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Background: Late gadolinium enhancement (LGE) assessed by cardiovascular

magnetic resonance (CMR) is an established metric for risk stratification and

therapeutic guidance. However, consensus on the optimal technique for

quantifying left ventricular (LV) LGE extent remains lacking. This study aimed

to identify the most reliable method for quantifying LGE in chronic myocardial

infarction (CMI), hypertrophic cardiomyopathy (HCM), and inflammatory heart

disease (IHD).

Methods: A retrospective analysis was conducted on 285 prospectively enrolled

patients (CMI: n= 98; HCM: n= 91; IHD: n= 96). LV LGE images in short-axis

orientation were analyzed twice by the same reader. The most reliable

LGE quantification technique was defined as the one achieving the highest

intra-observer reproducibility. A two-step study design was implemented: in

the pilot phase (n= 90), three quantification methods were compared: full

width at half maximum (FWHM), signal threshold vs. reference mean using

2–6 standard deviations (n-SD), and manual thresholding. Techniques

demonstrating the lowest variability were then applied in a validation cohort

(n= 195). A mixed model for repeated measures was used to estimate mean

differences. Equivalence was confirmed if the 95% confidence interval (CI) for

the mean difference remained within predefined margins.

Results: In CMI, FWHM demonstrated the highest reproducibility, with a mean

difference of 0.47% (95% CI: −0.40 to 1.35). In HCM, both the 5-SD and 6-SD

techniques showed the highest reproducibility, with mean differences of

0.06% (95% CI: −1.28 to 1.39) and −0.16% (95% CI: −1.50 to 1.17), respectively.

In IHD, the 5-SD and 6-SD techniques achieved the highest reproducibility,

with mean differences of −0.72% (95% CI: −1.54 to 0.11) and −0.71% (95% CI:

−1.54 to 0.11).
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Conclusion: The distribution and pattern of LGE influence the reproducibility of its

quantification. FWHM provided the highest intra-observer reproducibility for

sharply demarcated scars, as seen in CMI. For more diffuse fibrosis patterns,

such as in HCM and IHD, both the 5-SD and 6-SD techniques offered similarly

reproducible performance.

KEYWORDS

late gadolinium enhancement, myocardial scar, fibrosis, ischemic heart disease,

inflammatory heart disease, hypertrophic cardiomyopathy, cardiovascular magnetic

resonance, quantification technique

Background

Late gadolinium enhancement (LGE) imaging is the reference

standard in cardiovascular magnetic resonance (CMR) for detecting

myocardial scar and fibrosis (1). A growing body of evidence

supports the prognostic value of LGE extent in improving patient

risk stratification and guiding therapy across various patient cohorts,

including chronic myocardial infarction (CMI), hypertrophic

cardiomyopathy (HCM) and inflammatory heart disease (IHD) (2–8).

Several techniques are available to quantify the left ventricular

(LV) extent of LGE, including manual thresholding and semi-

automated approaches such as full width at half maximum

(FWHM) and signal threshold vs. reference mean, which applies

a threshold of n standard deviations from remote normal

myocardium (n-SD). These methods differ significantly in how

they define pathologically hyper-enhanced voxels (9). While LGE

imaging is well established for fibrosis detection, no consensus

exists regarding the optimal technique for quantifying LV LGE

extent in ischemic and non-ischemic cardiomyopathies (1).

In the absence of a universal reference standard, the technical

performance of quantification methods can be assessed by their

measurement precision (variability) (10, 11). As a key determinant

of reliability, precision can be operationalized through intra-

observer reproducibility, which reflects the consistency of repeated

measurements by the same observer (10). Techniques which yield

lower intra-observer variability are potentially more reliable for

clinical and research use.

Although previous studies have evaluated inter- and intra-

observer reproducibility of various LGE quantification techniques

(12–14), uncertainties remain regarding the applicability across

different disease entities. Available data do not clarify whether a)

a single LGE quantification technique achieves the highest intra-

observer reliability across different disease entities or b) different

techniques perform best depending on the underlying disease.

The objective of this study was to identify the most reliable

LGE quantification methods by assessing intra-observer

reproducibility across three disease entities: CMI, HCM, IHD.

Methods

Study design and population

This study is a retrospective analysis of prospectively enrolled

patient data collected between 2013 and 2022 at a single center.

A total of 713 patients who had undergone short-axis LGE imaging

were initially screened, from which 577 met diagnostic criteria for

CMI, HCM, and IHD as outlined in the Supplementary Material.

