sex differences, genetics, hypertension,

cardiovascular diseases, and environmental factors. The diversity

Abbreviations

AF, atrial fibrillation; SR, sinus rhythm; EF, embryonic fibroblasts; APF, actively
proliferating fibroblasts; SMC, smooth muscle cells; EC, endothelial cells; LBCs,
leukocytes; scRNA-seq, single-cell RNA sequencing; PCA, principal component
analysis; PCs, principal components; GO, gene ontology; KEGG, kyoto
encyclopedia of genes and genomes; GSEA, gene set enrichment analysis;
LASSO, least absolute shrinkage and selection operator; SVM, support vector
machine; ROC, receiver operating characteristic; AUC, area under the curve;
t-SNE, t-distributed stochastic neighbor embedding; MsigDB, molecular
signatures database; DEGs, differentially expressed genes; HVGs, highly
variable genes; CAMs, cell adhesion molecules; MK, midkine signaling; GRN–
SORT1, progranulin-sortilin 1; AGRN–DAG1, agrin-dystroglycan 1; NPPA–
NPR1, atrial natriuretic peptide-guanylate cyclase A.
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of these risk factors and the severity of their associated

complications underscore the importance of developing effective

interventions. However, current treatment approaches still face

significant challenges. Although effective anticoagulants and left

atrial appendage occlusion can reduce the risks of stroke and

thromboembolism, and antiarrhythmic drugs and radiofrequency

ablation can control rhythm and alleviate symptoms, drugs are

often accompanied by notable side effects, while surgical

interventions are invasive and carry serious complications.

Therefore, developing novel therapeutic interventions is crucial

for overcoming these challenges.

AF is a progressive disease often evolving from paroxysmal to

persistent AF, with atrial remodeling playing a critical role in this

progression. Atrial remodeling represents the common outcome

of various risk factors and etiologies in AF, and serves as the

primary pathophysiological mechanism. It mainly involves

electrical remodeling and structural remodeling. In the early

stages, electrical remodeling is marked by changes in

electrophysiology and ion channel characteristics, whereas in

later stages, structural remodeling is manifested by fibrosis of the

atrial myocardium and extracellular matrix, as well as myocyte

apoptosis and other tissue-structure alterations (2, 3). Among

these, atrial electrical remodeling predominantly involves

abnormalities in transmembrane ion channels, which are formed

by specialized proteins (channels and transporters) that tightly

regulate ion movement across cardiac cell membranes. Such ion

channel protein dysfunction is closely linked to

arrhythmogenesis, including L-type calcium channels, fast

sodium channels, and various potassium channels, resulting in a

shortened atrial effective refractory period and action potential

duration. This process is also known as “electrical remodeling”.

Genetic studies of AF have further identified mutations in ion

channel genes (e.g., KCNQ1, KCNH2, SCN5A, SCN10A) that

increase susceptibility to AF (4, 5). Atrial structural remodeling is

primarily characterized by alterations in the ultrastructure of

atrial myocytes and interstitial fibrosis. Persistent atrial electrical

and structural remodeling, commonly observed in patients with

AF, contributes to the development of a well-characterized form

of atrial cardiomyopathy, which manifests through various

clinical symptoms. The concept of atrial cardiomyopathy was

formally introduced in the 2016 Expert Consensus Statement,

which categorized it into four distinct subtypes based on

pathophysiological mechanisms (EHRAS classification), with

cardiomyocyte fibrosis being the predominant pathological

hallmark. Importantly, the progression of atrial cardiomyopathy

facilitates the maintenance of AF, while sustained AF in turn

aggravates atrial remodeling and impairs mechanical function,

thereby establishing a self-perpetuating vicious cycle (6).

Although many pathophysiological aspects of electrical and

structural remodeling—particularly ion channel dysfunction and

atrial fibrosis—have been elucidated, there remains a lack of

specific AF-related ion channel gene biomarkers and no

definitively effective clinical targets for atrial fibrosis. Therefore, a

more in-depth understanding of these pathophysiological

mechanisms is urgently needed to break the vicious cycle of AF

progression and to identify therapeutic breakthroughs.

It is well known that AF arises from the combined influences of

genetic and environmental factors. High-throughput sequencing

technologies, such as genome-wide association studies (GWAS)

and whole-exome sequencing (WES), have advanced our

understanding of multiple genetic susceptibility variants in AF

(7, 8). Notably, although identifying pathogenic AF genes from

peripheral blood and tissue-level analyses has provided valuable

insights into the pathophysiology of AF, a systematic evaluation

of the ion channel gene set in AF, as well as in-depth knowledge

of cell-to-cell relationships—particularly involving atrial

fibroblasts—remains relatively limited.

Recent cell atlas research on the normal human heart has

shown that the heart primarily consists of cardiomyocytes,

smooth muscle cells, endothelial cells, and fibroblasts (9).

Nevertheless, at the single-cell level, our understanding of the

specific gene alterations, regulatory processes, and cell–cell

interaction genes in atrial fibroblasts—which are key cells driving

structural remodeling in AF—is insufficient. In particular, single-

cell RNA sequencing (scRNA-seq) has recently been broadly

applied in scientific research and is well suited for identifying

specific pathogenic cell types and genes involved in disease

processes (10). Therefore, identifying the critical pathogenic

fibroblasts in AF and elucidating the differences and interactions

between these fibroblasts and other cell types could greatly

enhance our understanding of AF pathophysiology and catalyze

the development of targeted therapeutic.

In our study, single-cell sequencing data from atrial fibroblasts

were utilized in conjunction with pseudotime trajectory analysis,

cell–cell interaction analysis, and enrichment analysis to

thoroughly investigate cellular distribution, developmental

trajectories, intercellular interactions, and the biological functions

and pathways associated with specific cell populations in AF.

These findings were then comprehensively compared between AF

and SR. Additionally, we innovatively integrated single-cell data

from AF with microarray expression profiles, enabling the

identification of ion channel signature genes in AF. Finally, the

DGIDB database was employed to predict the druggability of key

gene subpopulations implicated in AF-associated structural

remodeling, as well as the identified ion channel signature genes.

This approach provides critical insights into potentially druggable

cells and genes in AF.

Materials and methods

Single-cell data processing

To investigate the structural remodeling of AF at the single-cell

level, the single-cell dataset (GSE148506) was obtained from the

GEO database (11). This dataset comprises freshly isolated atrial

cardiofibroblasts from four AF patients and four control patients

(sinus rhythm, SR) and is based on SmartSeq2 sequencing

technology and the GPL18573 Illumina NextSeq 500 platform.

