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Coronary microvascular dysfunction (CMD) is a high-risk factor for numerous

cardiovascular events, and there is an increasing focus on the diagnosis and

treatment of CMD itself or its association with cardiovascular diseases.

However, some evidences suggest potential associations between CMD and

multiple extracardiac pathologies, such as cerebrovascular, renal, pulmonary,

retinal, hepatic, immune system diseases, and cancer. A shared pathological

mechanism may underlie these connections, yet the relationship between

CMD and other organs and systemic diseases remains unclear. Therefore, this

review comprehensively assesses the current evidence base for the interplay

between CMD and a range of systemic diseases, highlighting the need for a

more integrated diagnostic and therapeutic approach.
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1 Introduction

The coronary microcirculation is a blood circulation exchange system composed of

anterior small arteries (500–100 μm), small arterioles (100–10 μm) and capillaries

(<10 μm), is a critical regulator of myocardial perfusion, responsible for 80% of

coronary vascular resistance (1). They work together to sustain the integrity of the

coronary microcirculation and control the vascular tension and blood flow of the heart

arteries (2). Coronary microvascular dysfunction (CMD), characterized by structural

remodeling (e.g., capillary rarefaction, perivascular fibrosis) and functional impairment

[e.g., reduced coronary flow reserve (CFR), endothelial dysfunction], has emerged as an

independent predictor of adverse cardiovascular events, including myocardial ischemia,

heart failure, and angina, even in the absence of obstructive coronary artery disease

(3, 4). The detection method of CMD is shown in Supplementary Table S1.

Traditionally viewed as a cardiac-specific pathology, CMD is increasingly recognized

as a systemic disorder. Recent evidence reveals its association with extracardiac organ

pathologies, such as cerebrovascular disease, chronic kidney disease (CKD), retinal

vascular dysfunction, liver disease, pulmonary arterial hypertension (PAH),

autoimmune diseases, osteoporosis, sexual dysfunction, sarcopenia, obstructive sleep

apnea (OSA), along with elevated morbidity and mortality among people living with

human immunodeficiency virus (HIV), as well as increased incidence of cancer, which

emphasize the prevalence of this important pathological mechanism. We analyzed and
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summarize the pathogenesis of CMD, review its association with

other systemic diseases (Table 1). This review synthesizes current

evidence on CMD systemic implications, emphasizing shared

pathophysiological pathways and advocating for integrated

diagnostic-therapeutic frameworks. We aim to redefine CMD as

a multisystem disorder requiring collaborative clinical approaches.

2 Key pathophysiological mechanisms

The development of CMD is a complex process (Figure 1), and

conventional risk factors for cardiovascular disease, such as type 2

diabetes mellitus, obesity, hypertension, and dyslipidemia, may

contribute to its pathogenesis (22). Additionally, the mechanisms

behind CMD include (a) Endothelial dysfunction: Endothelial

dysfunction is a hallmark of CMD, driven by impaired nitric

oxide (NO) bioavailability and oxidative stress. Reduced

endothelial NO synthase (eNOS) activity, coupled with increased

reactive oxygen species (ROS) production (e.g., via NADPH

oxidase), disrupts the balance between vasodilators (NO,

prostacyclin) and vasoconstrictors (endothelin-1, angiotensin II)

(23, 24). Recent studies implicate asymmetric dimethylarginine

(ADMA), an endogenous eNOS inhibitor, as a key mediator in

conditions like diabetes and CKD, where elevated ADMA levels

correlate with impaired CFR (25). (b) Chronic low-grade

inflammation: Chronic hypoxia and inflammation trigger

capillary dropout through vascular endothelial growth factor

resistance and endothelial apoptosis (via caspase-3 activation)

(26, 27). Concurrently, transforming growth factor-β and

galectin-3 drive perivascular fibrosis, increasing extracellular

matrix stiffness and impairing vasodilatory capacity (28). (c)

Oxidative stress and mitochondrial dysfunction: Mitochondria

cause changes in cell metabolism and respiration, and produce

excessive ROS, resulting in increased oxidative stress and

decreased autophagy, damages endothelial cells, makes them

release inflammatory factors and adhesion molecules, promotes

white blood cell adhesion and migration, and leads to vascular

inflammation. At the same time, oxidative stress destroys the

antioxidant system of endothelial cells, reduces the production of

NO, and leads to impaired vasodilation function (29, 30). (d)

TABLE 1 CMD associations with various organ systems and diseases.

Organ/
system

Association with CMD Specific mechanisms Clinical research/findings

Brain CMD is associated with CSVD, cognitive dysfunction,

stroke and cerebral blood flow abnormalities.

– Common microvascular pathology

(endothelial dysfunction, oxidative stress).