The IHD cohort comprised cases of acute and chronic myocarditis,

defined according to the original and updated Lake Louise criteria

(15, 16). Inclusion criteria further required the presence of a disease-

typical LGE pattern and sufficient image quality as described in

Supplementary Material for quantitative analysis. Cases presenting

with microvascular obstruction were categorized as (sub)acute

myocardial infarction and excluded from the study.

This study was conducted in accordance with the declaration of

Helsinki, local legislation, and institutional requirements. Data was

retrospectively acquired from prospective studies. Studies were

originally approved by the local ethics committee of Charité—

Universitätsmedizin Berlin and according to local legislation.

Ethics approval ID and Trial registration ID of the source

studies: EA2/077/10, EA1/305/14 (ISRCTN48802295), EA1/076/

18, EA1/111/18 (ISRCTN16766375), EA1/087/21, EA1/088/21,

EA1/198/21, EA1/042/22. Written informed consent was

prospectively obtained from participants at that time.

Image acquisition

All CMR examinations were performed on a 1.5 T scanner

(AvantoFit®, Siemens Healthineers, Erlangen, Germany). LGE

images were acquired 10–20 min after administration of 0.1, 0.15,

or 0.2 mmol/kg of gadolinium-based contrast agent, using a 2D

phase-sensitive inversion recovery (PSIR) sequence. Detailed

acquisition parameters are provided in Supplementary Table S2.

Study workflow

Given the high variability inLGEquantification results reported in

previous literature (10–13), a two-step study design was implemented

(Figure 1). In the first step (Pilot Study), 30 cases per disease entity

(CMI, HCM, IHD, n = 90 in total) were analyzed using all

quantification techniques. Intra-observer variability was assessed to

identify the techniques demonstrating the least variability within

each disease group. Pilot study results subsequently informed the

sample size calculation for the validation cohort.

In the second step (Validation Study, n = 195), only the best-

performing quantification techniques from the pilot study were

applied. Cases for both pilot and validation studies were randomly

selected from all available eligible cases using a custom MATLAB
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tool (MathWorks, Natick, MA, USA), preserving proportional

representation according to the size of the original source studies.

LGE quantification was performed twice per case to confirm intra-

observer reproducibility. In total, 759 LGE quantification analyses

were completed across the two study phases.

LGE quantification protocol

Image analysis was performed exclusively on short-axis PSIR LGE

images using commercially available software (cvi42, version 5.13.7,

Circle Cardiovascular Imaging, Calgary, Canada). A reader with

three years of CMR experience (J.G.) conducted two separate

analyses per case, blinded to previous results and separated by an

interval of more than two months. A consensus read was performed

with a reader with 7 years’ experience (M.F.) During the pilot study,

each case was analyzed using: Manual thresholding, FWHM and

n-SD applying thresholds from 2 to 6 standard deviations.

Myocardial annotation procedure

Epicardial and endocardial borders were manually contoured

once per read. For the FWHM technique, a region of interest

FIGURE 1

Study protocol. Intra-observer analysis followed a two-step approach. In the first step (pilot study, n= 90), intra-observer variability and sample size

estimates were derived. LGE was quantified using seven techniques per entity: FWHM, n-SD with 2–6 standard deviations from remote normal

myocardium, and manual thresholding. In the second step (validation study, n= 195), techniques with the lowest variability were applied in

separate patient cohorts (CMI: FWHM, 6-SD, manual thresholding; HCM: FWHM, 5-SD, 6-SD; IHD: 5-SD, 6-SD). Final statistical analysis (mixed

model for repeated measures) identified the techniques with the highest intra-observer reproducibility, based on results from the pilot, validation,

and pooled cohorts (overall analysis). CMI, chronic myocardial infarction; HCM, hypertrophic cardiomyopathy; IHD, inflammatory heart disease;

LGE, late gadolinium enhancement; FWHM, full width at half maximum; n-SD, signal threshold at n standard deviations from remote myocardium.

5-SD, signal threshold at 5 standard deviations from remote myocardium. 6-SD, signal threshold at 6 standard deviations from remote

myocardium. *During the pilot study, all cases were analyzed using 2-, 3-, 4-, 5-, and 6-SD techniques.
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(ROI) was placed around the most signal-intense voxel within

the scar area on each slice (1). For the n-SD technique, a

reference ROI was drawn in remote myocardium [preferably

within the septum, covering two American Heart Association

[AHA] (17) segments and 45% of myocardial circumference

where possible] to determine 2-, 3-, 4-, 5-, and 6-SD thresholds.