Analyses were performed using the “Seurat” R package (version

4.2.0) (12). First, raw data were subjected to quality control and

filtering under the following criteria: each gene had to be
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expressed in at least 3 cells, the number of genes expressed per cell

was between 200 and 10,000 (200 < nFeature_RNA < 10,000), and

both mitochondrial and ribosomal content were less than 20%.

After filtering, the preprocessed data were normalized and used

to identify the top 2,000 highly variable genes via the

“LogNormalize”, “ScaleData”, and “vst” functions. These 2,000

highly variable genes were then used for further dimensionality

reduction (“PCA”) to identify principal components (PCs).

Clusters were determined using the “FindNeighbors” and

“FindClusters” functions (resolution = 0.8), and 20 PCs were

selected for t-SNE analysis. Significant marker genes in different

clusters [The filtering criteria were: log fold change (logFC) >0.5

and adjusted p-value (adjPval) <0.05] were identified with the

“FindAllMarkers” function. Finally, different cell types were

characterized based on the expression of cluster-specific marker

genes, with auxiliary annotations from the “SingleR” package and

by consulting the annotation results of the original study’s authors.

Cell pseudotime analysis

Cellular pseudotime and trajectory analyses were employed to

investigate the differentiation pathways of various annotated cell

subgroups, as well as the genes associated with different

trajectory patterns, thereby elucidating the molecular mechanisms

underlying the structural remodeling of AF (13). The “Monocle”

package was used to cluster the cells, and the

“DifferentialGeneTest” function identified differentially expressed

genes among different cell types. Subsequently, the “DDRTree”

function (minSpanningTree; num_clusters = 4) was applied to

infer pseudotime trajectories between different cell subtypes and

to generate heatmaps and trajectory maps depicting potential

developmental relationships among these cell populations.

Cell-cell interaction analysis

To investigate the interactions among different cell types

during the structural remodeling of AF, a cell–cell

communication analysis was performed using the “CellChat”

package in R (14). This package contains a ligand–receptor

library that enables the simulation of cell–cell interactions based

on specific ligand–receptor pairs. Depending on the ligands and

receptors expressed by individual cells, the package defines those

cells as corresponding signal senders or receivers.

Biological function and pathway
enrichment analysis

Two complementary approaches were used in this study to

elucidate the biological functions and signaling pathways

associated with the gene sets of interest. The first involved

conducting Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses using the

“clusterProfiler” and “enrichplot” packages in R (15). The second

approach utilized three gene collections from the Molecular

Signatures Database (MsigDB)—the “C5 collection (GO:BP gene

set),” the “C2 collection (KEGG gene set),” and the “H collection

(hallmark gene set)”—to perform Gene Set Enrichment Analysis

(GSEA) (16, 17). Enrichment results with P-value < 0.05 were

then visualized using the “ggplot2” and “ggpubr” packages.

Collection and pre-processing of
microarray expression profiling data and ion
channel-associated genes

To further explore key genes involved in AF-related electrical

remodeling, the microarray expression profile datasets GSE79768

(18) and GSE115574 (19) were downloaded from the GEO

database. Both datasets are based on the GPL570 sequencing

platform, with GSE79768 comprising atrial tissue specimens from

13 patients with permanent AF and 13 patients with SR, and

GSE115574 containing atrial tissue from 31 patients with

permanent AF and 28 patients with SR. Subsequently, the two

datasets were individually probe-annotated and normalized. The

“sva” package in R was then used to merge the preprocessed

datasets and remove batch effects. The “ComBat” function from

the “sva” package is widely used to correct batch effects in high-

throughput datasets. Based on systematic evaluations

demonstrating its superior performance over other methods, we

selected “ComBat” to eliminate batch effects between the two

datasets. Furthermore, ion channel–related genes were identified

based on an extensive literature review. A detailed list of these

genes is provided in Supplementary Table S1 for

subsequent analyses.

Differential analysis and machine-learning
algorithms for screening ion channel
signature genes in AF

Using the ion channel gene collection, we extracted ion channel

gene expression data from the GSE79768 dataset and performed a

differential analysis with the “limma” package (20). The screening

criteria of DEGs were identified using a log fold change >1 and

adjusted p-value < 0.05. Next, two machine-learning algorithms

—“LASSO” and “SVM-RFE”—were employed to further refine

the differentially expressed genes (DEGs) and identify key ion

channel signature genes in AF. The LASSO algorithm,

implemented through the “glmnet” package in R, uses tenfold

cross-validation to select genes strongly associated with AF. The

SVM-RFE algorithm (recursive feature elimination), based on the

“e1071” package in R, similarly identifies genes showing

significant differences between AF and SR. The same method

was used to identify ion channel DEGs in the GSE115574

dataset. Finally, the genes identified by the machine-learning

algorithms in GSE79768 were intersected with the DEGs

discovered in GSE115574 to reduce errors introduced by using a

single dataset and to improve the accuracy of the identified genes.
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Evaluation of ion channel signature genes
in AF

Based on the two datasets after merging and removing batch

effects, boxplots were used to demonstrate the difference in

expression levels of ion channel signature genes in AF and SR.

the ROC curve and area under the curve (AUC) were used to

assess the power of signature genes to discriminate in AF and SR.

Drug enrichment analysis

Using the DSigDB database (DSigDB | Tan Lab), a drug–gene

interaction file was obtained (see Supplementary Table S2). Drug

enrichment analyses were then performed on EF cell subgroups

(Genes selected with logFC >2) and on the ion channel genes

ANO1 and GRIK2, utilizing the “clusterProfiler” and “enrichplot”

packages in R. The results were visualized through a gene

concept network diagram, and a corrected P-value < 0.05 was

considered statistically significant.

Results

Single-cell analysis identified key cell
clusters

The expression characteristics of the single-cell dataset,

following quality control and filtering, are presented in

Figure 1A. “nCount_RNA” is not related to “percent.rb,” but

shows a positive correlation with “nFeature_RNA” (r = 0.76;

Figure 1B). The top 2,000 highly variable genes (HVGs) are

displayed in Figure 1C. Based on the ElbowPlot (Figure 1D) and

the “FindNeighbors” function (resolution = 0.8), 20 principal

components (PCs) were identified through PCA, as shown in the

JackStrawPlot (Figure 1E). The top four PCs, each with 20 highly

variable genes, are illustrated in Figure 1F.

Annotation and enrichment analysis of
different cell types

Subsequently, the 20 PCs were clustered into six cell subgroups

using t-distributed stochastic neighbor embedding (T-SEN)

(Figure 2A). These six subgroups were then annotated into five

cell types based on marker gene expression and the auxiliary cell

annotation provided by the “singleR” package (Figure 2B).

