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Interleukin family in vascular
calcification: molecular
mechanisms and therapeutic
perspectives

Yikun Zhao, Heng Li and Yuanyuan Guo*

Vascular Surgery Department, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University,

Kunming, China

Vascular calcification (VC), characterized by pathological calcium deposition in

arterial walls, is a major contributor to cardiovascular morbidity in chronic

inflammatory diseases such as atherosclerosis, chronic kidney disease (CKD),

and diabetes. Emerging evidence underscores the pivotal role of interleukin

(IL) family cytokines in modulating VC through dual pro- and anti-calcific

mechanisms. Pro-inflammatory IL members, including IL-1β, IL-6, IL-17A, and

IL-29, drive osteogenic transdifferentiation of vascular smooth muscle cells

(VSMCs) by activating pathways such as NF-κB, STAT3, NLRP3 inflammasomes,

and Wnt/β-catenin. These pathways upregulate osteogenic markers (e.g.,

Runx2, BMP-2) and promote oxidative stress, matrix remodeling, and

pyroptosis. Conversely, anti-inflammatory cytokines like IL-10 counteract

calcification by suppressing inflammatory signaling, enhancing autophagy, and

restoring mineral homeostasis. This review highlights the dynamic interplay

between IL cytokines, metabolic dysregulation, and epigenetic modifications in

VC pathogenesis. It advocates for multi-target approaches, such as combining

TYK2/STAT3 inhibition with metabolic reprogramming, to disrupt pathological

crosstalk. Future research must address spatiotemporal heterogeneity in IL

signaling and optimize therapeutic specificity to translate mechanistic insights

into clinical applications. Harnessing the IL family’s dual roles offers

transformative potential for mitigating VC while preserving immune integrity.
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Introduction

Vascular calcification (VC), characterized by pathological calcium-phosphate

deposition in arterial walls, is a hallmark of cardiovascular morbidity in chronic

inflammatory diseases such as atherosclerosis, chronic kidney disease (CKD), and

diabetes (1, 2). VC manifests as intimal calcification within atherosclerotic plaques or

medial calcification (Mönckeberg’s sclerosis), both independently predicting adverse

outcomes like myocardial infarction and peripheral artery disease (3, 4). Intimal

calcification destabilizes plaques, increasing rupture risk, while medial calcification

reduces vascular compliance, exacerbating hypertension and heart failure (5). Patients

with CKD exhibit accelerated VC progression due to phosphate metabolism imbalance

and chronic inflammation. Among predialysis and late-stage CKD patients, the

incidence of coronary artery calcification reaches 64%–77% (6). VC is not merely a

passive degenerative process but an active cellular phenomenon involving
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osteochondrogenic transdifferentiation of vascular smooth muscle

cells (VSMCs) and metabolic-inflammatory crosstalk (7).

Emerging evidence underscores VC as a dynamic interplay

between mineral dysregulation, oxidative stress, and immune

activation, positioning it as a critical therapeutic target in

cardiovascular pathology (2, 8).

Chronic inflammation is central to VC pathogenesis, with pro-

inflammatory cytokines of the interleukin (IL) family orchestrating

osteogenic progression of VSMCs (9). IL-1β and IL-6

synergistically activate pathways such as NF-κB and STAT3,

upregulating osteogenic markers (e.g., Runx2, BMP-2) and

promoting matrix remodeling (9, 10). IL-17A amplifies oxidative

stress via Wnt/β-catenin signaling, while IL-18 induces

pyroptosis through NLRP3 inflammasome activation, releasing

calcification-primed matrix vesicles (11, 12). Conversely, anti-

inflammatory cytokines like IL-37 counteract calcification by

suppressing NF-κB and enhancing autophagy (13). The IL

family’s dual roles highlight its regulatory complexity: pro-calcific

members drive VSMC senescence and mineralization, while

protective cytokines restore mineral homeostasis (14). Clinical

studies in CKD patients have shown that elevated IL-6 levels are

associated with arterial calcification. Separately, preclinical studies

in urotensin-deficient mice indicate that increased IL-1β

contributes to this pathology. These findings highlight the

prognostic value of both cytokines (15, 16).

This review systematically examines the IL family’s dual

mechanisms in VC, emphasizing translational potential. We

explore how IL-1β, IL-6, and IL-17A promote osteogenic

transformation, while IL-10 and IL-37 mitigate calcification via

metabolic reprogramming. Emerging strategies, such as IL-6

trans-signaling inhibition (sgp130Fc) and NLRP3 targeting,

demonstrate efficacy in preclinical models but face challenges in

clinical specificity (15, 17). By integrating molecular insights with

clinical evidence, we aim to identify precision therapeutic

avenues for modulating IL-driven vascular pathology, addressing

spatiotemporal heterogeneity in cytokine signaling and

optimizing immune-metabolic balance (4, 18).

This Figure 1 illustrates how dendritic cells (DCs), upon

interacting with naïve T cells, release multiple cytokines (e.g., IL-

1β, IL-6, IL-8, IL-17A/F, IL-24, IL-29, IL-4, IL-3, IL-18, IL-37,

IL-10), which regulate the osteogenic differentiation and

calcification of VSMCs via signaling pathways such as BMP2/

Runx2, JAK/STAT, and Wnt/β-catenin. Certain cytokines can

simultaneously exhibit both pro- and anti-calcific properties,

ultimately influencing the progression of VC and calcium-

phosphorus homeostasis.