Manual quantification involved manually setting a threshold for

each slice visually matching the extent of annotated scar areas to

the area of hyperintense myocardium. Artefacts, partial volume

effects, and spurious voxels (18) were manually corrected

through exclusion ROIs or contour adjustments. The FWHM

technique was always applied first, and myocardial contours were

subsequently reused without modification for n-SD and manual

thresholding analyses. Representative annotation examples are

shown in Figure 2.

Statistical analysis

In the absence of sufficient preliminary data on intra-observer

variability for LGE quantification techniques, a two-step study

design was implemented. A pilot study first estimated intra-

observer variability in LV LGE extent, expressed as a percentage

of LV mass, for each quantification method within each disease

entity. These data informed sample size calculations for a

subsequent validation cohort, designed to formally test intra-

observer equivalence to zero within predefined clinical margins.

Sample size calculations assumed 80% power and a two-sided

significance level of 5%, with equivalence defined by the 95%

confidence interval (CI) for intra-observer differences lying entirely

within the chosen margins. Based on pilot-derived standard

deviations, a sample size of n = 67 patients was required for CMI

(6-SD technique, SD = 2.04, margin ±2%), n = 89 for HCM (FWHM

technique, SD = 9.44, margin ±4%), and n = 35 for IHD (6-SD

technique, SD = 4.67, margin ±4%). A conservative sample size

estimate was used to ensure sufficient power across all groups. To

increase robustness, we aimed to maintain consistent group sizes in

the final analysis and therefore targeted the largest required sample

size (n≥ 89) for all three groups.

Intra-observer reproducibility was assessed using a mixed

model for repeated measures. Point estimates (PE) were

calculated as the mean differences between first and second

reads, with 95% CIs reported to quantify measurement precision.

Bland–Altman plots were generated to visualize mean differences

and 95% limits of agreement.

Results are reported separately for the pilot and validation steps

and for the pooled cohort including all cases. Sample size

calculations were performed using PASS 2019 (NCSS, LLC,

FIGURE 2

Representative LGE images and annotations. Representative cases of CMI (a–f), HCM: (g–l) and IHD: (m–r) with disease-typical LGE distribution:

Sharply demarcated subendocardial LGE distribution in CMI cases, patchy intramural pattern in HCM cases and subepicardial pattern in IHD cases.

Horizontal rows display reader annotations in the same patient for the first and second image analysis. Vertical columns indicate LGE

quantification technique applied: FWHM (a,g,m,d,j,p), 6-SD (b,h,n,e,k,q), and manual thresholding (c,i,o,f,l,r). Endo- (red line) and epicardial (green

line) borders were annotated. For FWHM the reference ROI (pink contour) was drawn around the visually brightest myocardial area, covering the

most signal intense voxel. For the n-SD technique, the remote ROI (blue contour) was drawn in remote myocardium. Yellow marking indicates

hyper-enhanced myocardium. CMI, chronic myocardial infarction; HCM, hypertrophic cardiomyopathy; IHD, inflammatory heart disease; LGE, late

gadolinium enhancement; FWHM, full width at half maximum. 5-SD, signal threshold at 5 standard deviations from remote myocardium. 6-SD,

signal threshold at 6 standard deviations from remote myocardium. ROI, region of interest.

Gavrysh et al. 10.3389/fcvm.2025.1621292

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1621292
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Kaysville, Utah, USA). Statistical analyses were conducted in SAS

version 9.4 (SAS Institute Inc., Cary, NC, USA). Figures were

generated using GraphPad Prism version 10 (GraphPad Software,

San Diego, CA), Microsoft Visio, PowerPoint version 16.79.2, and

Excel version 14.7.7 (Microsoft Corporation, Redmond, WA, USA).

Results

Out of the initially screened 713 cases, 577 cases met disease

criteria, from which 464 were eligible for inclusion. Of these, 285

patients were randomly selected for the final analysis, slightly

exceeding the minimum sample sizes for sufficient power in each

group (CMI: n = 98; HCM: n = 91; IHD: n = 96). Reasons for

exclusion were absence of a disease-specific LGE pattern (n = 136),

no LGE short axis stack available (n = 41), poor image quality or

insufficient image slices (n = 70), and presence of microvascular

obstruction (n = 2). Patient characteristics are summarized in Table 1.

