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Background: The CLIMA study [Relationship between Optical Coherence

Tomography (OCT) Coronary Plaque Morphology and Clinical Outcome;

NCT02883088] introduced the concept of high-risk plaque (HRP) and

demonstrated that HRP was associated with a high risk of major coronary

events. HRP is defined by four simultaneous characteristics: minimum lumen

area (MLA) <3.5 mm2, fibrous cap thickness (FCT) <75 μm, lipid arc

circumferential extension >180°, and macrophage infiltration. Early prediction

of HRP formation is critical for preventing and treating acute coronary

syndrome (ACS), but no studies have been conducted on this topic.

Purpose: To identify the risk factors associated with OCT HRP in ACS and

develop a risk prediction model for HRPs in ACS.

Methods: A prospective observational study was conducted on patients with

ACS between September 2019 and August 2022. A total of 169 patients were

divided into two groups: OCT HRP (n= 55) and OCT non-HRP (n= 114)

groups. Clinical data, laboratory results, and OCT characteristics of the

patients were collected. Least absolute shrinkage and selection operator

(LASSO) regression was used to screen variables, while multivariate logistic

regression was used to create a risk prediction model. A nomogram was

created, and the receiver operating characteristic curve was used to assess the

model’s discrimination, as well as the bootstrap method to internally validate it.

Results: The most commonly observed HRP characteristic was lipid plague

>180° (147 patients), followed by MLA < 3.5 mm2 (141 patients), macrophages

(127 patients), and FCT < 75 μm (64 patients). The LASSO regression model was

used to screen variables and develop an HRP risk factor model. The

nomogram includes five predictors: age, BMI≥ 25 kg/m2, triglycerides, low-

density lipoprotein cholesterol, and Log N-terminal brain natriuretic peptide

precursor. The model is highly differentiated (area under the curve 0.780, 95%

confidence interval 0.705–855) and calibrated. The calibration curve and

decision curve analysis demonstrated the model’s clinical usefulness.

Conclusion: A simple and practical nomogram for predicting HRPs accurately in

patients with ACS was developed and validated, and is expected to help clinicians

diagnose and prevent plaque stability.

KEYWORDS

acute coronary syndrome, nomogram, high-risk plaque, optical coherence

tomography, LASSO regression algorithm

TYPE Original Research
PUBLISHED 25 June 2025
DOI 10.3389/fcvm.2025.1618038

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1618038&domain=pdf&date_stamp=2020-03-12
mailto:liuyin2088@163.com
mailto:gaojing2089@163.com
mailto:gaojing2088@163.com
mailto:gaojing@tmu.edu.cn
https://doi.org/10.3389/fcvm.2025.1618038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1618038/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1618038/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1618038/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1618038
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Introduction

Cardiovascular disease is the leading cause of death worldwide.

As the unstable and progressive stage of coronary heart disease,

acute coronary syndrome (ACS) is characterized by three serious

and potentially fatal clinical manifestations: ST-segment elevation

myocardial infarction (STEMI), non-STEMI, and unstable angina

pectoris (1, 2).

In recent years, consensus has emerged that coronary

atherosclerotic plaques with a propensity for thrombosis and a

higher likelihood of rapid progression are commonly known as

vulnerable or high-risk plaques (HRPs) (3, 4). The CLIMA study

[Relationship between Optical Coherence Tomography (OCT)

Coronary Plaque Morphology and Clinical Outcome;

NCT02883088] introduced the concept of HRP and found that

HRPs are associated with a higher risk of major coronary events

(5). OCT, a high-resolution intravascular imaging technique,

allows for precise identification of coronary plaque

characteristics. HRPs are defined by four simultaneous

characteristics: minimum lumen area (MLA) <3.5 mm2, fibrous

cap thickness (FCT) <75 μm, lipid arc circumferential extension

>180°, and macrophage infiltration (5). Previous research has

found that HRPs are associated with an increased risk of

cardiovascular events (6–8). Wang Ying et al. identified 274

patients with acute myocardial infarction using OCT-defined

HRP plaques and followed them up for 2.2 years, finding that

patients with HRP were 2.05 times more likely to have major

adverse cardiovascular events than those without HRPs (7). Early

prediction of HRPs formation and appropriate intervention are

critical for the prevention and treatment of ACS, but no studies

have been conducted on this topic.

Therefore, by analysing clinical data in conjunction with blood

coherence indicators of circulation, relevant risk factors were

identified, and a rapid early prediction model for HRPs was

developed, providing novel insights into the prevention and

treatment of ACS diseases.

Methods

Study population

This was a prospective observational study of ACS patients who

underwent coronary angiography with OCT guidance between

September 2019 and August 2022 at the Coronary Care Unit of

Tianjin Chest Hospital, Tianjin, China. Patients aged 18 years or

older with ACS who underwent coronary angiography (CAG)

and pre-procedure OCT examination of the culprit lesion were

enrolled (Figure 1). ACS patients were eligible if they had (1)

angiographic evidence of ≥50% stenosis in ≥1 coronary vessel;

(2) ischemic chest discomfort that increased or occurred at rest,

and/or (3) electrocardiography (ECG) or cardiac biomarker

criteria consistent with ACS. Participants with a history of

chronic renal failure [glomerular filtration rate (eGFR)

<60 ml/min/1.73 m2], sepsis, severe chronic liver disease, prior

coronary stenting, or coronary artery bypass grafting were

excluded from the study. The patients underwent a detailed

history, full clinical examination, 12-lead ECG, echocardiography,

and laboratory investigations such as the complete blood count,

liver and kidney function, cardiac enzymes (troponin and

creatine kinase isoenzyme MB), blood glucose, and serum lipid

levels at the time of admission. All of the blood samples were

assessed in the Department of Laboratory Medicine, Tianjin Chest

Hospital. The concentrations of lipoprotein markers, such as low-

density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG),

were determined using electro-chemiluminescence immunoassay

(Roche Diagnostics, Indianapolis, IN). Other laboratory parameters

were measured using standard test protocols.