Molecular mechanisms of vascular
calcification

Osteogenic transdifferentiation of VSMCs

The osteogenic transdifferentiation of VSMCs represents a

pivotal pathological event in VC, driven by transcriptional

reprogramming, metabolic remodeling, and inflammatory

crosstalk. Central to this process is the activation of the master

transcriptional regulator Runx2, which orchestrates the

expression of osteogenic markers such as bone morphogenetic

protein-2 (BMP-2) and alkaline phosphatase (ALP) (19). The

synergistic interaction between BMP-2/SMAD and Wnt/β-catenin

pathways amplifies calcification: BMP-2 induces SMAD1/5

phosphorylation to facilitate β-catenin nuclear translocation,

while Wnt signaling enhances Runx2 transcription via

KLF4-PFKFB3-mediated glycolytic reprogramming, providing

bioenergetic support for phenotypic switching (20). Recent

studies highlight the regulatory role of Cdon, a Wnt antagonist,

which attenuates calcification by disrupting β-catenin-Runx2

binding through its Ig2 domain (21). Epigenetic modulation

further refines this process, as SIRT6 deacetylates Runx2 to

promote its nuclear export and proteasomal degradation, thereby

suppressing osteogenic differentiation (19). Pro-inflammatory

cytokines, notably IL-29 and IL-6, exacerbate calcification via

JAK2/STAT3 signaling, which upregulates BMP-2 expression and

enhances Runx2 transcriptional activity through STAT3-Tyr705

phosphorylation (22, 23). Metabolic perturbations, such as

O-GlcNAcylation mediated by O-GlcNAc transferase (OGT),

stabilize β-catenin to potentiate Wnt signaling, accelerating

VSMC mineralization (24). These findings underscore a

multidimensional regulatory network, identifying actionable

targets—including Cdon-Ig2, SIRT6 activators, and OGT

inhibitors—for therapeutic intervention in VC.

The progression of VC is governed by synergistic interactions

between metabolic derangements and inflammatory signaling.

Hyperphosphatemia activates monocytes via the phosphate

transporter PiT-1, triggering TNF-α and IL-6 release to establish

a pro-inflammatory microenvironment that accelerates VSMC

osteogenic differentiation (25). Phosphate overload synergizes

with IL-6 to induce senescence-associated calcification through

the IL-6/sIL-6R/STAT3/p53 axis, a process partially reversible by

resveratrol (26). Emerging evidence highlights the role of
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leukemia inhibitory factor (LIF) in amplifying phosphate-driven

calcification via the TYK2/STAT3 pathway, with TYK2 inhibition

by deucravacitinib—a clinically approved immunosuppressant—

significantly attenuating VC in CKD models (27). Furthermore,

caspase-1 inhibitor VX-765 mitigates hyperphosphatemia-

induced VSMC calcification by suppressing STAT3

phosphorylation and pyroptosis-related NLRP3/GSDMD

activation (11). These findings underscore the therapeutic

potential of targeting metabolic-inflammatory hubs, particularly

TYK2 and STAT3 signaling nodes, to disrupt pathological

crosstalk in VC.

Emerging evidence highlights the complexity of VC as a

process governed by intersecting epigenetic, metabolic, and

inflammatory axes. Recent studies identify SIRT6 and SIRT7 as

critical epigenetic regulators that mitigate osteogenic

transdifferentiation by deacetylating Runx2 and suppressing

oxidative stress-induced senescence, respectively (19, 28).

Metabolic dysregulation is further modulated by mitochondrial

phosphate carrier (PiC), which drives calcification via ERK1/

2-mTOR-dependent superoxide generation, while inhibition of

PiC with butyl malonate attenuates VC in CKD model (29). The

discovery of ARSE as a promoter of VSMC calcification through

Wnt/β-catenin signaling underscores the role of genetic variants

in VC pathogenesis, with ARSE knockdown reducing aortic

mineralization (30). Therapeutic innovation is exemplified by

4-octyl itaconate (4-OI), which activates HMOX-1 to counteract

oxidative stress and inflammation in calcified VSMCs (31),

and Moscatilin, a natural compound targeting IL13RA2/

STAT3-WNT3/β-catenin crosstalk to inhibit osteogenic

differentiation (32). Additionally, calprotectin inhibition via

paquinimod disrupts RAGE/TLR4 signaling, offering a

translational strategy for CKD-associated VC (33). These findings

collectively map a multidimensional network encompassing

mitochondrial dynamics, epigenetic reprogramming, and

inflammatory cascades, positioning targeted inhibition of PiC,

ARSE, and calprotectin as promising avenues for

clinical intervention.