Specifically, the largest cell type—actively proliferating fibroblasts

(APF)—showed high expression of ACTA2, NOTCH3, TAGLN,

GJA4, GATA4, and CALD1 in clusters 0 and 2 (Figure 2C). In

contrast, cluster 4, which displayed myosin-enriched marker

genes (MYH6, MYL7, NPPA, FABP3, MYOZ2, and MYL4), was

annotated as smooth muscle cells (SMC) characterized by

contractile function (Figure 2D). Cluster 3 consisted of

endothelial cells (EC) expressing VWF, PLVAP, CLEC14A,

ECSCR, CDH5, and EMCN (Figure 2E). Cluster 1 comprised

FIGURE 1

Quality control, HVG selection, and PCA. (A) QC metrics (nFeature_RNA, nCount_RNA, and percent.rb). (B) Correlation between nCount_RNA and

nFeature_RNA (r= 0.78). (C) Top 2000 HVGs. (D) ElbowPlot for determining the number of significant PCs. (E) JackStrawPlot identifying 20

significant PCs (resolution = 0.8). (F) Top four PCs with their 20 HVGs each.
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leukocyte blood cells (LBCs) with CD96 and CD14 as marker genes

(Figure 2F). Cluster 5 was defined as embryonic fibroblasts (EF)

—ACTA2-negative cells expressing VCAN, DCN, COL1A2,

LAMA2, LUM, and FBLN1—situated between fibroblasts and

myofibroblasts (Figure 2G). Heatmaps illustrating the top four

marker genes for each cell type are shown in Figure 2H. All

DEGs for these five cell types are provided in Supplementary

Table S3. The distribution, cell count, and cell proportions of

AF and SR for these five cell types are shown in Figures 2I–K,

revealing that AF features higher proportions of APF,

LBCs, and EF, whereas SR has a greater proportion of

EC. GO, KEGG, and GSEA (“HALLMARK” gene sets)

enrichment analyses were performed on the DEGs of each cell

type; the results are depicted in Figures 2L–N; Supplementary

Table S4.

The GO biological functions of EF are primarily enriched in

extracellular matrix structural constituents and collagen binding

(Figure 2L), while the KEGG pathways are chiefly enriched in

ECM–receptor interactions and protein digestion and absorption

(Figure 2M). The GO biological functions and KEGG

pathways of SMC are mainly enriched in actin binding, structural

muscle constituents, cardiac muscle contraction, oxidative

phosphorylation, and diabetic cardiomyopathy. APF is

predominantly enriched in DNA-binding transcription factor

binding, actin binding, electron transfer activity, and neurological

diseases closely related to fibrosis, including Parkinson’s disease,

prion disease, and Alzheimer’s disease. LBCs primarily

participate in inflammatory and immune responses, such as IgG

binding, immunoglobulin binding, immune receptor activity, and

phagosome-related processes. EC are largely involved in peptide

FIGURE 2

(Continued)
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antigen binding, growth factor binding, antigen processing and

presentation, and cell adhesion molecules. In the GSEA

(“HALLMARK” gene set) enrichment analysis (Figure 2N), EF

exhibited the highest score for epithelial_mesenchymal_

transition. Additionally, EC is largely enriched in tissue-surface–

related terms (e.g., apical_surface and pancreas_beta_cells), and

is also involved in inflammatory and immune responses similar

to LBCs, including IL2_STAT5_signaling, IL6_JAK_STAT3_

signaling, and interferon_alpha_response. These functions and

pathways of EC and LBCs differ markedly from those of APF,

which is mainly enriched in metabolic responses, growth, and

hypoxic stress processes, such as heme_metabolism, glycolysis,

hypoxia, notch_signaling, and unfolded_protein_responses.

Trajectory analysis of different cell types

In order to elucidate the developmental trajectories of

fibroblasts involved in AF-related structural remodeling, we

conducted a pseudotime analysis of the annotated cell subgroups

using “Monocle.” The “differentialGeneTest” function in

Monocle identified differentially expressed genes (DEGs) across

cell types for further dimensionality reduction by the subsequent

“DDRTree” function (Figure 3A). Figures 3B,C illustrate the

distribution of the different clusters and cell subgroups on the

trajectory map, and the heatmap in Figure 3D shows four

relative expression patterns for the marker genes of these cell

types along the inferred trajectories. GO and KEGG enrichment

FIGURE 2

Clustering, annotation, and enrichment analyses of single-cell data. (A) t-SNE plot of six clusters derived from 20 principal components. (B) Cell-type

annotation (five types) based on marker genes and the singleR package. (C–G) Marker gene expression in APF (C), SMC (D), EC (E), LBCs (F), and EF

(G,H) Heatmap of the top four marker genes for each cell type. (I-K) Cell distribution, counts, and proportions in AF vs. SR for each cell type. (L–N)

GO, KEGG, and GSEA (“HALLMARK”) enrichment results for the five cell types.
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analyses were then performed on each of the four relative

expression patterns (Figures 3E–L; Supplementary Table S5). The

findings indicate two predominant trajectory patterns. In one of

them, GO (BP) is primarily enriched in muscle system processes

and muscle cell differentiation (Figures 3E,G), whereas KEGG

enrichment mainly involves muscle contraction, cardiomyopathy,

and pathways related to neurological diseases (Figures 3F,H). We

speculate that this pattern encompasses EF, APF, and SMC. In

the other trajectory pattern, GO (BP) is predominantly enriched

in positive regulation of cytokine production, antigen processing

and presentation, and endothelial cell migration (Figures 3I,K).

Correspondingly, KEGG enrichment focuses on cell adhesion

molecules, NK cell–mediated cytotoxicity, antigen processing and

presentation, and MAPK signaling pathways (Figures 3J,L). We

infer that EC and LBCs likely fall into this second pattern. We

subsequently analyzed the distribution of EF, APF, and SMC

FIGURE 3

Pseudotime analysis of fibroblast developmental trajectory in AF. (A) Differential genes identified by the Molocole “differentialGeneTest” function and

reduced by the “DDRTree” function. (B,C) Distribution of cell subgroups along the pseudotime trajectory. (D) Heatmap showing four relative

expression patterns of marker genes along the trajectories. (E–L) GO and KEGG enrichment results for the four relative expression patterns. (M)

Distribution of EF, APF, and SMC marker genes along the trajectory. (N) Pseudotime plots of marker gene expression for different cell types.
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marker genes within the trajectory plots (Figure 3M) and examined

their relative expression in different cell types across pseudotime

(Figure 3N). Notably, EF (cluster 5) appear capable of developing

into either APF (clusters 0 and 2) or SMC subgroups exhibiting

contractile function (cluster 4). This cardiac fibroblast

developmental trajectory may be critical for understanding

structural remodeling in AF.