– Abnormal coupling of brain-

coronary hemodynamics

– 76% of CMD patients have cerebral

hypoperfusion (5).

– Patients with CMD have an increased risk of

cognitive decline (C3 study, n = 67) (6).

Kidney The prevalence of CMD is high among patients with

CKD, which accelerates cardiovascular events

– Uremic toxin accumulation and oxidative

nitrification stress

– Bidirectional interaction of kidney-

coronary microcirculation (hemodialysis

and metabolic imbalance)

– A decrease in eGFR is associated with a decrease

in CFR (n = 605) (7)

– The CFR of dialysis patients was significantly

decreased (hemodialysis vs control group) (8, 9)

Lung The coexistence of PAH and CMD increases the risk

of right heart failure.

– The reversal of the lung-coronary pressure

gradient leads to insufficient

coronary perfusion

– Inflammation drives microvascular fibrosis

– The myocardial perfusion reserve index of

patients with PAH was negatively correlated

with pulmonary artery pressure (r = 0.79) (10).

– 68% of patients with systemic sclerosis have

CMD (n = 120) (11).

Retina Retinal microvascular abnormalities can predict

CMD, with significant gender specificity.

– Endothelial dysfunction (NO↓, ET-1↑).

– Inflammatory factors (IL-6, TNF-α) induce

the shedding of glycocalyx

– Retinal arteriolar stenosis is associated with

reduced myocardial perfusion (β = 0.0088,

P = 0.04) (12).

– The reduction in arteriolar calibre of females is a

better predictor of CHD mortality than that in

males (13).

Liver Non-alcoholic fatty liver disease (NAFLD) is closely

related to CMD and independent of traditional risk

factors.

– Liver fibrosis impairs coronary reactivity

through the inflammation-metabolic axis

– Insulin resistance inhibits myocardial

glucose uptake

– The coronary flow velocity reserve of patients

with NAFLD was significantly decreased (14).

– The liver fibrosis score is negatively correlated

with myocardial perfusion reserve (15).

Immune

System

Diseases

Autoimmune diseases (such as SLE, RA, and

psoriasis) significantly increase the risk of CMD.

– Autoantibodies (such as anti-β 2GPI)

activate the TLR4 pathway

– The deposition of extracellular traps

(NETs) of neutrophils reduces

microvessel density

– The CFR of rheumatoid arthritis patients

decreased (Meta-analysis, n = 709) (16).

– 31.5% of patients with psoriasis have CMD

(n = 448) (17).

Cancer The bidirectional association between CMD and

cancer: CMD increases the risk of cancer, and anti-

cancer treatment aggravates microvascular damage.

– Chronic inflammation is jointly driven by

oxidative stress

– Anti-cancer drugs (such as sunitinib)

directly damage microvessels

– Cancer risk of CMD patients ↑ (HR = 4.91,

Breast cancer cohort) (18).

– The CFR of patients treated with sunitinib was

significantly reduced (n = 18) (19).

Others Metabolic syndrome, osteoporosis, sexual dysfunction

interact with CMD.

– High PTH levels impair

endothelial function

– Inflammation and vascular remodeling

related to obstructive sleep apnea (OSA)

– CMD reversal after parathyroidectomy (n = 100)

(20).

– Severe OSA is associated with CMVO after

STEMI (n = 249) (21).

CMD, coronary microvascular dysfunction; CSVD, cerebral small vessel disease; CKD, chronic kidney disease; CFR, coronary flow reserve; PAH, pulmonary arterial hypertension; CHD,

coronary heart disease; NAFLD, non-alcoholic fatty liver disease; SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; CHD, coronary heart disease; PTH, Parathyroid hormone;

OSA, obstructive sleep apnea; CMVO coronary microvascular dysfunction and obstruction; STEMI, ST-segment elevated myocardial infarction.
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Autonomic nervous system imbalance: Sympathetic overactivation

(e.g., via α₁-adrenergic receptors) and reduced parasympathetic

tone impair microvascular reactivity. Elevated norepinephrine

levels in heart failure patients correlate with reduced CFR, while

β-blockers partially restore microvascular function by attenuating

adrenergic-driven vasoconstriction (31).

3 Coronary microvascular dysfunction
in relation to other systems and organs

3.1 Brain-heart vascular interconnections

The brain and heart exhibit striking similarities in vascular

architecture, characterized by intricate networks of conduit

arteries traversing the organ surface to deliver blood through

dense capillary beds. Both organs require precise regulation of

local perfusion to meet high metabolic demands. Importantly,

they share overlapping risk factors for microvascular dysfunction,

including aging, hypertension, diabetes mellitus, smoking,

systemic inflammation, vasospasm, and microemboli, which

collectively contribute to the pathogenesis of CMD and cerebral

small vessel disease (CSVD) (32, 33). Structural and functional

abnormalities in the microcirculation serve as the common

pathological substrate for both conditions (34).