Role of inflammation and oxidative
stress

Pro-inflammatory mechanisms and
targeting strategies in vascular calcification

IL-1β
IL-1β, a pivotal pro-inflammatory cytokine, drives VC through

NLRP3 inflammasome-pyroptosis axis activation and

transcriptional reprogramming of VSMCs. Under

hyperphosphatemic conditions, IL-1β activates NF-κB signaling

to upregulate Runx2 and BMP2 expression, promoting osteogenic

transdifferentiation of VSMCs (34). Clinical studies demonstrate

elevated serum IL-1β levels in CKD patients correlate with

coronary calcification scores, while NLRP3 inhibition with

MCC950 suppresses IL-1β secretion and attenuates calcification

(35). Mechanistically, IL-1β induces gasdermin D-mediated

pyroptosis, releasing calcification-primed matrix vesicles (MVs)

as nucleation sites—a process reversible by caspase-1 inhibitor

VX-765 (11). Recent advances reveal a feedforward loop between

IL-1β and transcription factor TCF21: TCF21 enhances IL-1β

production via ERK1/2-β-catenin signaling, while IL-1β amplifies

osteogenic gene transcription through STAT3 activation (9).

Therapeutically, the natural compound ligustrazine mitigates

coronary calcification by inhibiting caspase-3/GSDME-dependent

pyroptosis and IL-1β release in murine models (36).

Additionally, Elabela, an endogenous peptide, suppresses IL-1β-

driven inflammation via PPAR-γ/FDX1 signaling, offering a

novel regulatory axis for VC intervention (37). These findings

not only delineate IL-1β’s multifaceted role in VC but also

validate NLRP3 inhibitors (e.g., MCC950), pyroptosis blockers

(e.g., VX-765), and natural compounds as promising translational

strategies targeting IL-1β signaling.

IL-6

IL-6 emerges as a pivotal mediator in VC, driving osteogenic

transdifferentiation of VSMCs via the JAK2/STAT3 signaling

axis. Clinical studies demonstrate that elevated serum IL-6 levels

in CKD patients correlate with coronary artery calcification

(CAC) progression and cardiovascular mortality, with high IL-6

tertiles exhibiting a 2.2-fold increased risk of death (38).

Mechanistically, IL-6 induces STAT3-Tyr705 phosphorylation,

promoting Runx2 nuclear translocation and BMP2 upregulation

while suppressing osteoprotegerin (OPG) secretion, thereby

disrupting the mineralization balance (22). Hyperphosphatemia

exacerbates this process by activating PiT-1 receptors on

monocytes, triggering IL-6 release and establishing a self-

reinforcing inflammatory-calcific loop (25). Recent advances

reveal a feedforward mechanism involving transcription factor

TCF21, which enhances IL-6 expression via ERK1/2-β-catenin

signaling, while IL-6 reciprocally amplifies STAT3 activation to

potentiate osteogenic gene transcription (9). Therapeutic

interventions targeting this axis show promise: JAK inhibitors

like tofacitinib attenuate aortic calcification by blocking IL-6R/

gp130 signaling (39), while the natural compound Ptd-1

suppresses IL-6/STAT3 crosstalk and ERK/β-catenin interactions

to reduce VSMC mineralization (40). Additionally, the SGLT2

inhibitor empagliflozin mitigates IL-6-driven inflammation

through AMPK/Nrf2 pathway activation, highlighting its

potential in CKD-associated VC (41). These findings underscore

IL-6 as a multidimensional therapeutic target, with combinatorial

strategies addressing both inflammatory and metabolic pathways

offering novel avenues for clinical translation.

IL-6 inhibitors, exemplified by tocilizumab, demonstrate

significant efficacy in managing various inflammatory conditions

but carry notable risks. In polyarticular or systemic juvenile

idiopathic arthritis (pJIA/sJIA), long-term subcutaneous

tocilizumab maintained disease control, achieving inactive disease

in up to 92% of sJIA patients; however, serious adverse events,

including infections, occurred in 13.6% of pJIA and 13.2% of

sJIA patients (42). For refractory Takayasu arteritis, tocilizumab

provided a substantial steroid-sparing effect, with 46.4% of

patients reducing glucocorticoid doses to less than half their

Zhao et al. 10.3389/fcvm.2025.1619018

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1619018
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


pre-study relapse dose, alongside improved quality-of-life metrics

and no new safety signals during extended treatment (43). In

giant cell arteritis, intravenous tocilizumab (6–7 mg/kg) sustained

remission without flares, though 16.7% of patients experienced

serious adverse events (44). These findings underscore its potent

anti-inflammatory effects balanced against infection-related risks.

IL-8

IL-8, a potent chemoattractant cytokine, accelerates VC by

orchestrating neutrophil infiltration and matrix metalloproteinase-9

(MMP-9)-mediated degradation of calcification inhibitors. In CKD,

elevated serum IL-8 levels correlate with VC severity, driven by

hyperphosphatemia-induced endothelial cell (EC) secretion of IL-8,

which suppresses osteopontin (OPN) expression in VSMCs and

compromises intrinsic anti-calcific defenses (45). Mechanistically,

phosphate overload activates the JAK-STAT pathway in VSMCs,

triggering IL-8 release and MMP-9 activation to degrade matrix

Gla protein (MGP), thereby facilitating hydroxyapatite deposition

(39). Clinically, the phosphate binder sucroferric oxyhydroxide

(SO) reduces serum IL-8 levels and attenuates calciprotein particle

(CPP)-mediated endothelial inflammation in dialysis patients (46).