The study protocol followed the ethical guidelines of the 1975

Declaration of Helsinki and was approved by the Ethics Committee

of Tianjin Chest Hospital (No. 2018KY-010-01). Informed consent

was provided by all participants at our institution.

Angiographic procedure

Coronary angiography was performed using a transradial or

transfemoral approach with a 6F or &7F sheath. Intravascular

infusion of 30–50 IU/kg unfractionated heparin was administered

prior to CAG. The culprit’s vessel was identified through an

analysis of angiography, echocardiography, and electrocardiographic

changes (ischemic ST-segment changes, T-wave inversions, and/or

pathological Q wave).

OCT imaging acquisition and definition

OCT images of the culprit coronary were obtained using the

frequency-domain OPTIS imaging system (Abbott, St. Paul,

Minnesota, USA). Following intracoronary administration of

0.2 mg nitroglycerin, an OCT imaging catheter was advanced

distally to the lesion, and automated pullback began at a rate of

20 mm/s after manually flushing the guiding catheter with

contrast media to create a nearly blood-free environment. The

total length of the OCT pullback was 75 mm. Thrombus

aspiration and/or gentle pre-dilation with a small balloon were

performed for acute total occluded or severe stenosis lesions as

needed to ensure that the OCT catheter passed through

smoothly. The acquisition and analysis of OCT images has been

described in detail (9–11). All OCT images were analyzed and

scrutinized on an OCT workstation by two independent

physicians who were blinded to the angiographic and clinical

data. Inter-observer and intra-observer agreement for OCT-based

HRP assessment was conducted, confirming excellent consistency

and ensuring the reliability of image interpretation. The

definition of image characteristics in OCT was primarily based

on previous consensus (12). Culprit plaques were defined as

fibrous plaques [homogeneous, highly backscattering region

(Figure 2a)], or lipid-rich plaques [low signal region with a

diffuse border (Figure 2b)]. Calcification within plaques was
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defined as the presence of well-defined, heterogeneous regions with

low backscattering (Figure 2c). Thin-cap fibroatheroma (TCFA) is

defined as a lipid-rich plaque with a maximum lipid arc greater

than two quadrants and a thinnest FCT of <65 μm (Figure 2d).

Plaque rupture was identified by its discontinuous fibrous cap

and clear cavity formation (Figure 2e). Plaque erosion was

defined as the presence of an attached thrombus over an intact

and visible plaque (Figure 2f). The calcified nodule was identified

as a nodular calcification that protruded into the lumen, resulting

in thrombus formation (Figure 2g). A thrombus was defined as

an irregular mass that adhered to the luminal surface, which

could be white, red, or mixed (Figures 2h,i). Macrophage

infiltration was identified as signal-rich, highly reflective,

punctate strip regions with backward shadowing, typically found

at the boundary between the fibrous cap and inner lipid core

(Figure 2j). Cholesterol crystals were identified as linear, highly

backscattering structures within plaques (Figure 2k). Micro-

vessels were identified as black holes within a plaque that

appeared in at least three consecutive frames (Figure 2l).

Quantitative OCT measurements contained the following

information: the lipid arc was measured at 1-mm intervals

throughout the lesion, and the largest arc was recorded; FCT was

measured three times at the thinnest part of fibrous cap, and the

average value was recorded; and MLA was assessed along the

length of the target lesion. The calcification score is calculated by

measuring the maximum Angle, thickness, and length of the

calcification and scoring it.

Previous research identified four criteria for HRP:

MLA < 3.5 mm2, FCT < 75 μm, lipid plaque with arc extension

>180°, and macrophage clusters. OCT-defined HRP is defined as

the simultaneous presence of all four criteria (5).

Statistical analysis

Continuous data is presented as mean ± standard deviation or

median (interquartile ranges). Student’s t-test or non-parametric

test was employed for statistical comparisons. Categorical

variables were reported as numbers (percentages), and group

comparisons were made using the chi-square test or Fisher’s

exact test. An upset plot was created to show the prevalence and

intersections of HRP characteristics (13). Least absolute

shrinkage and selection operator (LASSO) reduces regression

coefficients of some unimportant variables to zero by including

a penalty term λ in model estimation. This achieves variable

screening. It reduces the impact of multicollinearity, prevents

model overfitting, and improves model generalizability. Using

LASSO regression, according to ten-fold cross-validation, the

candidate predictive variables were tested. The variables

identified by LASSO that were clinically significant were

incorporated into a multivariate logistic stepwise regression

analysis to create a nomogram to predict the risk of HRP in

patients with ACS. Draw the receiver operating characteristic

(ROC) curve, calculate the area under the curve (AUC) as the

evaluation metric of discriminant ability, and use the bootstrap

method to validate the model internally. The calibration curve

was used to assess the calibration force of the final model, and a

FIGURE 1

A flow diagram of the data selection process. ACS, acute coronary syndrome; OCT, optical coherence tomography; HRP, OCT-detected high-risk

plaques.
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decision curve analysis (DCA) was performed to ensure the

model’s clinical feasibility.