3.1.1 Emerging evidence from clinical studies

Clinically, CMD manifests not only as angina but also with

extracardiac features such as pathological pain perception,

migraine-like symptoms, and autonomic dysregulation (35–37).

Conversely, CSVD accounts for 25% of ischemic strokes and 45%

of dementia cases, presenting with diverse neurological deficits

including facial nerve palsy, gait disturbances, aphasia, and

subcortical white matter lesions evident on neuroimaging (38, 39).

FIGURE 1

Pathophysiological mechanisms linking traditional risk factors to coronary microvascular dysfunction (CMD) and myocardial ischemia. This schematic

illustrates the multifactorial pathogenesis of CMD. Traditional cardiovascular risk factors [e.g., type 2 diabetes mellitus (T2DM), obesity, hypertension,

dyslipidemia, aging, smoking, and alcohol consumption] converge to drive four core pathological mechanisms: Endothelial dysfunction:

Characterized by reduced nitric oxide (NO) bioavailability due to impaired endothelial NO synthase (eNOS) activity and elevated asymmetric

dimethylarginine (ADMA). Chronic low-grade inflammation: Mediated by vascular endothelial growth factor (VEGF) resistance, endothelial

apoptosis, and perivascular fibrosis driven by transforming growth factor-β (TGF-β) and galectin-3. Oxidative stress and mitochondrial dysfunction:

Results in excessive reactive oxygen species (ROS) production, impaired autophagy, and diminished vasodilatory capacity. Autonomic nervous

system imbalance: Sympathetic overactivation and reduced parasympathetic tone impair microvascular reactivity. These interconnected

mechanisms collectively contribute to CMD, ultimately leading to myocardial ischemia. Arrows indicate the progression from risk factors to end-

organ damage.
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Despite these clinical parallels, the mechanistic links between CMD

and CSVD remain incompletely elucidated. Targeted research is

urgently needed to unravel their interplay and mitigate the

combined disease burden. The prospective Cerebral Coronary

Connection (C3) study provided critical insights by examining 67

patients with blinded assessments. Mejia et al. demonstrated that

CMD correlates with CSVD severity, cerebral hemodynamic

impairment, and accelerated cognitive decline, underscoring its

systemic implications beyond the coronary circulation (6).

Supporting this, a clinicopathological analysis of 175 dementia

patients by Andin et al. revealed that small-vessel dementia

subtypes exhibit a higher prevalence of cardiovascular lesions

compared to other dementia etiologies (40). Neuroimaging studies

further strengthen this association: 76% of 95 CMD patients

exhibited cerebral hypoperfusion on perfusion scans (5), while Pai

et al. identified a strong concordance between cardiac perfusion

defects and cerebral hypoperfusion lesions in CMD cohorts (41).

Similar findings were replicated by Sun and colleagues, suggesting a

shared hemodynamic vulnerability (42).

3.1.2 CADASIL: a paradigm of systemic
microangiopathy

Cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy (CADASIL), caused by

NOTCH3 mutations, exemplifies the systemic nature of

microvascular dysfunction. Although classically defined by early-

onset stroke and leukoencephalopathy, CADASIL is increasingly

recognized as a multisystem disorder. Argiro et al. conducted a

case-control study comparing 17 CADASIL patients with 15

healthy controls, revealing significantly reduced CFR indicative of

CMD in the CADASIL group (43). Coronary angiography in a

45-year-old CADASIL patient by Rubin et al. demonstrated

diffuse left anterior descending artery stenosis and

histopathological features resembling CMD, despite the absence

of traditional atherosclerosis (44). Mechanistically, CADASIL-

related CMD arises from vascular fibrosis, impaired endothelial

autoregulation, and heightened myogenic tone—pathways that

may overlap with sporadic microvascular disease (45).

3.2 Kidney-heart microvascular crosstalk

Emerging evidence positions CMD as a pivotal mediator

linking CKD to cardiovascular morbidity. Notably, cardiovascular

complications frequently manifest in CKD patients even in the

absence of obstructive coronary artery disease, implicating

microcirculatory pathology as a key determinant (46).

3.2.1 Clinical evidence of renal-coronary

interaction
A seminal study by Bajaj et al. (n = 352) integrating renal

functional assessment, cardiac positron emission tomography

(PET), and echocardiography demonstrated that CMD accounts

for 58% of the association between renal impairment, myocardial

dysfunction, and cardiovascular events. This finding highlight

CMD-targeted therapies as potential strategies for mitigating

cardiovascular risk in uremic cardiomyopathy (47). In 605

patients stratified by renal function, reduced estimated

glomerular filtration rate (eGFR) correlated with diminished

CFR, which may suggest parallel alterations in renal and

coronary microcirculation early in the course of the disease (7).