Genetic interventions, such as GALNT3 overexpression, mitigate

VC by O-GalNAc glycosylation of TNFR1 to inhibit NF-κB

signaling and downregulate IL-8 expression (10). Furthermore,

neutralization of IL-8 via monoclonal antibodies reverses the pro-

calcific effects of uremic toxins like lanthionine, highlighting IL-8’s

role as a mediator of toxin-driven mineralization (47). These

findings position IL-8-CXCR1/2 axis inhibition and upstream JAK-

STAT/NF-κB modulation as promising strategies to disrupt

inflammation-mediated calcification cascades.

IL-17
The IL-17 family cytokines, particularly IL-17A and IL-17F,

promote VC by amplifying oxidative stress and inflammatory

cascades. In vitro studies reveal that IL-17A enhances aortic

calcification in a dose-dependent manner, primarily through

inducing reactive oxygen species (ROS) and activating the Wnt/

β-catenin pathway, which drives osteogenic differentiation of

VSMCs (12). In chronic inflammatory skin disorders such as

psoriasis and atopic dermatitis, overexpression of IL-17A/F

exacerbates endothelial dysfunction and arterial stiffness, thereby

accelerating atherosclerosis (45). Animal studies demonstrate a

dose-dependent pro-calcific effect of IL-17A in murine ex vivo

aortic calcification models. Intriguingly, another study reported

that IL-17A requires co-application with IP-10 (CXCL10) to

promote coronary artery calcification in vitro, suggesting a

potential role of coordinated regulation by endothelial or

inflammatory cells (48). Neutralizing IL-17A reduces neutrophil

infiltration and aortic oxidative stress, restoring vascular elasticity

(49). Clinically, IL-17 inhibitors (e.g., secukinumab) ameliorate

both psoriatic lesions and atherosclerotic plaque burden,

highlighting their potential cardioprotective effects (50).

Collectively, targeting IL-17 receptors and downstream JAK/

STAT signaling represents a promising therapeutic strategy to

mitigate calcification associated with chronic inflammatory and

metabolic disorders.

IL-24

IL-24, a pro-inflammatory cytokine, has recently emerged as a

potent driver of VC through multi-pathway activation. Kawada

et al. first demonstrated that iron overload synergizes with TNF-α

to upregulate IL-24 expression in human aortic smooth muscle

cells (HASMCs), inducing calcification that is reversible by anti-

IL-24 antibodies, establishing IL-24 as a critical mediator of iron-

dependent mineralization. Mechanistically, IL-24 activates the

STAT3 signaling pathway, upregulating osteogenic markers

Runx2 and BMP-2, while enhancing the Wnt/β-catenin axis to

promote osteochondrogenic transdifferentiation of VSMCs (51).

On this basis, studies have shown that the expression of

osteogenic markers is increased in the aortic tissue of iron

overload rats, and the increase of IL-24 may play a role in the

process of iron promoting calcification (52). Clinically, IL-24 is

overexpressed in calcified vessels of CKD patients, correlating

positively with serum iron levels and inflammatory markers

(e.g., hsCRP), suggesting its potential as a biomarker for

iron dysregulation-associated calcification. However, the

spatiotemporal specificity of IL-24 receptor signaling in

atherosclerotic calcification remains poorly defined, and targeted

therapies face challenges such as receptor promiscuity and

inefficient nanoparticle delivery across calcified plaques.

IL-24 engages in bidirectional crosstalk with classical

inflammatory and metabolic pathways through context-

dependent mechanisms. In Th17 cells, IL-17A induces IL-24 via

NF-κB activation, creating an autocrine negative feedback loop

that suppresses GM-CSF and IL-17F production to limit

immunopathology (53). Paradoxically, IL-24 itself promotes

mitochondrial STAT3 accumulation through interaction with

Grim19 (a complex I component), driving IL-10 production that

further constrains Th17 pathogenicity (54). In stromal

compartments, IL-17A directly upregulates IL-24 in skin

fibroblasts and keratinocytes, amplifying keratinocyte

proliferation in psoriasis through coordinated induction of IL-19/

IL-24 (55). Hypoxia integrates with this signaling via HIF-1α

stabilization, which converges with STAT3 activation in epithelial

progenitors to induce IL-24 during tissue repair (56).

Pathologically, IL-24 exacerbates renal fibrosis by inducing TGF-

β1, PDGF-B, and CTGF in tubular cells, while IL-20 receptor

beta (IL-20RB) deficiency attenuates fibrotic gene expression in

obstructive nephropathy (57). This positions IL-24 as a nodal

regulator bridging immune activation, metabolic stress, and

fibrocalcific responses.

IL-29

IL-29, a member of the type III interferon family, has recently

emerged as a key driver of VC through activation of the JAK2/

STAT3/BMP2 signaling axis. Previous studies have shown that

IL-29 inhibits osteoclastogenesis by activating the STAT signaling

pathway, blocking NF-κB activation and NFATc1 translocation,

and inhibiting downstream osteoclastogenic gene expression (58).

According to a recent study reveals elevated IL-29 expression in

calcified carotid arteries of patients with coronary artery disease

or CKD, where it positively correlates with bone morphogenetic
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protein 2 (BMP2) level (23). Mechanistically, IL-29 binds to its

specific receptor IL-28Rα, triggering JAK2/STAT3 pathway

activation, which induces osteogenic transdifferentiation of

VSMCs and accelerates hydroxyapatite deposition. in vitro and

ex vivo studies demonstrate that pharmacological inhibition of

IL-28Rα or JAK2 significantly attenuates VSMC calcification and

suppresses BMP2 expression, highlighting the therapeutic

potential of targeting the IL-29/IL-28Rα axis to disrupt

calcification cascades in vascular pathologies.