Analyses were performed using IBM SPSS Statistics version

25.0 (IBM SPSS Statistics, IBM Corporation, Armonk,

New York) and R 4.3.1 (http://www.rproject.org/) statistical

packages. A bilateral P-value of <0.05 was considered

statistically significant.

Results

Baseline characteristics

Table 1 shows the baseline and angiographic characteristics.

Among the 169 enrolled patients, the average age was 58 ± 12.65

years. 85.2% were males, and 52.1% had unstable angina pectoris.

Patients with HRP had a higher Body Mass Index (BMI) (25.35

[23.78, 27.76] vs. 24.22 [23.12, 25.95], P = 0.010) than the non-

HRP group. Furthermore, there was no obvious difference in the

distribution of culprit vessels. The angiographic findings for the

culprit vessels were also presented.

There were significant variations in TG (P < 0.001), HDL

(P = 0.030), LDL-C (P = 0.003), apolipoprotein b (P = 0.001),

high-sensitivity C-reactive protein (Hs-CRP) (P = 0.012), and Log

N-terminal brain natriuretic peptide precursor (Log NT-proBNP)

(P < 0.001) between the two groups. There were no significant

differences between the two groups in other circulating blood-

related parameters (all P≥ 0.05).

OCT findings and HRP characteristics

Table 2 displays the OCT characteristics. In addition to the

OCT-defined HRP characteristics, patients with HRP had

significantly higher rates of plaque rupture (36.4 vs. 18.4,

P = 0.011), micro-vessels (72.2 vs. 48.7, P = 0.004), thrombus

(47.3 vs. 26.3, P = 0.007), cholesterol crystal (87.3 vs. 57.0,

P < 0.001), and TCFA (54.5 vs. 1.8, P < .001) compared to the

FIGURE 2

Representative cross-sectional optical coherence tomography images of the culprit’s vessels: (a) fibrous plaque was identified as a homogeneous

region with high backscatter. (b) Lipid-rich plaque was identified as a low signal region with a diffused border. (c) Calcification was detected as

sharply defined, low backscattering heterogeneous regions (star). (d) Thin-cap fibroatheroma (TCFA) is a lipid-rich plaque with a fibrous cap

thinner than 65 μm. (e) Plaque rupture is defined as a disruption of the fibrous cap with obvious cavity formation (star). (f) Plaque erosion is

defined as the presence of an attached thrombus overlying an intact, visible plaque. (g) Calcified nodule identified as a nodular calcification

protruding into the lumen and forming a thrombus (star). (h,i) Thrombus is defined as an irregular mass that adheres to the luminal surface, which

can be a white thrombus, red thrombus (arrow), or mixed thrombus (arrow). (j) Macrophages are defined as signal-rich, distinct, or confluent

punctuate regions with variable backward shadows (arrow). (k) Cholesterol crystals are linear, highly backscattering structures within plaques

(arrow). (l) Micro-vessels are defined as black holes within a plaque that appear in at least three consecutive frames (arrow).
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TABLE 1 Baseline characteristics of the patients.

Variables Overall (n = 169) Non-HRP (n= 114) HRP (n= 55) P value

Ages (years) 58.00 ± 12.65 57.44 ± 12.59 59.16 ± 12.83 0.408

Male, n (%) 144 (85.2) 98 (86.0) 46 (83.6) 0.690

BMI (kg/m2) 24.69 (23.13, 26.30) 24.22 (23.12, 25.95) 25.35 (23.78, 27.76) 0.010

BMI≥ 25 (kg/m2) 78 (46.15) 44 (38.60) 34 (61.82) 0.005

Medical history, n (%)

Hypertension 96 (56.8) 65 (57.0) 31 (56.4) 0.936

Diabetes 47 (27.8) 27 (23.7) 20 (36.4) 0.085

Previous MI 26 (15.4) 19 (16.7) 7 (12.7) 0.506

Previous stroke 15 (8.9) 10 (8.8) 5 (9.1) 0.946

Family history of CAD 9 (5.3) 5 (4.4) 4 (7.3) 0.676

Smoking 94 (55.6) 65 (57.0) 29 (52.7) 0.599

Drinking 43 (25.4) 30 (26.3) 13 (23.6) 0.708

Type of ACS, n (%) 0.142

STEMI 64 (37.9) 43 (37.7) 21 (38.2)

NSTEMI 17 (10.1) 8 (7.0) 9 (16.4)

UA 88 (52.1) 63 (55.3) 25 (45.5)

Admission sign

LAD (mm) 36.00 (35.00, 39.00) 36.00 (34.00, 39.00) 36.00 (35.00, 38.00) 0.487

LVED (mm) 51.00 (48.00, 54.00) 51.00 (48.00, 53.75) 52.00 (49.00, 54.00) 0.382

LVEF (%) 57.00 (50.00, 61.50) 57.00 (50.75, 62.00) 57.00 (50.00, 61.00) 0.864

PAP (mmHg) 30.00 (30.00, 30.00) 30.00 (30.00, 30.00) 30.00 (30.00, 30.00) 0.876

Laboratory data

Blood routine

WBC (109/L) 7.39 (6.18, 9.53) 7.20 (6.13, 9.32) 7.99 (3.26, 9.74) 0.159

Neutrophil (109/L) 4.90 (3.72, 7.15) 4.81 (3.77, 6.71) 5.04 (3.46, 7.79) 0.711

Lymphocyte 1.79 (1.39, 2.10) 1.79 (1.41, 2.08) 1.84 (1.33, 2.16) 0.899

Monocyte 0.46 (0.36, 0.59) 0.45 (0.36, 0.58) 0.26 (0.36, 0.64) 0.315

RBC (1012/L) 4.63 (4.35, 4.95) 4.62 (4.34, 4.89) 4.75 (4.42, 5.03) 0.238

Hemoglobin (g/L) 143.00 (134.00, 154.00) 144.00 (134.75, 152.00) 142.00 (131.00, 160.00) 0.760