A prospective cohort of 175 CKD patients revealed stage-

dependent CFR deterioration, with proteinuria serving as an

independent predictor of microvascular impairment (48).

3.2.2 Dialysis modality and transplantation
considerations

While retrospective PET analysis of 435 stage 1–3 CKD patients

showed comparable CFR to controls after adjusting for cardiovascular

risks (49), end-stage renal disease exhibits distinct patterns: a study of

dialysis patients and controls revealed that patients in the

hemodialysis (HD) group had a lower CFR compared to controls

(8, 9). There was no difference in CFR between HD and peritoneal

dialysis patients, but it was significantly lower in diabetic patients

and those with more severe diastolic dysfunction (50). Studies on

the impact of renal transplantation on CFR are limited. Although

renal function is partially restored after renal transplantation, the

incidence of CMD after renal transplantation remains high, with

8%–65% of patients still having a CFR < 2 (51, 52).

3.2.3 Pathophysiological mechanisms
The CKD-induced microvascular insult arises through synergistic

pathways: (a) Hemodynamic Stressors: Pressure overload from

hypertension and arterial stiffness elevates pulse wave velocity.

Volume overload secondary to anemia and hyperthyroidism

augments preload. These forces culminate in capillary bed shear

stress and rarefaction, establishing a bidirectional link between

microvascular dysfunction and eGFR decline (53). (b) Metabolic

and Inflammatory Drivers: Uremic toxin accumulation, aldosterone

system activation, and hyperuricemia promote myocardial fibrosis.

Oxidative-nitrosative stress and chronic inflammation accelerate

microvascular endothelial apoptosis. These processes collectively

drive coronary microcirculatory remodeling and elevate

cardiovascular mortality (54).

3.3 Lung-heart microvascular
interdependence

PAH characterized by elevated pulmonary vascular resistance

and right ventricular afterload, represents a critical intersection of

pulmonary and coronary microcirculatory dysfunction. Chronic

pulmonary hypoperfusion induces right coronary artery

compression and microvascular ischemia, driving progressive

ventricular remodeling that culminates in right heart failure—the

leading cause of PAH-related mortality (55).

3.3.1 Clinical evidence of cardiopulmonary
microangiopathy

PAH is a common complication of systemic sclerosis (SSc), and

patients with SSc have systemic endothelial dysfunction associated

with disease severity (56). Emerging data position PAH as a
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systemic microvascular disorder: (a) Connective Tissue Disease

Context: In SSc, endothelial dysfunction propagates across vascular

beds. A study of 120 SSc patients by Komócsi et al. revealed 42%

concurrent PAH, 31% coronary artery disease, and 68% reduced

CFR, demonstrating tri-vascular bed involvement, the findings

revealed considerable overlap between PAH, CAD and reduced

CFR in patients with SSc (11). Pressure-Perfusion Coupling: In 25

PAH patients (Jens et al.) showed myocardial perfusion reserve

index inversely correlating with pulmonary artery pressure

(r =−0.79, P < 0.002), suggesting pressure-mediated microvascular

rarefaction (10). Harris et al.’s population study (n = 3,397)

established lung-kidney-retina-heart microvascular synergy: retinal

venular diameter was negatively correlated with forced expiratory

volume in the first second (FEV₁) and FEV₁/ forced vital capacity

(FVC) (P < 0.001 and P = 0.04). The albumin-to-creatinine ratio

was negatively correlated with FEV₁ (P = 0.002) but not with

FEV₁/FVC. Myocardial blood flow (n = 126) was associated with

lower FEV₁, lower FEV₁/FVC, and higher LAA percentage

(P = 0.02, P = 0.001, and P = 0.04) (57). These cross-sectional data

raise the possibility that lung dysfunction may be a component of

systemic microvascular disease, that lung damage may be related to

end-organ failure in all circulations, or that there may be a

shared susceptibility.

3.3.2 Pathophysiological pathways in
PAH-induced ischemia

The ischemic cascade in PAH arises through multifactorial

mechanisms:(a) Biomechanical Stressors: Right ventricular

dilation increases intramural tension, elevating myocardial

oxygen demand by 35%–40% while simultaneously impairing

subendocardial perfusion (58). Pulmonary-to-systemic pressure

gradient reversal reduces coronary driving pressure during

diastole, the critical perfusion phase. (b) Neurohormonal

Activation: Compensatory sympathetic overdrive and renin-

angiotensin-aldosterone system activation promote eNOS

uncoupling. Catecholamine excess induces microvascular

α1-adrenergic hyperreactivity and vasospasm. (c) Microvascular

Remodeling: SSc-associated pericyte apoptosis and capillary

dropout reduce vascular compliance. Uremic toxin accumulation

(in PAH-renal syndrome) accelerates glycocalyx shedding,

increasing leukocyte adhesion by 3-fold (58).