Analysis of cell-cell interaction networks for
structural remodeling in AF

To investigate the interactions among cell types involved in

AF-related structural remodeling, a cell–cell interaction analysis

was performed. The results showed that both the number and

strength of cell interactions were significantly higher in AF than

in SR (Figure 4A). Network plots of cellular interactions revealed

more interactions among EF, APF, EC, LBCs, and SMC in AF; in

particular, EF displayed interactions with other cell types in AF

but almost none in SR (Figure 4B). The cell interaction network

heatmaps further illustrate the differences in the number and

strength of cell–cell interactions between AF and SR (Figure 4C).

Subsequently, we compared outgoing, incoming, and overall

signaling in AF and SR (Figures 4E,F; Supplementary Figure S1).

Two-dimensional scatter plots of incoming and outgoing

interaction strength clearly indicate that the enhanced incoming

signals for APF, EF, and EC, along with the enhanced outgoing

signals from EF in AF, coincide with weakened outgoing signals

from EC (Figure 4D). An examination of the overall signaling

patterns reveals extensive cell–cell interaction signals activated in

FIGURE 4

(Continued)
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EF in AF (e.g., LAMININ, COLLAGEN, CD99, APP, PTN,

TENASCIN, and SEMA3) that are absent in SR. In addition, MK,

ITGB2, NEGR, SELPLG, COMPLEMENT, NCAM, MHC-II,

WNT, DESMOSOME, IL16, and SEMA5 signals were only

present in AF and not in SR (Figures 4E,F; Supplementary

Figure S1). Regarding outgoing signaling patterns, GRN, APP,

HSPG, ANGPT, VISFATIN, TRAIL, SEMA3, AGRN, SEMA6, and

CLDN signals from EC were absent in AF, although they were

normally present in SR (Figure 4E). Moreover, in the incoming

signal patterns, the NPR1 receptor for NPPA (encoding atrial

natriuretic peptide, ANP, whose mutations can cause AF) in EC

signaling appeared weakened in AF compared to SR (Figure 4F).

Notably, NPR1 signaling was only observed in the outgoing

signals of SMC (Figure 4E). Chord diagrams were then used to

visualize all signals from EC in AF and SR (Figures 4G,H).

Subsequently, we compared the proportion of relative

information flow and the absolute number of information flows

in AF and SR with bar plots (Figures 4I,J). Notably, the signals

present only in SR originate exclusively from EC, whereas among

the signals present only in AF are MK, WNT, and SEMA5 in

APF; ITGB2, SELPLG, COMPLEMENT, MHC-II, and IL16 in

LBCs; MK, ITGB2, SELPLG, and DESMOSOME in EC;

DESMOSOME in SMC; and MK, NEGR, COMPLEMENT,

NCAM, and WNT in EF. Additionally, LAMININ, COLLAGEN,

FIGURE 4

Cell-cell interaction analysis in AF and SR. (A) Comparison of the number and strength of cell interactions between AF and SR. (B) Network plot

showing cellular interactions, with more interactions between EF, APF, EC, LBCs, and SMC in AF, particularly EF interactions. (C) Cell interaction

network heatmaps showing differences between AF and SR. (D) Two-dimensional scatter plots of incoming and outgoing signal interaction

strengths, highlighting changes in APF, EF, and EC signals in AF. (E,F) Overall signaling patterns and receptor signaling differences, including

weakened NPR1 signaling in EC and the absence of specific signals in EC outgoing patterns in AF. (G,H) Chord diagrams showing EC as signal

senders in AF and SR. (I,J) Histograms comparing relative and absolute information flow in AF and SR, highlighting signals unique to AF and SR.
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and CD99 had the highest number of information flows, all

activated in EF under AF but absent in EF under SR.

Exploring the large number of activated
ligand-receptor pairs signaling in EF of AF
and in EC and SMC of SR

Since all EF signaling is activated exclusively in AF, certain EC

signals are present only in SR, and some SMC signals appear to be

weakened in AF, we explored and compared the ligand–receptor

pairs involving EF as both signal sender and receiver, as well as

EC and SMC as signal senders in AF and SR. The results are

illustrated with bubble plots (Figures 5A,B; Supplementary

Figures S2, S3). Interestingly, when EF acts as a signal sender, it

can transmit signals to APF, EC, SMC, and through autocrine

pathways via PTN–NCL ligand–receptor pairs, and to APF, EC,

and via autocrine pathways through CD99–CD99 ligand–receptor

pairs. In addition, EF can bind to integrin receptor family

members (ITGA*/ITGB*) via ligands such as LAMININ,

COLLAGEN, TNXB, and FN1, thereby sending signals to APF,

EC, and through autocrine pathways (Figure 5A).

When EC acts as a signal sender, we found that EC autocrine

signals—VEGF–VEGFR, EFNB/A1–EPHB4, JAM–F11R/JAM,

APP–CD74, and ANGPT–TEK—and secretory signals to APF

(e.g., GRN–SORT1, AGRN–DAG1, JAG2/DLL1–NOTCH3) were

FIGURE 5

Ligand-receptor pair analysis of EF, EC, and SMC signaling in AF and SR. (A) Ligand-receptor pairs in EF as signal senders, highlighting interactions with

APF, EC, SMC, and autocrine signals via PTN-NCL, CD99-CD99, and integrin receptor families (LAMININ, COLLAGEN, TNXB, FN1). (B) Ligand-receptor

pairs in EC as signal senders, showing missing signals (VEGF-VEGFR, ANGPT-TEK) in AF and increased signals to LBCs (HLA-DRB-CD4) in AF.
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missing in AF. In contrast, signals sent from EC to LBCs (e.g.,

HLA-DRB/DQB/DRA/DMA–CD4) were increased in AF

(Figure 5B). When EF acts as a signal receiver, it can receive

signals from APF, EC, and autocrine pathways via MPZL1–

MPZL1, MDK–SDC2/LRP1, CD99–CD99, GAS6–AXL, and

certain integrin family ligand–receptor pairs. Furthermore, EF as

a signal receiver shows increased PDGF, MDK, and GAS6

signaling and reduced LAMININ signaling compared with EF as

a signal sender (Supplementary Figure S2). In the outgoing

signals from SMC, the NPPA/B–NPR1 ligand–receptor pair from

SMC to EC was significantly weaker in AF than in SR

(Supplementary Figure S3). Notably, in EF signaling activated in

AF, members of the integrin receptor family (ITGA*/ITGB*) play

a pivotal role by binding the ligands LAMININ and COLLAGEN

—responsible for the largest number of information flows—to

form receptor–ligand pairs.