Platelets (109/L) 211.00 (184.00, 251.00) 211.00 (178.50, 246.75) 212.00 (190.00, 265.00) 0.388

Inflammation indicators

Hs-CRP (mg/L) 1.93 (1.13, 5.16) 1.68 (0.95, 4.15) 2.98 (1.42, .45) 0.012

CLR 1.16 (0.53, 3.36) 0.97 (0.56, 2.30) 1.59 (0.87, 4.94) 0.016

Kidney function indicators

Creatinine (μmol/L) 75.00 (67.00, 86.50) 75.00 (67.75, 87.00) 73.00 (67.00, 83.00) 0.561

Urea (mmol/L) 4.90 (3.80, 5.90) 5.00 (3.98, 6.00) 4.50 (3.70, 5.70) 0.130

Uric acid (μmol/L) 322.00 (365.00, 389.50) 318.50 (263.00, 394.00) 339.00 (268.00, 381.00) 0.876

Liver function indicators

TBA (μmol/L) 1.83 (0.97, 3.12) 1.85 (1.02, 3.34) 1.74 (0.80, 2.58) 0.104

ALB (g/L) 42.70 (40.25, 45.00) 42.80 (40.25, 45.00) 42.30 (40.20, 45.10) 0.792

ALT (U/L) 26.40 (16.85, 42.60) 23.70 (16.00, 42.90) 32.55 (19.13, 41.78) 0.172

AST (U/L) 26.40 (18.40, 82.20) 26.20 (17.85, 71.35) 29.25 (19.15, 127.08) 0.265

LDH (U/L) 199.00 (164.50, 365.50) 188.50 (163.00, 319.50) 235.00 (172.00–610.00) 0.044

Glycolipid metabolism indicators

Glucose (mmol/L) 5.89 (5.13, 7.12) 5.79 (4.97, 6.84) 6.18 (5.62, 8.07) 0.004

HbA1c (%) 5.90 (5.75, 6.80) 5.90 (5.60, 6.40) 6.00 (5.90, 7.00) 0.026

HCY (μmol/L) 12.53 (10.14, 19.01) 12.49 (10.25, 21.48) 12.67 (10.01, 18.00) 0.540

TG (mmol/L) 1.63 (1.28, 2.34) 1.48 (1.20, 2.15) 2.18 (1.51, 2.89) <0.001

TC (mmol/L) 4.11 (3.50, 4.82) 4.09 (3.23, 4.65) 4.44 (3.88, 5.43) 0.001

HDL-C (mmol/L) 0.98 (0.84, 1.15) 1.00 (0.87, 1.23) 0.95 (0.80, 1.05) 0.030

LDL-C (mmol/L) 2.62 (1.93, 3.26) 2.52 (1.72, 3.11) 2.75 (2.29, 3.50) 0.003

LHR 2.73 (1.84, 3.51) 2.39 (1.71, 3.34) 3.15 (2.54, 3.69) <0.001

TRLC (mmol/L) 0.41 (0.25, 0.61) 0.38 (0.24, 0.58) 0.47 (0.25, 0.82) 0.093

Apo B (g/L) 0.93 (0.80, 1.09) 0.90 (0.67, 1.08) 1.08 (0.90, 1.22) 0.001

Apo A1 (g/L) 1.19 (1.08, 1.30) 1.19 (1.07, 1.29) 1.19 (1.08, 1.35) 0.319

ApoB/ApoA1 0.78 (0.65, 0.97) 0.76 (0.62, 0.93) 0.91 (0.76, 1.01) 0.006

Lp(a) (mmol/L) 125.55 (72.35, 205.10) 125.55 (55.88, 193.21) 150.30 (114.40, 212.44) 0.054

(Continued)
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TABLE 1 Continued

Variables Overall (n = 169) Non-HRP (n= 114) HRP (n= 55) P value

Cardiac function indicators

Log NT-proBNP (pg/ml) 2.21 (2.01, 2.53) 2.09 (1.74, 2.51) 2.50 (2.21, 2.59) <0.001

hs-TnT (ng/ml) 0.03 (0.01, 1.17) 0.02 (0.01, 0.95) 0.24 (0.01, 3.40) 0.073

CK (U/L) 111.00 (71.50, 646.50) 103.50 (71.00, 476.75) 157.00 (74.00, 1, 283.00) 0.146

CK-MB (U/L) 17.00 (13.50, 76.00) 16.50 (13.00, 52.00) 21.00 (14.00, 95.00) 0.102

Coagulation indicators

D-Dimer (mg/L) 0.27 (0.22, 0.38) 0.27 (0.22, 0.38) 0.28 (0.21, 0.38) 0.716

PT (sec) 12.90 (12.50, 13.45) 12.90 (12.50, 13.43) 12.90 (12.50, 13.50) 0.795

TT (sec) 17.70 (16.70, 18.60) 17.70 (16.68, 18.50) 17.60 (16.90, 18.90) 0.634

Fbg (g/L) 3.10 (2.80, 3.68) 3.12 (2.80, 3.72) 3.09 (2.78, 3.65) 0.946

CAG, n (%)