3.4 Retinal microvasculature as a coronary
microvascular surrogate

Emerging evidence reveals structural and functional parallels

between retinal and coronary microcirculation, suggesting pan-

vascular endothelial dysfunction as their common substrate.

Retinal vascular metrics may serve as non-invasive biomarkers

for coronary microvascular disease.

3.4.1 Clinical evidence of retinal-coronary

coupling
(a) Hemodynamic Correlates: in CMD patients, impaired

coronary slow flow phenomenon correlates higher retinal arteriolar

flow velocity (r =−0.405, P = 0.03), reflecting compensatory

hyperemia from defective vasodilation (59). An analysis of 212

non- coronary artery disease (CAD) subjects demonstrated that

retinal arteriolar stenosis predicts reduction in myocardial

perfusion (β = 0.0088, P = 0.04), though attenuated after adjusting

for traditional risk factors (β = 0.0037, P = 0.33) (12). (b) Sex-

Specific Vulnerability: It is acknowledged that CMD has a

significant role in coronary heart disease (CHD). Women may be

more susceptible to the development of CHD than males are

because they frequently exhibit the symptoms of the condition

without having obstructive CAD (60). Meta-analysis of 22,159

individuals revealed gender-dimorphic associations: female: Narrow

retinal arterioles (HR = 1.17, P = 0.02) and venular caliber

(HR = 1.16, P = 0.03) predict CHD; male: No significant

association (HR = 1.02, P = 0.17). This provides additional evidence

supporting the use of retinal vessel diameter changes as a

predictor of CHD (61). Population study (n = 3,654) confirmed

each SD decrease in arteriolar calibre predicted a 1.3–2-fold higher

risk of CHD death in women, but it is lower in men, supporting

the hypothesis that microvascular disease may be more prevalent

in women with CHD (13). (c) Retinopathy as Systemic Marker:

Diabetic retinopathy associated with a twofold higher risk of

incident CHD events (HR = 2.07, 95% CI: 1.38–3.11) and a

threefold higher risk of fatal CHD (HR = 3.35, 95% CI: 1.40–8.01),

Non-diabetic retinopathy carries comparable risk (HR = 2.16, 95%

CI: 1.16–4.02), independent of glucose metabolism (62, 63).

3.4.2 Pathophysiological links
The retinal-coronary microvascular axis shares key

pathological pathways: (a) Endothelial dysregulation: Reduced

nitric oxide bioavailability and increased endothelin-1 impair

flow-mediated dilation in both beds. (b) Inflammatory Crosstalk:

IL-6 and TNF-α induce glycocalyx shedding, elevating leukocyte

adhesion by 3.8-fold in retinal and coronary microvessels. (c)

Structural Remodeling: Media-to-lumen ratio increasedriven by

chronic shear stress (64, 65).

3.5 Hepato-cardiac metabolic-vascular axis

The relationship between liver and heart pathophysiology is

becoming more and more significant. A growing focus has been

placed on less severe but more prevalent liver illnesses as a result

of changing demographics. One such condition is metabolic fatty

liver disease, which has an estimated global prevalence of 25%

(66). Although severe liver diseases like cirrhosis or hepatocellular

carcinoma can result from the fatty liver phenotype, cardiovascular

disease is the main cause of death for individuals (67).

3.5.1 Clinical evidence of liver-coronary crosstalk
(a) Fibrosis-Microvascular Coupling: A study (n = 66)

demonstrated liver fibrosis (fibrosis-4 risk score) specifically

associates with lower myocardial perfusion reserve (β =−1.12,

P = 0.02), independent of traditional cardiovascular disease

(CVD) risk factors (15). Doppler analysis of 24 non-alcoholic

fatty liver disease (NAFLD) vs. 28 controls revealed severely
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impaired coronary flow velocity reserve (CFVR: 1.65 ± 0.36 vs.

2.67 ± 0.81, P < 0.001), indicating pressure-independent

microvascular compromise (14). Targher et al. pointed out in their

authoritative review that MASLD (formerly NAFLD) is a systemic

metabolic disorder centered on insulin resistance and is significantly

associated with CMD and CVD risk. Epidemiological studies show

that: The cardiovascular mortality rate in MASLD patients is as high

as 4.2 per 1,000 person-years, far exceeding liver disease-related

mortality (0.92 per 1,000 person-years), and advanced liver fibrosis

further amplifies CVD risk (HR = 2.50, 95% CI: 1.68–3.72) (68);

(b) Metabolic Dysregulation: Lee et al, in their study of 131 patients

with type 2 diabetes, found that subjects with NAFLD demonstrated

significantly decreased myocardial glucose uptake (P = 0.018) (69).