Characterization of LAMININ, COLLAGEN
and MK signals in AF and GRN, AGRN and
NPR1 signals in SR

Since LAMININ and COLLAGEN signals are highly active

among EF signals in AF, we further analyzed these two signals

with substantial information flow. In addition, we highlight the

GRN and AGRN signals sent by EC to APF in SR (absent in

AF), the NPR1 signals sent by SMC to EC (weakened in AF),

and MK signals exclusively present in the AF network. In the

LAMININ signaling network, the two strongest signals are the

autocrine signals from APF and those from EF to APF

(Figures 6A,C). When EF acts as the signal source, it can send

signals to APF, EC, SMC, and itself; the strongest signal is

directed to APF (Figure 6E). Figure 6G shows that EF serves as

both signal sender and influencer. LAMB2–(ITGA3 + ITGB1)

contributes the most in this signaling network (Figure 6I).

Figure 6K presents the expression levels of ligands and receptors

in the LAMININ signaling network across five cell types,

indicating that EF exclusively expresses the ligands, while APF

and EC primarily express the receptors. In the COLLAGEN

signaling network, EF shows a signaling pattern similar to that of

LAMININ (Figure 6L). However, among the two strongest

signals in the COLLAGEN network, the EF-to-APF signal is

stronger than the autocrine APF signal (Figures 6B,D), and EF

cannot send signals to SMC when serving as the signal source

(Figure 6F). Additionally, COL6A2–(ITGA10 + ITGB1) provides

the strongest signal contribution in the COLLAGEN signaling

network (Figure 6J).

In the SR network of GRN and AGRN signaling, EC expresses

the ligands, while APF expresses the receptors, allowing the

transmission of GRN–SORT1 (Progranulin-Sortilin 1) and

AGRN–DAG1 (Agrin-Dystroglycan 1) signals from EC to APF

(Supplementary Figure S4). However, these EC-to-APF signals

are absent in AF. In the MK (Midkine signaling) signaling

network, the two strongest signals are those from EC and APF to

EF, and both EC and APF also send signals to SMC.

Consequently, EF and SMC mainly act as signal receivers, while

EC and APF act as primary signal senders, with the MDK–NCL

(Midkine–Nucleolin) ligand–receptor pair having the largest

contribution (Supplementary Figure S5). The NPR1 signaling

network shows that SMC signals are sent to EC, where NPPA–

NPR1 (Atrial Natriuretic Peptide-Guanylate Cyclase A) exhibits a

higher contribution (Supplementary Figure S6). These results

clarify the ligand–receptor pairs involved in EF-activated

signaling (LAMININ and COLLAGEN) in AF, the AF-specific

MK signaling, the absence of certain EC outgoing signals (GRN

and AGRN), and the weakened EC incoming signals (SMC’s

NPPA/B–NPR1) in AF. Collectively, these factors may be critical

for AF-related structural remodeling.

Differential analysis and functional
enrichment analysis of ion channel-related
genes in AF

The electrical remodeling of AF is closely linked to genes

involved in ion channels. Hence, based on the ion channel gene

set, we extracted the ion channel gene expression data from the

normalized AF dataset (GSE79768) (Supplementary Table S6).

Ion channel genes with differential expression between the AF

and control groups were identified using a P-value threshold of

<0.05, and the results of the differential analysis are displayed in

a heatmap (Figure 7A; Supplementary Table S6). GO enrichment

analysis of the differentially expressed genes revealed significant

enrichment in terms such as “ion channel complex,” “channel

activity,” and “regulation of membrane potential” (Figures 7B,C;

Supplementary Table S6), whereas KEGG showed significant

enrichment in pathways related to “neuroactive ligand–receptor

interaction” (Figure 7D; Supplementary Table S6). These

biological functions and pathways are strongly associated with

ion channel genes.

Machine learning identified ion channel
signature genes in AF

Using both the “LASSO” and “SVM” machine learning

algorithms for the ion channel DEGs enabled us to identify

signature ion channel genes in AF. Fifteen ion channel genes

were identified by LASSO (Figures 8A,B), and eleven by SVM

(Figures 8C,D), resulting in six overlapping ion channel signature

genes (Figure 8E). To minimize sample bias, the same methods

were applied to the normalized AF dataset (GSE115574) to

extract ion channel genes and perform differential and

enrichment analyses of the DEGs. The differentially expressed

ion channel genes are shown in Figure 8F; Supplementary

Table S7, and the enrichment analysis results confirm close

associations between these biological functions, signaling

pathways, and ion channels (Figures 8G–I; Supplementary

Table S7). Subsequently, the DEGs identified in GSE115574 were

intersected with the six overlapping genes from the machine

learning algorithms (Figure 8J), ultimately revealing ANO1 and

GRIK2 as ion channel signature genes in AF. Box plots indicated
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FIGURE 6

Characterization of LAMININ, COLLAGEN, GRN, AGRN, MK, and NPR1 signaling networks in AF and SR. (A,C) LAMININ signaling network, highlighting

strong autocrine signals from APF and secretory signals from EF to APF. (B,D) COLLAGEN signaling network, showing stronger secretory signals from

EF to APF compared to autocrine signals from APF. (E) EF as signal sender, with the strongest signal directed to APF. (F) EF cannot send signals to SMC

in the COLLAGEN network. (G) EF as signal influencer in the LAMININ signaling network, with LAMB2-(ITGA3 + ITGB1) showing the highest

contribution. (I) Expression of ligands and receptors in the LAMININ signaling network, with EF expressing ligands and APF/EC expressing more

receptors. (J) COLLAGEN signaling network, where COL6A2-(ITGA10 + ITGB1) shows the highest contribution. (K,L) Expression of ligands and

receptors in the LAMININ and COLLAGEN signaling network.
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that both ANO1 and GRIK2 had significantly higher expression in

AF compared to the SR group (p < 0.001) (Figures 8K,L). The ROC

curve showed that ANO1 (AUC = 0.755) and GRIK2

(AUC = 0.726) discriminated well between AF and SR

(Figures 8M,N).

The drug enrichment analysis of EF cell
subgroups and the ion channel genes ANO1

and GRIK2

After screening through machine learning methods and

validating expression levels, ANO1 and GRIK2 were ultimately

identified as signature ion channel genes associated with AF.

Consequently, the druggability of key cell subgroups—specifically,

EF cell subgroups, which may contribute to AF structural

remodeling—as well as the key ion channel genes (ANO1 and

GRIK2) involved in electrical remodeling, was further evaluated.