CMI cases: pilot and validation studies

In the pilot study, the FWHM technique demonstrated a PE

(mean ± standard error) of −0.94 ± 0.48 with a 95% CI ranging

from −1.90 to 0.02, showing the most favorable intra-observer

reproducibility compared to other techniques. The 6-SD

technique [PE = 1.32 ± 0.48, 95% CI (0.36, 2.28)] and manual

thresholding [PE =−1.47 ± 0.48, 95% CI (−2.43, −0.51)] also

exhibited lower variability compared to the remaining methods,

although FWHM performed best (p < 0.001).

For the validation study, FWHM, 6-SD and manual

thresholding were included. FWHM again demonstrated the

lowest variability [PE = 1.10 ± 0.60, 95% CI (−0.08, 2.28);

p = 0.039]. See Figure 3 for Bland-Altman plots of agreement and

Figure 4 for total LV LGE in the first and second read. Detailed

results are provided in the Supplementary Material.

HCM cases: pilot and validation studies

In the pilot study, both 5-SD [PE =−1.62 ± 1.15, 95% CI

(−3.91, 0.67)] and 6-SD [PE =−1.22 ± 1.15, 95% CI (−3.51,

1.07)] techniques demonstrated lower intra-observer variability

compared to other methods, including FWHM [PE = 1.49 ± 1.15,

95% CI (−0.80, 3.77)]. No significant difference was observed

between 5-SD and 6-SD (p = 0.122).

In the validation cohort, 5-SD [PE = 0.88 ± 0.84, 95% CI (−0.77,

2.54)] and 6-SD [PE = 0.36 ± 0.84, 95% CI (−1.30, 2.01)] remained

the techniques with the lowest intra-observer variability (p = 0.655).

ICD cases: pilot and validation studies

In the pilot study for IHD, the 5-SD technique demonstrated a

PE of −1.99 ± 0.76 with a 95% CI ranging from −3.50 to −0.47,

while the 6-SD technique showed a PE of −1.31 ± 0.76 [95% CI

(−2.83, 0.20)]. Both techniques exhibited considerably lower

intra-observer variability compared to other methods, with no

significant difference between them (p = 0.531).

In the validation study, reproducibility remained consistent.

The 5-SD technique achieved a PE of −0.14 ± 0.50 [95% CI

(−1.13, 0.85)], and the 6-SD technique a PE of −0.44 ± 0.50

[95% CI (−1.43, 0.56)]. Again, no significant difference was

observed between the two methods (p = 0.679).

Pooled results across all disease entities

When analyzing pooled results from both pilot and validation

cohorts, the highest intra-observer reproducibility in patients with

CMI was observed with the FWHM technique, which achieved a

PE of 0.47 ± 0.44 and a 95% CI ranging from −0.40 to 1.35.

In HCM and IHD cohorts, both the 5-SD and 6-SD techniques

demonstrated similarly high reproducibility. For HCM, the 5-SD

method achieved a PE of 0.06 ± 0.68 [95% CI (−1.28, 1.39)] and

the 6-SD method a PE of −0.16 ± 0.68 [95% CI (−1.50, 1.17)],

with no significant difference between them (p = 0.251). In the

IHD cohort, the 5-SD technique showed a PE of −0.72 ± 0.42

[95% CI (−1.54, 0.11)], while the 6-SD technique achieved a PE

of −0.71 ± 0.42 [95% CI (−1.54, 0.11)], again without a

significant difference (p = 0.463).

The techniques demonstrating the highest intra-observer

reproducibility across all disease groups are illustrated in Figure 5.

Analysis time

The average time required for LGE quantification, including

manual contour tracing and application of all techniques, was as

TABLE 1 Patient characteristics and myocardial parameters.

Parameter Unit CMI HCM IHD

Age [years] 64.3 ± 11.4 58.2 ± 12.8 45 ± 14.1

Sex [male/female] 73/25 62/29 61/35

BMI [kg/m2] 27.6 ± 4.2 28.1 ± 4.2 26 ± 4.4

First read

LVM [g] 96.2 ± 28.4 137.3 ± 62.8 83.7 ± 33.6

[ml] 91.6 ± 27.0 130.9 ± 59.8 79.8 ± 32.0

LGE extent [g] 16.0 ± 10.1 13.0 ± 13.6 6.0 ± 7.3

[ml] 15.2 ± 9.6 12.4 ± 13.0 6.1 ± 7.7

[%] 16.5 ± 9.0 8.6 ± 6.8 6.4 ± 6.5

Second read

LVM [g] 93.0 ± 27.7 137.7 ± 60.1 81.1 ± 31.0

[ml] 88.5 ± 26.4 131.1 ± 57.3 77.2 ± 29.5

LGE extent [g] 14.7 ± 8.9 12.9 ± 13.6 6.1 ± 7.3

[ml] 14.0 ± 8.5 12.3 ± 13.0 6.4 ± 7.6

[%] 16.0 ± 8.4 8.8 ± 7.0 7.1 ± 7.2

Data are expressed as mean ± standard deviation for the overall data per disease entity. LGE