Single-vessel disease 57 (33.7) 42 (36.8) 15 (27.3) 0.218

Double-vessel disease 58 (34.3) 40 (35.1) 18 (32.7) 0.762

Triple-vessel disease 52 (30.8) 31 (27.2) 21 (38.2) 0.147

Left main 31 (18.3) 22 (19.3) 9 (16.4) 0.644

Culprit vessel 0.315

LAD, n (%) 118 (69.8) 83 (72.8) 35 (63.6)

LCX, n (%) 12 (7.1) 6 (5.3) 6 (10.9)

RCA, n (%) 39 (23.1) 25 (21.9) 14 (25.5)

Continuous data are presented as mean ± standard deviation or median (interquartile ranges). Categorical data are presented as number (%). Student’s t-test or non-parametric test was

employed for statistical comparisons. Categorical variables were reported as numbers (percentages), and group comparisons were made using the chi-square test or Fisher’s exact test.

BMI, body mass index; MI, myocardial infarction; CAD, coronary artery disease; ACS, acute coronary syndrome; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-

segment elevation myocardial infarction; UA, unstable angina; LVEF, left ventricular ejection fraction; WBC, white blood cells; RBC, red blood cells; Hs-CRP, high-sensitivity C-reactive

protein; CLR, C-reactive protein to lymphocyte ratio; TBA, total bile acid; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase;

HbA1c, glycated hemoglobin A 1c; HCY, homocysteine; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;

LHR, low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; TRLC, rich in triglyceride lipoprotein cholesterol; Apo B, apolipoprotein B; Apo A1, apolipoprotein

A1; LP(a), lipoprotein(a); NT-proBNP, N-terminal pro-B-type natriuretic peptide; hs-TnT, high-sensitivity troponin T; CK, creatine kinase; CK-MB, creatine kinase MB; PT, prothrombin

time; TT, thrombin time; Fbg, fibrinogen; LAD, left anterior descending; LCX, left circumflex artery; RCA, right coronary artery.

TABLE 2 OCT analysis.

OCT analysis Overall (n = 169) Non-HRP (n = 114) HRP (n= 55) P value

Qualitative OCT analysis

Macrophage 127 (75.1) 72 (63.2) 55 (100.0) <0.001

Micro-vessels 94 (56.3) 55 (48.7) 39 (72.2) 0.004

Cholesterol crystal 113 (66.9) 65 (57.0) 48 (87.3) <0.001

Plaque rupture 41 (24.3) 21 (18.4) 20 (36.4) 0.011

Plaque erosion 19 (11.2) 11 (9.6) 8 (14.5) 0.345

Calcification 4 (2.4) 2 (1.8) 2 (3.6) 0.830

Thrombus 56 (33.1) 20 (26.3) 26 (47.3) 0.007

MLA < 3.5 mm2 141 (83.4) 86 (75.4) 55 (100) <0.001

FCT < 75 μm 65 (38.5) 10 (8.8) 55 (100) <0.001

TCFA 32 (18.9) 2 (1.8) 30 (54.5) <0.001

Quantitative OCT analysis

Max lipid arc (degree) 360.0 (269.7, 360.0) 310.5 (206.5, 360.0) 360.0 (360.0, 360.0) <0.001

Mean lipid arc (degree) 177.4 (138.9, 213.2) 162.3 (122.8, 198.3) 202.3 (172.6, 233.0) <0.001

Lipid length (mm) 18.0 (12.5, 26.3) 16.0 (10.52, 22.5) 23.0 (15.4, 33.8) <0.001

Lipid index 3,135.7 (1,805.5, 4,789.6) 2,486.9 (1,458.8, 3,960.8) 4,751.5 (2,755.0, 6,636.0) <0.001

Calcification score 0.0 (0.0, 1.0) 0.0 (0.0, 1.3) 0.0 (0.0, 1.0) 0.295

MLA (mm2) 1.6 (1.2, 2.8) 1.7 (1.2, 3.2) 1.5 (1.1, 2.0) 0.046

Area stenosis (%) 74.8 (65.1, 81.0) 74.2 (64.0, 80.3) 77.3 (66.9, 81.1) 0.078

FCT (um) 90.0 (69.0, 128.5) 115.0 (89.3, 164.5) 64.0 (59.0, 73.0) <0.001

Continuous data are presented as mean ± standard deviation or median (interquartile ranges). Categorical data are presented as number (%). Student’s t-test or non-parametric test was

employed for statistical comparisons. Categorical variables were reported as numbers (percentages), and group comparisons were made using the chi-square test or Fisher’s exact test.

OCT, optical coherence tomography; MLA, minimal lumen area; FCT, fibrous cap thickness; TCFA, thin-cap fibroatheroma; HRP, OCT-defined high-risk plaques.
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non-HRP group. However, the difference in the prevalence of

calcification between the HRP and non-HRP groups was not

statistically significant.