The gene concept network analysis identified several drugs

significantly enriched in the EF cell subgroups, including

phenytoin, butanoylamino, medroxyprogesterone acetate,

mifepristone, phosphine, and others (Figure 9A; Supplementary

Table S8). Additionally, ANO1 was associated with drugs such as

ionomycin, gibberellin, and DIDS, while GRIK2 was linked to

citalopram and topiramate (Figure 9B; Supplementary Table S8).

Notably, phenytoin, which was significantly enriched in the EF

cell subgroups, has been previously confirmed to exhibit

antiarrhythmic effects in prior studies.

Discussion

AF has a complex etiology involving multiple aspects, such as

structural remodeling and electrical remodeling. With respect to

structural remodeling, numerous studies have examined processes

including atrial fibrosis, myocyte hypertrophy and apoptosis,

alterations in the extracellular matrix, autophagy, and

inflammatory responses. Collectively referred to as “atrial

remodeling,” these processes are closely associated with AF onset

(21–23). However, a deeper understanding of structural changes

FIGURE 7

Differential expression and enrichment analysis of ion channel genes in AF. (A) Heatmap showing differential expression of ion channel genes between

AF and SR groups (P < 0.05). (B,C) GO enrichment results for differentially expressed ion channel genes. (D) KEGG enrichment results.
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FIGURE 8

Identification and validation of ion channel signature genes in AF. (A,B) Ion channel genes identified by the “LASSO” algorithm. (C,D) Ion channel genes

identified by the “SVM” algorithm. (E) Six overlapping ion channel signature genes identified by both algorithms. (F) Differential ion channel genes

(GSE115574). (G–I) Enrichment analysis of differential ion channel genes, highlighting relevant biological functions and pathways. (J) Intersection of

ion channel DEGs with the six overlapping genes identified by machine learning. (K,L) Boxplots showing significantly higher expression levels of

ANO1 and GRIK2 in AF compared to SR (p < 0.001). (M,N) ROC curves for ANO1 (AUC = 0.755) and GRIK2 (AUC = 0.726) as diagnostic markers for AF.
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in AF is still lacking, particularly regarding how cellular-level

alterations initiate and sustain AF. Existing research largely

focuses on changes in cardiac electrophysiology, with

comparatively fewer investigations into cell-type heterogeneity

and intercellular interactions. As single-cell analysis techniques

have rapidly evolved, more studies have turned their attention to

cell heterogeneity, particularly by leveraging single-cell RNA

sequencing to elucidate the roles of different cell populations,

thereby offering new perspectives on the cellular mechanisms

underlying AF. In the domain of electrical remodeling, previous

studies have shown that mutations or functional abnormalities

in ion channel genes are closely linked to AF, including

sodium channel genes (SCN5A), potassium channel genes

(KCNQ1, KCNH2, KCNE1, KCNE2), calcium channel genes,

hyperpolarization-activated cyclic nucleotide-gated channel genes

(HCN), sodium–calcium exchanger genes (NCX1), and the titin

gene (TTN) (24–29). Existing antiarrhythmic drugs are

frequently associated with these ion channels. Nonetheless,

although the potential roles of these ion channel genes in AF

have garnered significant interest, research exploring the

relationship between the human ion channel gene set and AF

remains relatively scarce. Moreover, the identification of distinct

ion channel gene biomarkers in AF has yet to be thoroughly

addressed, and how alterations in other ion channels drive the

onset and perpetuation of AF remains insufficiently revealed.

In the single-cell clustering and dimensionality reduction

analysis, this study employed t-SNE clustering to divide 20 PCs

into 6 subclusters. Based on marker gene expression and the

“singleR” package for cell annotation, these subclusters were

further categorized into 5 major cell types: APF, SMC, EC, LBCs,

and EF. In this analysis, cluster 5 was defined as EF—a

population of cells characterized by the absence of ACTA2

expression and the presence of VCAN, DCN, COL1A2, LAMA2,

LUM, and FBLN1. The biological features of these cells lie

between those of quiescent fibroblasts and fully differentiated

myofibroblasts. ACTA2 (α-smooth muscle actin) is a classical

marker of myofibroblasts; thus, the absence of ACTA2 suggests

that these EF cells do not exhibit the typical contractile

phenotype of myofibroblasts. Instead, they represent a

transitional or intermediate state, potentially with an embryonic-

like phenotype, that is distinct from both resting fibroblasts and

contractile myofibroblasts. GO, KEGG, and GSEA (HALLMARK

gene set) enrichment analyses of DEGs in these 5 cell types

supported each cell type’s distinct biological functions and

validated the accuracy of the clustering results. Additional

analyses showed that the proportions of APF, LBCs, and EF cells

increased in the AF group, whereas the EC proportion decreased.

In contrast, the SR group exhibited a higher proportion of ECs,

suggesting that these cells may play critical roles in the onset and

progression of AF. This finding aligns with previous studies,

which have indicated that fibroblast proliferation, imbalanced

immune-inflammatory responses, and endothelial cell damage

constitute key features of AF-related structural remodeling.

Moreover, inflammation and immune pathways may serve as

prerequisites for AF, subsequently leading to endothelial cell

injury and atrial fibrosis and ultimately resulting in irreversible

atrial remodeling. Damage to endothelial cells and hemodynamic

disturbances further exacerbate thrombus formation in AF

patients (30–33). Given the observed shifts in the distribution

of different cell types between AF and SR, the study

further investigated cell differentiation trajectories and

intercellular interactions.

To investigate the developmental trajectories by which

fibroblasts contribute to structural remodeling in AF, this study

performed pseudotime analysis. The results revealed two primary

trajectory patterns. One trajectory was primarily enriched in

FIGURE 9

Druggability analysis of key cell subgroups and ion channel genes in AF. (A) Gene concept network diagram showing drugs significantly enriched in EF

cell subgroups, including phenytoin, butanoylamino, and medroxyprogesterone acetate. (B) Druggability of key ion channel genes: ANO1 linked to

ionomycin, gibberellin, and dids; GRIK2 linked to citalopram and topiramate.
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muscle system processes and muscle cell differentiation according