extent and scarring according to FWHM in CMI and 6-SD for HCM, IHD. See

supplementary material for full parameter overview. CMI, chronic myocardial infarction;

HCM, hypertrophic cardiomyopathy; IHD, inflammatory heart disease; BMI, body mass

index; LVM, left ventricular myocardium mass; LGE, late gadolinium enhancement;

FWHM, full width at half maximum. 6-SD: signal threshold at 6 standard deviations from

remote myocardium.
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follows: Pilot study (n = 90): 27 min 51 s per case; Validation study

(n = 195): 23 min 46 s per case. The most pronounced differences in

analysis time were observed in HCM cases: Pilot study first read:

37 min 25 s, Pilot study second read: 25 min 57 s; Validation study

first read: 23 min 21 s; Validation study second read: 19 min 57 s.

Further details are provided in the Supplementary Material.

FIGURE 3

Bland–Altman plots of agreement between first and second read LGE extent in percent for all cases per quantification technique and disease entity.

CMI, chronic myocardial infarction; HCM, hypertrophic cardiomyopathy; IHD, inflammatory heart disease; LGE, late gadolinium enhancement; FWHM,

full width at half maximum. 5-SD, signal threshold vs. reference mean at 5 standard deviations from remote myocardium. 6-SD, signal threshold vs.

reference mean at 6 standard deviations from remote myocardium.

FIGURE 4

Boxplot figures of LGE extent expressed in median [%] with interquartile range (25th to 75th percentile) during first and second read per LGE

quantification technique per disease entity. Whiskers depict 1.5 times interquartile range. CMI: chronic myocardial infarction. HCM, hypertrophic

cardiomyopathy; IHD, inflammatory heart disease; LGE, late gadolinium enhancement; FWHM, full width at half maximum. 5-SD, signal threshold

vs. reference mean at 5 standard deviations from remote myocardium. 6-SD, signal threshold vs. reference mean at 6 SD from remote myocardium.
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Discussion

This single-center study assessed intra-observer reproducibility

of three LGE quantification techniques (FWHM, n-SD, manual

thresholding) across CMI, HCM, IHD. Our findings suggest that

intra-observer reproducibility depends on scar pattern and LGE

distribution. For sharply demarcated scars, as seen in CMI,

FWHM achieved the highest intra-observer reproducibility. In

contrast, when LGE was less well-defined, as typically observed

in HCM and IHD, the 5-SD and 6-SD techniques demonstrated

better reproducibility compared with FWHM.

Consistent with previous studies, FWHM had the highest

reproducibility in cases with high image contrast and distinct

scarring, where the most signal-intense voxel can be reliably

identified (13, 19). In chronic ischemic scars, this method

benefits from sharp differences in image signal intensity, allowing

robust thresholding at half-maximum (13). However, in non-

ischemic diseases, FWHM reproducibility decreased due to

methodological challenges: less distinct scar regions, smaller

differences in signal intensities between healthy and diseased

myocardium, and difficulty reliably identifying the brightest

voxels. Additionally, manual ROI placement and the need to

exclude spurious voxels at myocardial borders contribute to

higher observer dependency and time consumption.

In IHD and HCM, where fibrosis and scarring are often diffuse

or patchy rather than sharply demarcated (8), n-SD techniques

(5-SD and 6-SD) offered better reproducibility. Although

theoretically applicable across different scar patterns, n-SD

performed less reliably in CMI, likely due to difficulties in

consistently positioning reference ROIs across repeated

annotations. These findings align with previous studies showing

n-SD’s limitations for infarct quantification (18).

Our results have clinical implications. In HCM, where risk

stratification thresholds such as 15% LGE extent are clinically

relevant (20–22), reproducibility is critical, particularly when

considering longitudinal follow-up examinations to detect

meaningful increases in LGE extent, or in interventional research

trials, measuring the effect of therapies over time.