IL-29 mediates bidirectional regulation through crosstalk with

canonical inflammatory pathways. In the osteoarthritis

microenvironment, IL-29 significantly enhances synovial

fibroblast production of IL-1β, IL-6, and MMP-3 through

MAPK/NF-κB pathways (but not JAK-STAT), accelerating

cartilage degradation (59). This tissue-specific regulatory pattern

demonstrates IL-29’s capacity to selectively engage STAT or

MAPK/NF-κB pathways according to microenvironmental

context, enabling precise immunomodulation balancing immune

homeostasis and inflammatory responses.

Anti-calcification mechanisms and
therapeutic targeting in vascular pathology

IL-10

IL-10, a pivotal anti-inflammatory cytokine, exerts inhibitory

effects on VC by suppressing pro-inflammatory signaling and

modulating mineralization homeostasis. In Apolipoprotein

E knockout (ApoE−/−) mice, exogenous inorganic pyrophosphate

(PPi) supplementation significantly elevates serum IL-10 levels

while reducing pro-calcific cytokines such as TNF-α and IL-6,

thereby attenuating atheromatous calcification progression (60).

Mechanistically, IL-10 activates the STAT3/SOCS3 axis to inhibit

NF-κB-driven transcription, downregulating osteogenic

differentiation markers (e.g., Runx2, BMP2) in VSMCs (61).

Preclinical studies further demonstrate that T cell-mediated

immunomodulation (e.g., mCRAMP immunization) enhances IL-

10 secretion by CD8+ T cells, reducing atherosclerotic plaque

calcification incidence from 56% to 0% (p = 0.003) and fostering

an anti-inflammatory microenvironment (62). Additionally, IL-10

upregulates Klotho expression, counteracting FGF23 signaling to

preserve calcium-phosphate equilibrium and inhibit

hydroxyapatite crystallization. These findings underscore the

therapeutic potential of IL-10-targeted strategies—including

recombinant IL-10 administration or PPi mimetics—to disrupt

both inflammatory and mineralization cascades in VC.

Dual roles in vascular calcification: context-
dependent mechanisms and therapeutic
implications

IL-4 and Il-13

IL-4 and IL-13, as Th2 cytokines, exhibit spatiotemporal dual

roles in VC through microenvironment-dependent mechanisms.

A 2023 study demonstrated that eosinophil-derived cationic

proteins (e.g., ECP) directly promote vascular smooth muscle cell

(VSMC) osteogenic differentiation via the BMPR-1A/1B-Smad1/

5/8-Runx2 axis, while IL-4 and IL-13 showed no direct pro-

calcific effects in this process (63). Conversely, in diabetic

models, IL-13 drives VSMC osteogenic transdifferentiation

through the CHI3L1-IL-13Ra2-JAK1-STAT3 pathway, with

H3K18 lactylation amplifying this signal to increase calcification

(64). Paradoxically, IL-4 correlates with hand VC severity and

all-cause mortality in rheumatoid arthritis (RA) patients

(HR = 1.41, 95% CI 1.12, 1.78; P = 0.004) (65), yet short-term

IL-4 exposure upregulates osteoprotegerin (OPG) via STAT6 to

inhibit calcification, whereas chronic exposure induces

Cbfa1-mediated osteogenic differentiation (66). Furthermore,

alternative macrophages (M2) in calcified plaques express

elevated IL-4 receptors and suppress osteoclastic activity via

IL-10 secretion (67), while IL-13 promotes calcification through

crosstalk between WNT3/β-catenin and STAT3 pathways (32).

This functional dichotomy arises from metabolic heterogeneity:

hyperlactate diabetic microenvironments epigenetically enhance

IL-13 signaling, whereas chronic inflammation balances

IL-4-driven fibrotic and anti-calcific responses via M2 polarization.

Therapeutic strategies targeting IL-13Ra2 antagonism or H3K18

lactylation inhibition may offer precision interventions to mitigate

VC progression.

IL-18
IL-18, a pro-inflammatory cytokine, exhibits context-

dependent dual roles in VC, with its effects intricately linked to

microenvironmental signaling crosstalk. Clinical studies

demonstrate a strong positive correlation between serum IL-18

levels and coronary artery calcium scores (r = 0.91, p < 0.001),

mediated via TRPM7 channel activation and ERK1/2 signaling,

which upregulate osteogenic markers Runx2 and BMP-2 in

VSMCs (68, 69). In CKD, IL-18 exacerbates aortic calcification

through p38 MAPK pathway activation, correlating with

increased aortic pulse wave velocity (aoPWV) (29, 70).

Mechanistically, IL-18 enhances VSMC osteochondrogenic

transdifferentiation via SGK1-dependent pathways, while SGK1

inhibition attenuates calcification (71). Furthermore, IL-18

amplifies pyroptosis by activating the NLRP3/caspase-1/GSDMD

axis, fostering a pro-calcific microenvironment (11, 36).