Meanwhile, abdominal wall fat index was significantly related to

CFVR (r =−0.46, P = 0.011) and insulin resistance (r =−0.71,

P < 0.0001). CFVR could be noninvasively evaluated using

transthoracic doppler echocardiography (TTDE). Coronary

endothelial dysfunction indicated as CFVR, body fat distribution

and insulin resistance was quantitatively correlated in obesity (70).

A retrospective cohort study involving a total of 886 patients, with

data spanning from 2006 to 2014, found that compared to non-

NAFLD patients, NAFLD patients had a higher prevalence of

coronary microvascular dysfunction (64.8% vs. 43.4%; P < 0.001)

and lower CFR (1.9 ± 1.1 vs. 2.2 ± 0.7; P < 0.001). Additionally,

NAFLD independently predicted coronary microvascular

dysfunction (P = 0.01) (71). Lautamäki et al. studied 55 patients

with type 2 diabetes and coronary artery disease using PET and

proton magnetic resonance spectroscopy (¹H-MRS). They found

that patients with high liver fat content (>8%) had more severe

myocardial insulin resistance and coronary artery dysfunction.

Specifically, the high liver fat group had significantly lower

myocardial glucose uptake (P = 0.040), and their CFR was 28%

lower than the low liver fat group (P = 0.02), with a negative

correlation between liver fat content and CFR (r =−0.38, P = 0.020).

Additionally, high liver fat patients had elevated high-sensitivity

C-reactive protein (hsCRP) and soluble adhesion molecules (e.g.,

E-selectin, VAP-1), suggesting low-grade inflammation may

exacerbate CMD via endothelial dysfunction. This study first

confirmed that liver fat content is an independent predictor of

myocardial insulin resistance and coronary microvascular function,

highlighting NAFLD’s key role in cardiovascular metabolic

disorders (72). Hepatic small extracellular vesicles contribute to

endothelial hyperpermeability in coronary microvessels by

delivering novel-miR-7 and targeting the LAMP1/Cathepsin B/

NLRP3 inflammasome axis during NAFLD (73).

3.5.2 Pathophysiological mechanisms

Low-grade inflammation, lipotoxicity, oxidative stress and

severe impairments to insulin sensitivity, coronary artery

function, and myocardial glucose uptake can result from

asymptomatic excessive liver fat accumulation. Reduced coronary

vascular reactivity, thrombosis, and fibrosis are additional

consequences of inflammation that are linked to the onset of

endothelial dysfunction and unfavorable cardiac remodeling

mechanisms. During ischemia, impaired myocardial glucose uptake

is harmful to the myocardium. Atherosclerotic lesion growth at an

accelerated pace, plaque vulnerability, and insulin resistance are all

impacted by poor insulin signaling and insulin resistance. Our group

developed propylene glycol alginate sodium sulfate nanoparticles

(PSS-NP) to target diabetic microangiopathy. In a rodent model of

diabetic cardiomyopathy, PSS-NP effectively restored coronary

microvascular function by simultaneously improving endothelial

health, suppressing pro-coagulant PAI-1, and mitigating oxidative

stress via the AGEs/RAGE/NF-κB axis—highlighting a promising

multi-target approach for metabolic CMD (74).

3.6 Immune-microvascular crosstalk in
coronary dysregulation

Various immune system diseases can cause microvascular

dysfunction in the coronary microcirculation. Studies have

demonstrated that autoimmune rheumatic diseases (ARDs), such

as systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), systemic vasculitis, spondyloarthropathies (e.g., psoriatic

arthritis), and SSc, are associated with an increased risk of

cardiovascular events (17, 75, 76).

3.6.1 Clinical spectrum of immune-mediated CMD

(a) Autoimmune rheumatic diseases: In a study of 207 CMD

patients, women with a history of ARDs had a worsened

myocardial perfusion reserve and a lower functional cardiac

condition and state (77). Patients with ARDs may be more likely

to experience significant adverse cardiac events linked to CMD

even in the absence of obstructive CAD (78). Similarly, a meta-

analysis that included 709 patients with rheumatic diseases and

650 controls found that patients with rheumatic diseases had

significantly lower CFR (16). (b) Rheumatoid Arthritis: A 5-year

follow-up study of SLE patients showed that nearly half had

myocardial perfusion similar to or worse than CMD without

obstructive CAD, this also supports CMD as a cause of cardiac

morbidity and mortality in SLE (79). (c) Rheumatoid Arthritis:

Recio-Mayoral et al. found that PET showed CMD in RA patients

without common cardiovascular risk factors or epicardial CAD

(80). A meta-analysis of 41,490 cases showed a 48 percent increase

in cardiovascular risk in people with RA compared with people

without RA (81). Notably, coronary and peripheral microvascular

dysfunction has been observed in early RA, even 6 months after

initial diagnosis (82). Weber et al, in their study of patients with

systemic vasculitis, found that patients with vasculitis also had

more frequent and severe CMD, supporting the potential role of

inflammation in driving coronary vasodilatory abnormalities

(83).(d) Systemic Sclerosis: similarly, patients with SSc or psoriasis

had worse microvascular function compared with healthy controls

(84–86). Nitenberg et al. studied patients with primary

scleroderma cardiomyopathy and healthy controls and found that

the scleroderma group had significantly reduced coronary flow

reserve in the absence of significant coronary artery stenosis (87).

Maurizio et al. included 20 patients with diffuse SSc without signs

or symptoms of CVD and 20 age- and sex-matched controls in

their study and found that CFR was also significantly lower in

patients with SSc (P = 0.0033) (88). In another study, 31.5% of 448
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patients with psoriasis developed CMD, which was associated with

psoriasis severity and duration, suggesting that systemic

inflammation may play a role in CMD and that the coronary

microcirculation may be an extracortical site involved in immune-

mediated damage in psoriasis, and that patients with severe

psoriasis should be promptly diagnosed and actively screened for

CMD (17). (e) Others: A study of 37 patients with inflammatory

bowel disease and 30 controls found that 40% of inflammatory

bowel disease patients had CMD (89). Furthermore, it is well

established that endothelial dysfunction and inflammation are risk

factors associated with HIV that may facilitate the pathogenesis of

CMD. In HIV-positive individuals without a history of

cardiovascular illness, coronary microvascular changes should

receive more attention since they may be significant mediators of

subclinical myocardial dysfunction (90).

3.6.2 Pathogenic triad in immune-mediated CMD
(a) Cytokine Storm Effects: Therapies for immune system

disorders, such as biologic therapies, may affect the coronary

microcirculation. Prospective cohort studies have shown significant

reductions in coronary inflammation and total plaque burden in

patients receiving biologic therapies, which may affect coronary

vasodilatory function (91, 92). In general, the pro-inflammatory

nature of ARDs may impede normal cardiac blood flow regulatory

mechanisms and coronary microvascular function, increasing the

risk of myocardial ischemia and long-term cardiovascular events

(93). (b) Autoantibody Arsenal: Patients with rheumatoid arthritis

have higher titers of autoantibodies against the human leukocyte

antigen/beta-2-glycoprotein I complex (94, 95). Anti-beta-

2-glycoprotein I complex activate TLR4/MyD88 pathway, increasing

coronary thrombogenicity (96, 97). (c) Vasculitic Remodeling:

Neutrophil extracellular traps (NETs) deposit in vasa vasorum,

reducing microvascular density (98, 99).

3.7 Onco-cardiac microvascular nexus

Emerging paradigms position CMD as both a precursor and

consequence of malignancy, forming a self-perpetuating cycle

through shared inflammatory-metabolic pathways (18, 100, 101).

3.7.1 Clinical evidence of bidirectional coupling
(a) Cancer—CMD axis: Divakaran et al. investigated the

association between CMD, as measured by PET, and adverse

cardiovascular events in a cohort of 87 breast cancer patients

without clinically significant CAD. The study found that coronary

artery diastolic dysfunction was linked to cardiovascular events in

patients with breast cancer (HR: 4.91; 95% CI: 1.68–14.38;

P = 0.004) (18). Previous studies have shown a bidirectional

association between cancer and CAD (102). In a cross-sectional

study, 18 patients with metastatic cancer who were treated with

sunitinib and 27 healthy subjects were included. The study found

that cancer patients treated with sunitinib had significantly

impaired CFR. The duration of sunitinib treatment and

inflammatory markers were negatively correlated with CFR (19).

(b) CMD-Oncogenesis axis: Rajai et al. investigated the

relationship between CMD and cancer in a cohort of patients with

angina and non-obstructive CAD using invasive measurements of

CFR. They discovered that the presence of CMD was linked to an

elevated risk of cancer (103). The left anterior descending artery’s

CFVR, which is measured during high-dose vasodilator stress

echocardiography, examines both the microcirculatory and

epicardial functions of the heart. It has been found to be

negatively correlated with microvascular dysfunction, chronic

inflammation, and obstructive coronary artery disease. In their

study of 1,002 patients undergoing Transthoracic Doppler

echocardiography, Gaibazzi et al. found that a decrease in CFVR

was independently associated with cancer deaths (104).