to GO (BP) analysis, and in muscle contraction, cardiomyopathy,

and neural disease pathways according to KEGG analysis; this

trajectory is presumed to include EF, APF, and SMC cells. The

other trajectory was enriched in the positive regulation of

cytokine production, antigen processing and presentation, and

endothelial cell migration (GO), and in cell adhesion molecules

(CAMs), NK cell–mediated cytotoxicity, antigen processing, and

MAPK signaling pathways (KEGG); it is thus speculated to

involve EC and LBCs. Further examination of the distribution of

marker genes for EF, APF, and SMC on the pseudotime

trajectories, along with their relative expression levels, indicated

that EF cells could develop along different paths into either the

APF or a smooth muscle cell–like subtype (SMC). This suggests

that EF cells may serve as key regulators of cardiac fibrosis and

vascular smooth muscle remodeling. Previous research has shown

that EF cells exhibit plasticity during cardiac injury repair and

fibrosis, and that their differentiation may be influenced by

factors such as inflammation, mechanical stress, and gene

regulation (34, 35). On one hand, the differentiation of EF cells

into APF—which have higher proliferative capacity—may

promote cardiac fibrosis through excessive proliferation and the

secretion of extracellular matrix proteins such as collagen and

fibronectin, ultimately exacerbating atrial hardening and electrical

conduction abnormalities that foster the onset and maintenance

of AF (36). On the other hand, EF cells can also differentiate

into SMC-like cells, potentially contributing to atrial vascular

remodeling. Research indicates that, in chronic cardiovascular

diseases, fibroblasts undergo transdifferentiation into smooth

muscle–like cells through signaling pathways such as TGF-β,

which may lead to abnormal vascular proliferation and

dysfunction within the atria (37). This study elucidates the

developmental trajectories of EF cells in AF and offers new

insights into the mechanism of structural remodeling in AF.

Further work is needed to explore how EF cells selectively

differentiate into APF or SMC under distinct pathological

conditions, particularly the potential of key signaling pathways

(e.g., TGF-β, Wnt, and Notch) as therapeutic targets.

Investigations into treatment strategies targeting EF cells—such

as regulating their differentiation via small-molecule drugs or

gene editing technologies—may help mitigate pathological

fibrosis. In summary, pseudotime analysis reveals the

developmental trajectories of EF cells during AF-related

structural remodeling, showing that EF cells can differentiate into

either proliferative APF or contractile SMC. These findings not

only deepen our understanding of AF-related structural

remodeling mechanisms but also offer potential new targets for

precision intervention in AF.

Subsequently, the study examined signal transmission and

interactions among various cell types in AF and SR, with an

emphasis on the roles of EF, EC, and SMC in the structural

remodeling process. The results showed a marked increase in

cell–cell signaling networks and interactions under AF compared

to SR, particularly between EF cells and other cell types. This

phenomenon suggests the presence of structural remodeling in

cellular signaling during AF, notably involving EF cells. For

instance, EF cells secrete multiple cytokines (e.g., LAMININ and

COLLAGEN), thereby contributing to AF-related structural

remodeling and potentially playing a critical role in the onset

and maintenance of AF. Further analysis revealed that, in AF, the

incoming signals received by APF, EF, and EC, as well as the

outgoing signals from EF, were substantially enhanced, whereas

the outgoing signals from EC were significantly reduced. Of

particular note, LAMININ and COLLAGEN signaling were

highly activated in AF and closely tied to EF cell functional

transition and the fibrotic process. For example, LAMININ

signaling, mediated by the LAMB2–(ITGA3 + ITGB1) ligand–

receptor pair, exerts a key influence on EF cells and may impact

cell adhesion and migration during atrial remodeling, as reported

in other studies (38). A similar pattern in the COLLAGEN

signaling network further indicates that EF cells may play an

essential role in the progression of atrial fibrosis (39, 40). In

addition, the AF-specific MK and integrin receptor signaling

pathways warrant attention, as they may contribute to the

persistence of AF and cardiac remodeling, potentially forming a

molecular foundation for establishing a fibrotic environment.

Regarding specific signaling pathways, EF was identified as a

signal sender capable of transmitting extensive signals to APF,

EC, and SMC cells through various ligand–receptor pairs (e.g.,

PTN–NCL, CD99–CD99). In contrast, the signaling activity of

EC in AF underwent significant alterations, particularly in

autocrine signals (e.g., VEGF–VEGFR, EFNB/A1–EPHB4), which

were absent in AF, whereas signals from EC to LBCs were

markedly elevated, suggesting that the role of EC in AF may

have shifted with respect to interactions with other cell types.

Notably, EC signal transmission in AF decreased considerably,

especially in the absence of signals from the GRN–SORT1 and

AGRN–DAG1 ligand–receptor pairs, indicating that EC may

have lost its normal angiogenic and reparative functions in AF—

an observation that may be closely tied to the pathology of AF

(33, 41). Additionally, the NPPA–NPR1 signal from SMC to EC

was notably weakened in AF, reflecting altered interactions

between vascular smooth muscle cells and endothelial cells under

AF conditions. The NPR1 signaling pathway plays a pivotal role

in cardiovascular diseases such as atrial fibrosis and heart failure,

and its attenuation in AF is strongly correlated with remodeling

of cardiac structure and function (42, 43). In summary, the cell

communication analysis revealed that AF onset and maintenance

involve multiple signaling networks. In this study, several critical

AF-associated pathways were highlighted, including extensive EF-

mediated signals activated by ligands such as LAMININ and

COLLAGEN, the AF-specific activation of MK (Midkine

signaling) signaling, the absence of EC signals such as GRN–

SORT1 (Progranulin-Sortilin 1) and AGRN–DAG1 (Agrin-

Dystroglycan 1) in AF, and a marked reduction of the NPPA–

NPR1 (Atrial Natriuretic Peptide-Guanylate Cyclase A) signal

from SMC to EC. These signals are pivotal for AF onset and

maintenance, particularly in terms of cell–matrix interactions,

fibrotic processes, inflammatory and immune responses, and

endothelial cell vascular remodeling. Future research could

further validate the functions of these signaling pathways,

particularly focusing on whether modulating ligand–receptor
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pairs can help suppress the structural remodeling observed in AF.

In addition, exploring other factors that might influence these

signaling pathways may open new therapeutic avenues for AF.

Ion channels play a crucial role in the electrophysiological

remodeling of AF, where abnormalities in electrical activity are

closely associated with dysfunction of ion channels. Research has

shown that the onset of AF is linked to alterations in ion

channel expression, particularly abnormalities in sodium,

calcium, and potassium ion channels, which can obstruct the

processes of cardiomyocyte depolarization and repolarization,

ultimately leading to arrhythmias. Therefore, identifying and

validating ion channel biomarker genes in AF may provide new

molecular foundations and clinical targets for the prevention,

diagnosis, and treatment of AF. Based on an ion channel gene

set, this study extracted expression data of ion channel genes

from the AF dataset (GSE79768) and identified significantly

differentially expressed ion channel genes between the AF and

control groups. Subsequently, by applying both LASSO and SVM

machine learning algorithms, 6 overlapping ion channel signature

genes were identified. To minimize sample bias, the same

approach was applied to the GSE115574 dataset to extract ion

channel genes, followed by differential analysis and enrichment

analysis. ANO1 and GRIK2 were ultimately confirmed as ion

channel signature genes in AF. The results indicated that ANO1

and GRIK2 were markedly upregulated in the AF group

compared to the SR group. ROC curve analysis demonstrated

that ANO1 (AUC = 0.755) and GRIK2 (AUC = 0.726) possess

good discriminative power in distinguishing AF from SR. GO

and KEGG enrichment analyses revealed that the differentially

expressed ion channel genes were significantly enriched in key

functions such as “ion channel complex,” “channel activity,”

“regulation of membrane potential,” and the neuroactive ligand–

receptor interaction pathway, which are closely related to the

electrophysiological characteristics of AF (44).