Paradoxically, IL-18-driven inflammatory responses may

indirectly suppress calcification by inducing autophagic clearance

of apoptotic bodies (72). Notably, Elabela counteracts IL-

18-associated cuproptosis and VC by activating PPAR-γ/FDX1

signaling (37). These paradoxical effects underscore IL-18’s

spatiotemporal duality: while predominantly pro-calcific via

TRPM7, SGK1, and pyroptotic pathways, its inflammatory milieu

may trigger compensatory anti-calcific mechanisms. Targeting

downstream effectors (e.g., TRPM7 inhibitors, SGK1 antagonists)

rather than IL-18 itself may optimize therapeutic precision,

balancing anti-inflammatory efficacy with calcification mitigation.

IL-37
IL-37, a unique anti-inflammatory member of the IL-1

cytokine family, emerging evidence highlights IL-37’s dual role in
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VC, balancing anti-inflammatory protection with compensatory

biomarker elevation in advanced disease. Preclinical studies

demonstrate IL-37 suppresses pro-calcific pathways by inhibiting

endothelial-to-mesenchymal transition (EndMT) through

Notch1/p38 MAPK-NF-κB signaling, thereby reducing smooth

muscle cell activation and extracellular matrix remodeling in

coronary artery model (73). This aligns with findings that IL-37

attenuates ox-LDL-induced endothelial osteogenic differentiation

and endoplasmic reticulum stress via Smad3 binding, suggesting

direct anti-calcification mechanisms (74). However, clinical

observations reveal elevated plasma IL-37 levels in patients with

severe coronary artery calcification (CAC), showing positive

correlations with Agatston scores and inflammatory markers like

hsCRP (75, 76). This paradox may reflect IL-37’s compensatory

upregulation in chronic inflammation, as evidenced by its

predominant expression in macrophages and VSMCs within

calcified lesions. While IL-37 demonstrates therapeutic potential

in mitigating early calcification drivers like EndM (73), its

sustained elevation in advanced disease might indicate either a

failed protective response or biomarker utility for monitoring

calcification progression (13). These findings underscore the need

for phase-specific evaluation of IL-37’s role in VC pathophysiology.

Roles that may be overlooked

IL-33

IL-33, a pro-inflammatory cytokine of the IL-1 family,

although direct evidence linking IL-33 to VC remains limited,

emerging insights into its receptor ST2 suggest potential

regulatory roles in calcification-related pathways. The IL-33/ST2

axis has been implicated in fibrocalcific processes, as soluble ST2

(sST2) correlates with coronary artery calcium scores and serves

as a biomarker for atherosclerosis severity (77). In carotid

atherosclerotic plaques, transmembrane ST2l overexpression on

macrophages in symptomatic patients suggests its involvement in

plaque destabilization, potentially creating a microenvironment

conducive to calcification (78). Notably, IL-33 binding to ST2l

exhibits cardioprotective effects by counteracting fibrosis in

rheumatic valvular disease, while sST2 acts as a decoy receptor

that exacerbates fibrotic remodeling—a precursor to calcification

(79). This dual receptor dynamic may influence VC progression,

particularly through macrophage-mediated inflammatory

pathways. In peripheral arterial disease, IL-33 co-localizes with

NLRP3 inflammasome components in calcified vessels,

implicating IL-33-associated inflammation in calcification

initiation (80). However, the therapeutic potential of modulating

this axis remains unclear, as ACE inhibitors reduce sST2 levels

but show limited correlation with calcification regression in

clinical trials (81). These findings collectively suggest IL-33 may

exert context-dependent effects on VC through receptor-specific

signaling and inflammatory crosstalk, warranting further

mechanistic investigation.

This Figure 2 illustrates the interplay between inflammatory

cytokines and osteogenic/chondrogenic transdifferentiation in VC.

Pro-inflammatory cytokines (e.g., IL-1, IL-6, TNF-α) activate NF-

κB and MAPK pathways, driving VSMCs toward an osteoblast-like

phenotype and promoting calcium phosphate deposition. Key

regulatory factors (e.g., OPG/RANKL, MGP) modulate these

processes, either facilitating or inhibiting calcification. Exogenous

stimuli (e.g., oxidative stress, dyslipidemia) exacerbate this cycle,

leading to vascular dysfunction and disease progression. This

model highlights the inflammatory-calcification crosstalk and

potential therapeutic targets.

TABLE 1 Role of IL family in the process of VC.

IL Family
member

Role in
VC

Mechanistic pathways Clinical relevance Cited
authors

IL-1β Pro-calcific Activates NLRP3 inflammasome-pyroptosis (gasdermin D);

upregulates Runx2/BMP2 via NF-κB; TCF21 feedforward loop

Elevated in CKD patients; NLRP3 inhibition

(MCC950) and ligustrazine reduce calcification

(9, 11, 34–37)

IL-6 Pro-calcific JAK2/STAT3 activation; TCF21-ERK1/2-β-catenin synergy;

suppresses OPG

High IL-6 tertiles predict 2.2-fold mortality risk in

CKD; JAK inhibitors (tofacitinib) show efficacy

(9, 22, 25,

38–44)

IL-8 Pro-calcific JAK-STAT-mediated MMP-9 activation; GALNT3 overexpression

inhibits NF-κB

Phosphate binders (sucroferric oxyhydroxide) reduce

IL-8 in dialysis patients

(10, 39, 45–47)