Manual thresholding showed lower reproducibility across all

cohorts, underlining the inherent subjectivity of human

annotation (14). Even with quality assurance and systematic

exclusion of artefacts, manual methods add observer bias that

cannot be fully eliminated.

Interestingly, in dilated cardiomyopathy (DCM), several studies

have demonstrated the prognostic value of LGE extent, most

frequently quantified using the FWHM technique (23–25).

A recent meta-analysis confirmed that both the presence and

extent of LGE are associated with adverse outcomes, while also

highlighting the need for standardized quantification protocols

(26). Notably, adequately powered studies investigating intra- and

inter-reader reproducibility in DCM are still lacking. In cardiac

amyloidosis, LGE is primarily assessed visually based on

characteristic enhancement patterns. Although transmural LGE

has been shown to predict mortality (27), semi-automatic

quantification is rarely used. Threshold-based techniques such as

n-SD or FWHM are often not applicable due to diffuse

infiltration and the absence of a clear reference myocardium.

As shown in our study, manual LGE quantification is tedious

and time-consuming, hindering broader clinical application.

Future work should therefore focus on automated solutions.

Deep learning algorithms have demonstrated success in cine

image segmentation (28, 29) and could potentially improve LGE

quantification. Initiatives like the Evaluation of Myocardial

Infarction from Delayed-Enhancement Cardiac MRI (EMIDEC)

challenge highlight the potential of AI, although variability in the

underlying manual annotations remains a hurdle (30).

Limitations

Although this is currently the largest study examining the

intra-observer reproducibility of different LGE quantification

approaches, there are limitations. While our study focused on

prevalent diseases with distinct LGE characteristics, uncertainties

remain for diseases with other LGE patterns, such as cardiac

sarcoidosis, and for cases exhibiting multiple or mixed LGE

patterns within the same patient. Additional limitations of our

study include the single-center and single-reader design. Further

research is necessary to assess the techniques’ inter-observer

reproducibility and result variability across different centers with

varying scanner setups and protocols.

In our study, datasets were drawn from multiple prior studies

with different contrast agents, doses, and post-contrast timing.

While investigating dose-, and agent-specific effects would be of

scientific interest, the current study was not powered for

stratified analyses by contrast dose, timing or type. Moreover,

FIGURE 5

Most reliable LGE quantification techniques per entity across pilot

(n= 90) and validation study (n= 195). Data are expressed as PE

along with 95% CI for the overall analysis (n= 285). CMI, chronic

myocardial infarction; HCM, hypertrophic cardiomyopathy; IHD,

inflammatory heart disease; LGE, late gadolinium enhancement;

PE, point estimate; CI, confidence interval; FWHM, full width at half

maximum. 5-SD: signal threshold vs. reference mean at 5 standard

deviations from remote myocardium. 6-SD: signal threshold vs.

reference mean at 6 standard deviations from remote myocardium.
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acute and chronic myocarditis may exhibit different LGE

characteristics but could not be meaningfully stratified due to

nonuniform scan timing in relation to disease onset in the

original studies. However, both stages frequently present with

similar diffuse or patchy enhancement patterns and this study

focused on intra-observer reproducibility rather than

pathophysiological distinction.

Conclusions

In summary, FWHM is preferable for well-defined infarcts,

while 5-SD and 6-SD techniques perform better in diffuse and/

or patchy fibrosis patterns (Figure 6). Visual assessment of

scar pattern should guide technique selection to maximize

reproducibility in both clinical and research settings.
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FIGURE 6

Decision tree for the first step of visual inspection. After establishing sufficient image quality, visual inspection of LGE distribution and myocardial

fibrosis is the primary step. In cases with CMI, HCM and IHD LGE distribution and scar pattern can present either with sharp demarcation (CMI) or

no sharp demarcation (HCM, IHD). In cases of fibrosis with sharp demarcation, that are often observed in CMI patients, FWHM is the technique

with the highest intra-observer reproducibility to quantify LGE extent. In cases with focal fibrosis with not sharp demarcation as associated with

HCM and IHD, 5-SD and 6-SD are equally well suited to quantify LGE extent. CMI, chronic myocardial infarction; HCM, hypertrophic

cardiomyopathy; IHD, inflammatory heart disease; LGE, late gadolinium enhancement; FWHM, full width at half maximum. 5-SD: signal threshold

vs. reference mean at 5 standard deviations from remote myocardium. 6-SD: signal threshold vs. reference mean at 6 standard deviations from

remote myocardium.
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