Figure 3 depicts the prevalence of individual and HRP

characteristics and their intersections. The most common HRP

characteristic was MLA < 3.5 mm2 (83.4% of enrolled patients),

followed by macrophage infiltration (75.1%), FCT < 75 μm

(38.5%), and TCFA (18.9%).

Identification of predictive factors and
construction of nomograms

LASSO regression was used (Figures 4A,B) to identify five

variables that affect plaque stability: BMI≥ 25 kg/m2, LHR, TC,

TG, and Log NT-proBNP. Combined with the variables screened

by LASSO regression and clinically meaningful variables, the

above 11 variables were included in a multivariate logistic

stepwise regression model to create the HRP risk factor

model (Table 3). The final model includes five variables:

BMI≥ 25 kg/m2, age, TG, LDL-C, and Log NT-proBNP. The

nomogram is constructed (Figure 5). Each predictor is

represented by a scale on the left, with the corresponding points

derived from the regression coefficients. The total points,

calculated by summing the individual points for each predictor,

are mapped to the predicted probability of the event occurring

on the rightmost scale. The nomogram uses odds ratios for each

variable (shown as line markers), indicating how changes in each

predictor affect the odds of the outcome. The colored density

plot beneath the scales represents the distribution of data for

each variable. Logistic regression was used to derive the model,

with statistical significance indicated for variables with P-values

less than 0.05. Confidence intervals for the predicted probabilities

are also shown for clarity. A sum score was calculated as the

total of the scores for related predictors with the risk of HRP on

the basal axis. For example, in a patient with BMI < 25 kg/m2,

age 74, TG 1.83 mmol/L, LDL-C 4.08 mmol/L and Log NT-

proBNP 3.19, the total points was 150, and the 0dds was 1.84.

The results of the multivariate logistic analysis revealed that the

variables listed above are independent risk factors for high risk of

HRP (Figure 4C).

The discriminatory power of the nomogram was assessed using

the area under the ROC curve. The ROC curve analysis revealed

that the model had a high predictive capability for HRP, with an

AUC of 0.780 [95% confidence interval (CI): 0.705–0.855]

(Figure 6A). Internal validation is carried out using bootstrap

resampling with a sample size of 1,000, and the calibration curve

is plotted. The calibration curves of the model show that the

predicted probabilities closely match the actual probabilities

(Figure 6B). The DCA was used to assess clinical practicability.

The DCA of the model is higher than the reference line,

indicating that its clinical utility is generally superior (Figure 6C).

Discussion

This study successfully developed and validated a nomogram

for accurately predicting HRPs in patients with ACS. The

nomogram included age, BMI≥ 25 kg/m2, TG, LDL-C, and Log

NT-proBNP levels. It demonstrated good discrimination,

calibration, and clinical validity, making it a useful and clinically

relevant tool for identifying HRPs defined by OCT and ACS.

ACS is typically caused by the rupture of vulnerable plaques,

leading to thrombosis (14–16). Previous research has shown that

vulnerable plaques have the following characteristics: TCFA, rich

in macrophages, and a large central necrotic core (17, 18). The

FIGURE 3

Upset plot of high-risk characteristics and combinations (minimal lumen area <3.5 mm2, fibrous cap thickness <75 μm, lipid arc circumferential

extension >180°, and presence of macrophages). N= 169.
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CLIMA study introduced the concept of HRP and found that HRPs

are associated with a higher risk of major coronary events (5).

Previous research has also found that HRPs defined by OCT are

associated with an increased risk of cardiovascular events (6–8).

Recent large-scale studies further support these findings:

Matsumura et al. showed that OCT-defined TCFA and a

minimal lumen area <3.5 mm2 are independent predictors of

major adverse cardiovascular events (MACE) in patients with

acute myocardial infarction (8), while van Veelen et al. reported

that HRPs in nonculprit lesions, even when fractional flow

reserve (FFR) negative, are linked to a higher incidence of MACE

over 2 years (19). These accumulating data reinforce the clinical

importance of early HRP detection and timely intervention.

However, current imaging modalities, including OCT and

intravascular ultrasonography, are invasive, require specialized

equipment, and have limitations in the early detection of plaque

stability. In low-middle-income countries and areas, OCT is not

feasible due to economic and workforce constraints. Circulating

biomarkers can be used as additional tools for predicting the risk

TABLE 3 Univariate and multivariate logistic regression analysis.

Variables Univariate logistic
regression

Multivariate logistic
regression

OR（95%
CI)

P

value
OR（95%

CI)
P

value

Male 0.65 (0.28–1.52) 0.324

Age 1.01 (0.99–1.04) 0.406 1.03 (1.00–1.06) 0.049

Hypertension 0.97 (0.51–1.86) 0.936

Diabetes 1.84 (0.92–3.7) 0.087

Smoke 0.84 (0.44–1.6) 0.599

BMI≥ 25 kg/m2 2.58 (1.33–4.99) 0.005 2.36 (1.12–4.98) 0.025

TC, mmol/L 1.84 (1.31–2.59) <0.001

TG, mmol/L 1.57 (1.22–2.02 <0.001 1.58 (1.20–1.07) 0.001

LDL-C, mmol/L 1.80 (1.23–2.62) 0.002 1.87 (1.22–2.86) 0.004

LHR 1.82 (1.31–2.54) <0.001

Log NT-proBNP,

pg/ml

2.18 (1.24–3.84) 0.007 2.04 (1.12–3.72) 0.021

BMI, body mass index; TC, total cholesterol; TG, triglycerides; LDL-C, low-density

lipoprotein cholesterol; LHR, low-density lipoprotein cholesterol to high-density

lipoprotein cholesterol ratio; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

FIGURE 4

The LASSO regression model tested the factors affecting HRPs. (A) LASSO regression coefficient path diagram. (B) Cross-validation curve of LASSO

regression, filtering out five predictor variables with non-zero coefficients using optimal lambda. (C) Multivariate logistic analysis forest plot of

predictors. LASSO, least absolute shrinkage and selection operator; HRP, OCT-defined high-risk plaques; N= 169.
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of vulnerable plaques, and developing a risk prediction model

based on circulating biomarkers has greater utility and potential

for widespread use in clinical practice. Our proposed biomarker-

based model is intended not to replace OCT but to provide a

practical, non-invasive tool for early risk stratification and

guiding the need for further invasive assessment.