IL-17A/F Pro-calcific Wnt/β-catenin & ROS pathways; synergizes with IP-10 (CXCL10)

for coronary calcification

IL-17 inhibitors (secukinumab) reduce plaque

burden in psoriasis

(12, 45, 48–50)

IL-24 Pro-calcific STAT3/Wnt activation; iron overload synergizes with TNF-α Overexpressed in CKD calcified vessels; correlates

with serum iron/hsCRP

(51–57)

IL-29 Pro-calcific JAK2/STAT3/BMP2 axis via IL-28Rα receptor Elevated in CAD/CKD carotid arteries (23, 58, 59)

IL-10 Anti-calcific STAT3/SOCS3-mediated NF-κB suppression; Klotho upregulation Exogenous pyrophosphate elevates IL-10, reducing

calcification in ApoE−/− mice

(60–62)

IL-4/IL-13 Dual role IL-13: CHI3L1-IL-13Ra2-JAK1-STAT3; IL-4: STAT6-OPG

transient inhibition

IL-4 correlates with hand VC severity in RA

(HR = 1.41 mortality)

(63–67)

IL-18 Dual role TRPM7/ERK1/2 & SGK1 pathways; NLRP3/caspase-1/GSDMD

pyroptosis

Serum IL-18 correlates with coronary calcium scores

(r = 0.91); Elabela counteracts

(11, 29, 36, 37,

68–72)

IL-37 Dual role Inhibits EndMT via Notch1/p38 MAPK-NF-κB; Smad3 binding in

ox-LDL stress

Elevated in severe CAC patients; paradoxically linked

to hsCRP

(13, 73–76)

IL-33 Indirect pro-

calcific

sST2 (decoy receptor) correlates with atherosclerosis; co-localizes

with NLRP3

IL-33/ST2l axis implicated in plaque destabilization (77–81)

HR, indicates hazard ratio; and RR, relative risk.

Zhao et al. 10.3389/fcvm.2025.1619018

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1619018
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


This Table 1 briefly outlines the pro-calcific or anti-calcific

roles of various ILs in the VC process, along with their principal

molecular pathways (e.g., BMP2/Runx2, JAK/STAT, Wnt/

β-catenin, and the NLRP3 inflammasome) and clinical relevance.

Reference numbers are provided for further consultation.

Prospects and challenges

The IL family exhibits marked functional heterogeneity in VC,

dynamically regulated by microenvironmental cues. Functional

heterogeneity within vascular microenvironments critically

regulates calcification processes through dynamic interactions

between cellular components and extracellular matrix (ECM)

signaling. Single-cell proteomic profiling reveals that smooth

muscle cell (SMC) phenotypic switching under altered shear

stress involves Notch1/p38 MAPK-NF-κB signaling, with IL-37

suppressing pro-inflammatory EndMT to mitigate calcification

(73). The ECM composition directly modulates SMC behavior, as

demonstrated by reduced LTBP1 expression in unstable

atherosclerotic plaques, which promotes SMC calcification

through disrupted TGF-β signaling (82). NLRP3 inflammasome

activation in macrophages adjacent to calcified areas creates a

pro-osteogenic niche via IL-1β and TNF-α secretion, with

pharmacological inhibition of NLRP3 attenuating VC in CKD

models (35, 80). Microenvironmental phosphate overload induces

SMC pyroptosis through potassium efflux-dependent NLRP3

activation, independent of canonical IL-1β signaling (83).

Dynamic co-culture models reveal endothelial-SMC crosstalk

amplifies calcification through TGF-β1/SIRT1 axis modulation,

highlighting microenvironment-dependent phenotypic plasticity

(84). Exosomal miR-302d-5p from endothelial cells suppresses

SMC osteogenesis via Wnt3 inhibition in a m6A-dependent

manner, illustrating epigenetic regulation within the vascular wall

microenvironment (85). These findings underscore the spatial

and temporal complexity of microenvironmental regulation in VC.

Precision therapeutic strategies

Innovations in nanodelivery systems

Recent advancements in nanodelivery systems have

significantly enhanced the targeting efficacy and therapeutic

outcomes for VC. For calcific aortic valve disease (CAVD), Chen

et al. developed PAR2-targeted magnetic nanocargoes that

achieved dual-active targeting through PAR2-specific

hexapeptides and magnetic field navigation, effectively

suppressing osteogenic differentiation of valvular interstitial cells

and alleviating calcification in Ldlr(-/-)mice (86). In abdominal

aortic aneurysm (AAA) therapy, Hu et al. engineered

FIGURE 1

Schematic diagram illustrating the dual roles of IL family members in promoting or inhibiting VC.
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α-cyclodextrin-based LaCD nanoparticles, which mitigated

neutrophilic inflammation and NETosis, significantly improving

vascular structural integrity. Functionalization with alendronate

further enhanced targeting capability and therapeutic efficacy

(87). For diabetic VC, Li et al. designed mitochondria-targeted

nanodrugs (T4O@TPP/PEG-PLGA) that utilized TPP ligands for

precise mitochondrial delivery, reducing oxidative stress induced

by hyperglycemia and restoring mitochondrial morphology in

animal models (88). Additionally, Mo et al. reported a dual-

targeting virus-like nanocage (EVMS@R-HNC) that bound

integrin αvβ3 on macrophages and smooth muscle cells,

synergistically inhibiting inflammatory microenvironment

dysregulation while preserving contractile function, offering a

multifaceted solution for complex vascular pathologies (89).