Notably, this study employed two commonly used machine

learning algorithms—LASSO and SVM—to screen for ion

channel genes. LASSO incorporates an L1 regularization term

that effectively reduces model complexity and identifies genes

with strong predictive contributions. SVM, on the other hand,

constructs a hyperplane to maximize the inter-class margin,

making it well suited for feature selection in high-dimensional,

small-sample datasets. Compared with traditional biostatistical

methods, these two machine learning approaches can handle

higher-dimensional data and detect potential nonlinear

relationships, thereby providing robust tools for discovering novel

disease marker genes (45). In this study, the two algorithms

complemented each other, and comparing their outcomes yielded

a relatively stable set of candidate genes. Ultimately, ANO1 and

GRIK2 were identified as ion channel signature genes and

biomarkers for AF, both of which were significantly upregulated

in the AF group compared with the SR group. ANO1 is a

calcium-activated chloride channel whose cardiac expression is

closely linked to the regulation of ion flux. Previous research has

shown that increased ANO1 expression can raise the density of

calcium-activated chloride channels in ischemic hearts, causing

arrhythmias triggered by ischemia (46). In the present study, the

elevated expression of ANO1 in AF may induce

electrophysiological remodeling through its influence on cardiac

electrical activity. GRIK2 belongs to the glutamate receptor

family, encoding the kainate receptor—also known as a

glutamate-gated cation channel—which is predominantly found

in the nervous system. Mutations in GRIK2 underlie various

neurodevelopmental disorders (47). Studies have indicated that

these gated cation channels also contribute to heart rate and

rhythm regulation, thereby affecting arrhythmogenesis (48, 49).

However, research specifically focusing on the relationship

between GRIK2 and arrhythmias or AF remains limited. These

findings suggest that ANO1 and GRIK2 may serve as important

targets for the early diagnosis and treatment of AF.

In the study of electrical remodeling, a multi-layered and multi-

dimensional analytical strategy was adopted to ensure the reliability

and accuracy of the findings. First, differential expression of ion

channel genes was repeatedly validated across multiple datasets.

Second, differential expression analysis and enrichment analysis

were combined to further elucidate the potential biological

functions of ion channel genes in AF. Finally, the application of

machine learning algorithms enabled the rational selection of ion

channel signature genes with high clinical translational value.

Considering sample size, data quality, and analytical rigor, the

design of this study possesses notable scientific and clinical

utility. Building on these results, the functions and specific

mechanisms of ANO1 and GRIK2 in AF warrant further

investigation. Future research could employ animal models or

clinical trials to confirm the roles of these ion channel genes in

AF, offering novel directions for precision AF treatment and

potentially serving as targets for early diagnosis and therapy.

Lastly, this study further investigated the druggability of key

cell subpopulations (EF) that may be involved in structural

remodeling of AF, as well as the critical ion channel genes

(ANO1 and GRIK2) implicated in electrical remodeling. The

analysis indicated that phenytoin sodium, butanoylamino,

metopirone, mifepristone, and phosphoric were significantly

enriched in EF cell subpopulations. Among these, phenytoin—

widely recognized as a classic antiarrhythmic drug—has been

shown by multiple studies to stabilize the cell membrane

potential and reduce the excitability of cardiac myocytes, thereby

mitigating AF (50–52). This suggests that EF cell subpopulations

may represent a promising new therapeutic target for AF.

Regarding ANO1’s druggability, the analysis revealed that

ionomycin and other agents can influence ANO1 function. As a

potent and selective calcium ionophore, ionomycin may exert

therapeutic effects by modulating apoptosis (53). However, other

drugs strongly associated with ANO1, such as gibberellic acid

and DIDS, remain understudied with respect to their regulatory

effects on ion channels. Furthermore, this study found that

GRIK2 is associated with citalopram and topiramate. Citalopram,

an antidepressant, has been shown to modulate neurocardiac

interactions; previous reports indicate that it can affect cardiac

conduction and repolarization, leading to symptomatic

bradycardia and hypotension (54, 55). Topiramate is an

antiepileptic agent, though whether it confers antiarrhythmic

effects by acting on GRIK2 expression remains uncertain.
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Notably, phenytoin sodium—another antiepileptic drug—is

already recognized as a classic antiarrhythmic and was shown in

this study to act on EF cells. An additional significant finding is

the potential for drug repurposing. Medications such as

citalopram and topiramate, originally developed for other

conditions, show close correlations with ion channel genes in AF,

suggesting a possible antiarrhythmic effect. Drug repurposing is a

rapid and efficient approach to uncover novel indications for

existing drugs, thereby reducing the time and cost associated

with drug development (56). Despite revealing the potential roles

of critical EF cell subpopulations and the ion channel signature

genes ANO1 and GRIK2, as well as proposing new therapeutic

strategies via drug-targeting analysis, certain limitations remain.

First, this study’s datasets were predominantly drawn from public

databases; therefore, additional clinical samples are needed to

validate the clinical relevance of these genes and drugs. Second,

the proposed drug targets must be verified through in vitro and

in vivo experiments. Future investigations could evaluate the

clinical therapeutic efficacy of targeting ANO1 and GRIK2 and

integrate clinical data to provide further evidence for precision

treatments of AF, thus offering new directions for AF drug-

targeting research.

In conclusion, this study employed multiple analytical

approaches—encompassing single-cell analysis, machine learning

algorithms, and drug-targeting assessments—to investigate cell

subpopulation distributions, developmental trajectories, and

intercellular interactions in AF, as well as potential ion channel

gene biomarkers in AF. Additionally, it identified key cell

subpopulations and ion channel marker genes in AF and

evaluated corresponding targetable drugs, providing novel

insights into the structural and electrical remodeling mechanisms

of AF. These findings offer promising directions for the precision

treatment of AF and may serve as potential therapeutic targets in

future AF research.
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