Due to the crucial role of lipid accumulation and inflammation

in atherosclerotic plaque formation, previous research on markers

of vulnerable plaque circulation has primarily focused on these

processes (20). Mechanistically, elevated levels of specific lipids or

inflammatory factors indicate their involvement in initiating

harmful events that lead to plaque destabilization, increasing the

risk of unstable plaque formation. Conversely, certain molecules

released by unstable plaque lesions into the bloodstream are

easily detectable and may serve as predictors of vulnerable

plaques. Hence, the use of circulating biomarkers has a high

potential for detecting plaque vulnerability in patients.

Nonetheless, no single reliable biological marker has

demonstrated adequate sensitivity and specificity. This

emphasizes the importance of identifying a panel of circulating

markers for predicting the risk of AS plaque vulnerability, as well

as developing a risk factor analysis model with greater utility in

clinical practice. The current study analyzed relevant circulating

blood indicators in patients, revealing statistically significant

differences (P < 0.05) in BMI, Hs-CRP, Hemoglobin A1c, TG,

TC, HDL-C, LDL-C, ApoB/ApoA1 ratio, and NT-proBNP levels

between high-risk and non-HRP groups. These commonly used

laboratory indicators may act as risk factors for HRPs.

In this study, general clinical data and laboratory examination

indicators of patients were incorporated into the HRP risk

prediction system. The aforementioned variables were used as

influencing factors to identify factors affecting plaque stability

using the LASSO regression model, which resulted in the

creation of a model. Variables included “age”, “BMI≥ 25 kg/m2
”,

“TG”, “LDL-C,” and “Log NT-proBNP”. Given the large number

of indicators used in this study, there is a high risk of

encountering issues such as variable collinearity when selecting

variables using the least squares method. This can lead to

important variables being overlooked, resulting in inaccuracies in

the prediction model. The LASSO regression model addresses

these concerns by efficiently selecting variables by compressing

regression coefficients to zero (21). In the model development,

we used the LASSO–Cox method to estimate the relationship

between predictors and HRPs. LASSO regularization is a method

for managing overfitting and variable selection that has been

widely used in a variety of machine learning algorithms (22).

When the LASSO method is applied to the Cox model, the

estimation variance is reduced, and a subset of predictors is

chosen, resulting in an interpretable Cox model (23). To ensure

that the model was accurate, we used a nomogram to simplify

the parameters in the model presentation. Furthermore, the

nomogram model created using identified HRP risk factors is a

FIGURE 5

Nomogram for the HRP risk factor model. The nomogram is constructed based on age, BMI≥ 25 kg/m2, TG, LDL-C, and Log NT-proBNP to assign the

probability of high-risk plaques. HRP, high-risk plaque; BMI, body mass index; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; Log NT-

proBNP, Log N-terminal brain natriuretic peptide precursor.
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simple and intuitive tool. Clinicians can calculate the cumulative

scores of risk factors using the nomogram, allowing for quick

and easy risk stratification for plaque vulnerability and HRP

possibility. Thus, the risk factors evaluated in this study can be

easily obtained through patient history collection and routine

laboratory examination, allowing for early detection of HRPs.

The risk prevention model’s AUC of 0.780 (95% CI: 0.705–

0.855) developed in this study indicates that assessing HRPs has

a high predictive capability.

The results from screening variables in the LASSO regression

model found that age, BMI≥ 25 kg/m2, TG, LDL-C, and Log

NT-proBNP levels are reliable indicators for predicting HRPs,

implying that HRPs can be clinically identified using these

indicators alone. Age is well-known as a traditional risk factor

for cardiovascular events. Many studies have considered age to

be an independent predictor of ACS (24), and in studies focusing

on other risk factors, age is typically adjusted (25, 26).

Furthermore, BMI≥ 25 kg/m2 was associated with HRP.

BMI > 25 kg/m2 was recently found to be associated with a

significantly increased long-term risk of cardiovascular disease

morbidity and mortality (27), and another study linked this

epidemiologic evidence to HRP formation (28). Elevated

triglyceride levels and triglyceride-rich lipoproteins (TRLs) have

been increasingly recognized as important contributors to

atherosclerotic cardiovascular disease beyond LDL-C (29). Recent

evidence suggests that TRLs may promote the formation of lipid-

rich necrotic cores, inflammation, and endothelial dysfunction—

features commonly associated with high-risk plaques (HRPs)

(30). For instance, the accumulation of TRLs in the arterial

wall has been shown to induce macrophage activation and foam

cell formation, both of which are implicated in plaque

vulnerability. These pathophysiological mechanisms highlight the

potential role of elevated TG in the development of OCT-defined

HRPs and support its inclusion as a relevant biomarker in risk

stratification models. LDL-C has long been recognized as an

important risk factor for ASCVD, and numerous studies have

consistently shown that LDL-C lowering interventions can

effectively reduce plaque vulnerability, regardless of the imaging

modality used to assess plaque characteristics (31–33). A recent

study on intracoronary imaging using OCT found that high

levels of small dense LDL-C are linked to the presence of

vulnerable plaques (34). NT-proBNP concentration is regarded as

a marker of cardiac function in heart disease, and myocardial

ischemia can cause a reversible increase in regional wall stress,

potentially leading to increased natriuretic peptide release (35).