Zhang et al. further demonstrated through spatial conformation

analysis that cyclic RGD exhibited superior αvβ3 integrin

binding specificity compared to linear RGD, providing molecular

insights for optimizing targeted nanocarrier design (90).

But nanocarriers face significant challenges in targeting

efficiency and biosafety. PEGylated and CD-47-functionalized

magnetic nanoporous silica nanoparticles paradoxically

accumulated primarily in the liver and spleen (86% of

administered dose) rather than infected implant sites, with severe

inflammation-driven off-target distribution in murine models

(91). Polymeric PLGA-PEG nanoparticles induced sublethal

hepatotoxicity in vitro, where redox-responsive variants (RR-

NPs) triggered reactive oxygen species (ROS) surges and

impaired albumin/urea production, while non-redox-responsive

nanoparticles (nRR-NPs) additionally caused DNA damage in

hepatocytes despite comparable cellular uptake (92). These

findings underscore unresolved targeting inaccuracies and organ-

specific toxicity risks.

Potential for multi-target synergistic intervention
Multi-target synergistic strategies demonstrate promising

potential in addressing the multifactorial pathogenesis of VC.

Aierken et al. identified that inhibition of iron transporters

Slc39a14/Slc39a8 alleviated ferroptosis in VSMCs by mitigating

iron overload, revealing novel targets at the intersection of

metabolism and oxidative stress (93). Chen et al. demonstrated

that oleoylethanolamide (OEA) suppressed STING1-mediated

mitochondrial DNA damage and cellular senescence via Nrf2

activation while modulating the PPARα-dependent autophagy-

ferroptosis axis, achieving multi-dimensional anti-calcification

effects in diabetic models (94). Shen et al. reported that the

natural compound thonningianin A activated L-type calcium

channels to induce autophagy, downregulating RUNX2/BMP2

expression, and validated its synergistic effects via Cav1.2 α1C

targeting in type 2 diabetes mellitus (T2DM) models (95).

Furthermore, Sun et al. discovered that TFEB activation

FIGURE 2

Molecular pathways of IL cytokines in VC.
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enhanced autophagic flux and the Nrf2 antioxidant system,

suppressing diabetic VC through the POSTN-TGFβR1-YAP/TAZ

pathway, highlighting the integration of transcriptional regulatory

networks for multi-target intervention (96). These studies

collectively suggest that coordinated modulation of metabolic

dysregulation, oxidative stress, and epigenetic remodeling may

form the cornerstone of future precision therapies.

Clinical challenges in balancing anti-inflammatory
and immunosuppressive risks

The central role of anti-inflammatory therapy in managing

chronic inflammatory diseases necessitates a delicate balance with

immunosuppression-related risks. Datta-Mannan et al. reported

that the oral IL-17A small-molecule inhibitor LY3509754

significantly reduced IL-17A activity but induced lymphocytic

hepatitis and drug-induced liver injury (DILI) in high-dose

cohorts (400–1,000 mg), underscoring the imperative for rigorous

hepatic safety monitoring when targeting the IL-17 pathway (97).

In phase III trials for hidradenitis suppurativa, Kimball et al.

demonstrated that the dual IL-17A/F inhibitor bimekizumab

achieved a 52% HiSCR50 response rate, yet elevated risks of oral

candidiasis and opportunistic infections highlighted the need for

immune status-based dosing optimization (98). A Nordic

multicenter study by Glintborg et al. comparing secukinumab

with TNF inhibitors revealed doubled hospitalization rates for

infections with secukinumab (IR 5.0 vs. 2.3/100 patient-years for

adalimumab), though attenuated after confounding adjustment,

advocating personalized infection risk stratification (99). Azadeh

et al. meta-analysis of IL-17 inhibitors in ankylosing spondylitis

identified significantly increased mucosal/opportunistic infection

risks (RD = 0.09, p = 0.02), recommending adjunct antifungal

prophylaxis (100). Smolen et al. found the IL-6 inhibitor

olokizumab non-inferior to adalimumab in rheumatoid arthritis

but associated with higher infection rates (∼70%), emphasizing

the need to reconcile target specificity with systemic

immunosuppression (101). Collectively, precision biomarker

stratification (e.g., IL-23/Th17 axis activity), dynamic immune

monitoring, and stepwise dose titration emerge as critical

strategies to optimize the anti-inflammatory-immunosuppression

risk-benefit ratio.

Conclusion

The roles of IL family members in VC are complex and diverse.

They can either exacerbate the calcification process by promoting

inflammation and cell transformation or protect against it by

modulating immune responses and reducing oxidative stress.

Given the crucial role of IL signaling pathways in calcification,

targeting IL family signaling pathways holds significant

therapeutic potential. Inhibiting pro-calcification cytokines or

activating protective cytokine pathways could provide novel

interventions for VC-related diseases. However, to achieve this

goal, further in-depth research is needed to better understand the

mechanisms of action, signaling networks, and relationships of IL

family members with VC, to develop more effective targeted

strategies for clinical treatment.
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