3.7.2 Pathobiological interplay

Additionally, regardless of whether the cancer treatment is

physical, chemical, hormonal, or biological, it may have adverse

effects on the cardiovascular system. The treatment of cancer

causes myocardial ischemia through various mechanisms,

including accelerated atherosclerosis, thrombosis, vasospasm, and

damage to the coronary microvasculature (105). (a) Impaired

microcirculation: Impaired microcirculation may contribute to a

pro-cancer environment by activating angiogenic pathways that

promote tumor growth. Recent studies have shown that patients

with a history of cardiovascular disease are at an increased risk

of developing cancer (104). (b) Inflammatory feedforward Loop:

Chronic inflammation and oxidative stress may serve as shared

pathways linking CMD to cancer progression (106, 107). In the

treatment of testicular cancer, cisplatin is activated through the

renin-angiotensin-aldosterone system, intensifying the promotion

of significant inflammation by activating the transcription factor

NF-κB, stimulating the expression of cell adhesion molecules and

releasing pro-inflammatory cytokines (such as IL-1, IL-6 and

TNF-α) (108, 109). (c) Oxidative stress: The anti-cancer drug

doxorubicin (DOX) is toxic to target cells, but it can also cause

endothelial dysfunction and edema secondary to oxidative stress

in the vascular wall. After being exposed to the clinically relevant

concentration of DOX (up to 1 micron) for 24 h, the

permeability of bovine pulmonary artery endothelial cells

monolayer to albumin increased by approximately 10 times

compared with the control group (110).

3.8 Other

Prasad et al. conducted a study which found that postmenopausal

womenwithCMDhad twice the likelihood of developing osteoporosis

after a 7-year follow-up period (111). In a study conducted by Reriani

et al, the development of erectile dysfunction (ED) was assessed in 130

patients with coronary atherosclerosis but without severe stenosis.

This was done through a questionnaire after a mean follow-up of

8.4 years. The study found that CMD was a predictor of ED

development in men with coronary atherosclerosis but without

severe stenosis (112). In their follow-up study of 400 patients

(median 6.0 years), Souza et al. found that muscle deficiency, rather

than excessive obesity, was independently associated with CMD and

poor future outcomes, particularly heart failure (113). Elena et al.
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analyzed 100 patients with primary hyperparathyroidism (PHPT) and

50 control patients. According to the study, CMD is fully restored in

PHPT patients following parathyroidectomy. Parathyroid hormone

(PTH) has an independent correlation with CMD, indicating that

the hormone plays a critical role in elucidating the elevated

cardiovascular risk observed in PHPT (20). OSA is a risk factor for

cardiovascular disease. Patients with OSA may develop CMD due to

increased levels of inflammatory factors, vascular remodeling caused

by changes in transmural pressure, smooth muscle cell hypertrophy,

and endothelial dysfunction (114). In a study conducted by

FIGURE 2

Systemic interconnections between coronary microvascular dysfunction (CMD) and extracardiac organ pathologies. CMD (central node) propagates

multiorgan damage through five shared pathological pathways: endothelial dysfunction, chronic inflammation, oxidative stress, autonomic imbalance,

structural remodeling. These mechanisms bidirectionally link CMD to dysfunction in 11 major organ systems: brain, retina, kidney, lung, liver, immune

system, cancer, muscle, bone, thyroid, vascular network. Arrows denote bidirectional pathological crosstalk. See Table 1 for detailed clinical evidence.
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Yoshitaka et al. on 249 patients with ST-segment elevated myocardial

infarction (STEMI) who underwent their first percutaneous coronary

intervention, it was found that coronary microvascular dysfunction

and obstruction (CMVO) was a significant factor in predicting poor

outcomes, and severe OSA is associated with CMVO in patients

with STEMI (21).

4 Conclusion

Coronary microvascular dysfunction (CMD) transcends its

traditional cardiac confinement, emerging as a systemic disorder

intricately linked to multiorgan pathologies (Figure 2). The

microvascular system is crucial for maintaining the homeostasis of

the heart and other organs. In certain diseases, it is important to

consider not only the disease itself but also other microvascular

lesions to prevent subsequent complications. Although the clinical

relevance provides a framework for understanding the systemic

impact of CMD, the causal mechanisms of CMD in relation to

other systems have not yet been fully verified. There are significant

knowledge gaps regarding many disease-combined CMD, these gaps

include mechanisms by which other diseases affect CMD

pathophysiology, the role of disease therapeutic agents on CMD and

cardiovascular outcomes, upgrades to both invasive and non-

invasive approach methods, as well as standardization of protocols,

and optimal treatment of microvascular and vasospastic angina.

Future prospective studies need to address these issues in risk

assessment to improve the quality of life of patients with

comorbidities and reduce disease complications.
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