A previous study found significant associations between NT-

proBNP and coronary atherosclerotic plaque parameters, which

were consistent with the high-sensitivity cardiac Troponin

T results (36).

Although HbA1c and diabetes are recognized cardiovascular

risk factors, neither was retained in the final model. HbA1c was

excluded during the LASSO regression due to its limited

independent predictive value after penalization. Diabetes was

initially selected but subsequently removed in the multivariate

logistic regression, likely due to collinearity with other glycemic

markers and limited statistical significance (P = 0.08 in

univariate analysis). In contrast, variables such as age,

overweight BMI, TG, LDL-C, and NT-proBNP showed stronger

and more consistent associations with high-risk plaques and

were prioritized in the final model. This reflects the relative

FIGURE 6

ROC (A) result for the diagnostic performances of the HRP risk factor

model. A calibration curve (B) of the nomogram for probability

prediction. The x-axis represents the nomogram-predicted

probability, while the y-axis represents the actual probability. DCA

(C) demonstrates the net benefit of the HRP risk factor model

compared with the strategies of “treating all” or “treating none” for

different decision thresholds. ROC, receiver operating

characteristic curve analysis; HRP, high-risk plaque; DCA, decision

curve analysis.
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predictive contributions of different variables within our cohort.

Importantly, we acknowledge that the exclusion of glycemic

variables may also reflect the limited sample size of our study,

which could reduce the statistical power to detect their

independent associations. Future large-scale, multicenter

investigations are warranted to validate these findings and

comprehensively clarify the prognostic value of glycemic factors

in cardiovascular risk prediction.

The predictive value of circulating biomarkers for high-risk

coronary plaque features has been increasingly supported by

evidence from non-invasive imaging studies. Russo et al.

demonstrated that low HDL-C and elevated levels of leptin and

interleukin-6 were independently associated with high-risk

coronary anatomy as assessed by coronary CT angiography

(CCTA) in patients with stable chest pain (37). Similarly, Nidorf

et al. reported that high-sensitivity C-reactive protein (hsCRP)

levels were significantly associated with vulnerable plaque

features, including low attenuation and positive remodeling,

identified by CCTA (38). These findings underscore the role of

systemic inflammation and lipid metabolism in plaque

vulnerability and support the integration of serological

biomarkers into non-invasive risk prediction models. Our current

study aligns with this direction, aiming to develop a practical,

blood-based tool for identifying high-risk plaques defined by

OCT, especially in settings where intracoronary imaging may not

be routinely feasible.

It is important to note that the model’s strong predictive

performance does not imply that other indicators have a weak

predictive effect on HRPs. Previous research has shown that

individual indicators are closely related to the onset and

progression of HRPs, as exemplified by the European Society of

Cardiology/European Atherosclerosis Blood Lipid Management

Guidelines, which emphasize the causal relationship between

LDL-C and all apolipoprotein B lipoproteins in arteriosclerotic

cardiovascular disease. It is suggested that the role of

apolipoprotein B and lipoprotein in cardiovascular risk

stratification should be investigated further (25). More research is

needed to understand the underlying mechanisms of plaque

instability, and progression and to develop more reliable

biomarkers for the early detection of HRPs in ACS.

Therefore, we believe that our model will help patients better

understand the disease and doctors make clinical decisions.

Particularly for patients with a high risk of ACS, doctors can use

this model to determine whether patients would benefit

from treatment.

There are some limitations to our study. First, the single-center

design and limited sample size reduced the statistical power,

restricted the robustness of subgroup analyses, and lacked

external validation, which may affect the generalizability of the

results. Second, for safety considerations regarding the use of

iodinated contrast, patients with an estimated glomerular

filtration rate (eGFR) <60 ml/min/1.73 m2 were excluded;

Additionally, in a subset of patients (n = 26) with severely

stenotic or occluded lesions, low-pressure (4–6 atm) balloon pre-

dilatation was performed to facilitate OCT catheter passage.

These procedures are consistent with standard clinical practice

and their impact on plaque parameters (such as MLA and FCT)

is minimal or negligible. All images were interpreted by blinded

observers, and sensitivity analyses were conducted to minimize

potential bias.

Despite these limitations, OCT technology enabled accurate

classification of high-risk plaque populations, and rigorous

statistical methods were applied for risk prediction, thereby

providing the proposed prediction model with high accuracy

and reliability.

Conclusion

In this study, an OCT examination was used to accurately

identify HRPs associated with risk factors in the ACS cohort.

The nomogram risk prediction model developed in response to

these findings has high predictive efficacy and clinical

applicability, making it critical for identifying, preventing, and

treating HRP vulnerability. However, due to the single-center

observational cohort design and limited sample size, future

research will focus on validating the nomogram model’s clinical

utility in multi-center studies with larger samples.
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